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Abstract. In this article, we study the fundamental solution of the operator((
♢+m2

)(△2 +⊡2

2

))k

iterated k-times, which is defined by (10), where m is a non-negative real number, and k is a non-

negative integer. After that, we study the Fourier transform of the operator
((

♢+m2
) (△2+⊡2

2

))k
δ,

where δ is the Dirac delta function.
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Introduction

The operator ⋄k has been first introduced by Kananthai [5], is named as the diamond
operator iterated k-times, and is defined by

♢k =

( p∑
r=1

∂2

∂x2r

)2

−

 p+q∑
j=p+1

∂2

∂x2j

2k

, p+ q = n, (1)

where n is the dimension of the space Rn, for x = (x1, x2, . . . , xn) ∈ Rn and k is a non-
negative integer. The operator ♢k can be expressed in the form ♢k = ⊡k△k = △k⊡k,
where the operator △k is Laplace operator iterated k-times, which is defined by

△k =

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

)k

(2)
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and the operator ⊡k is the ultra-hyperbolic operator iterated k-times, which is defined by

⊡k =

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− ∂2

∂x2p+2

− · · · − ∂2

∂x2p+q

)k

. (3)

By putting p = 1 and x1 = t (time) in (3), then we obtain the wave operator

⊡ =
∂2

∂t2
−

n−1∑
j=1

∂2

∂x2j
. (4)

In 1997, Kananthai [5] showed that the convolution (−1)kRe
2k(x) ∗ RH

2k(x) is the funda-
mental solution of the operator ♢k, that is

♢k((−1)kRe
2k(x) ∗RH

2k(x)) = δ, (5)

where the function RH
2k(x) is defined by (20) and Re

2k(x) is defined by (19). The fundamen-
tal solution (−1)kRe

2k(x) ∗ RH
2k(x) is called the diamond kernel of Marcel Riesz. Satsanit

[20] showed that

⊙k =

( p∑
r=1

∂2

∂x2r

)2

+

 p+q∑
j=p+1

∂2

∂x2j

2k

=

((
△+⊡

2

)2

+

(
△−⊡

2

)2
)k

=

(
△2 +⊡2

2

)k

. (6)

Moreover, Kananthai, Suantai and Longani [7] studied the fundamental solution of the
operator ⊕k and the weak solution of the equation ⊕ku(x) = f(x), where the operator ⊕k

is defined by

⊕k =

( p∑
r=1

∂2

∂x2r

)4

−

 p+q∑
j=p+1

∂2

∂x2j

4k

=

( p∑
r=1

∂2

∂x2r

)2

−

 p+q∑
j=p+1

∂2

∂x2j

2k ( p∑
r=1

∂2

∂x2r

)2

+

 p+q∑
j=p+1

∂2

∂x2j

2k

= ⋄kLk
1L

k
2

= ⋄kLk (7)

where p+ q = n is the dimension of the Euclidean space Rn, k is a non-negative integer,
and f(x) is a generalized function.
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Next, Kananthai, Suantai and Longani [6] studied the relationship between the oper-
ator ⊕k and the wave operator, and the relationship between the operator ⊕k and the
Laplace operator. Moreover, they studied equation ⊕kK(x) = δ and they showed that

K(x) = [RH
2k(x) ∗ (−1)kRe

2k(x)] ∗ S2k(x) ∗ T2k(x)

is the fundamental solution of the operator ⊕k. Later, Kananthai [3] studied the inversion
of the kernel Kα,β,γ,ν related to the operator ⊕k.

In 1988, Trione [22] studied the fundamental solution of the ultra-hyperbolic Klein–
Gordon operator iterated k-times, which is defined by

(⊡+m2)k =

[
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− ∂2

∂x2p+2

− · · · − ∂2

∂x2p+q

+m2

]k
. (8)

Later, Lunnaree and Nonlaopon [11] introduced the operator (♢+m2)k, that is named
as the diamond Klein-Gordon operator iterated k-times, which is defined by

(♢+m2)k =

( p∑
r=1

∂2

∂x2r

)2

−

 p+q∑
j=p+1

∂2

∂x2j

2

+m2

k

, (9)

where p+q = n is the dimension of the space Rn, for x = (x1, x2, . . . , xn) ∈ Rn,m is a non-
negative real number and k is a non-negative integer, see [9, 10, 17, 18] for more details.
V.N. Mishra, K. Khatri and L.N. Mishra [15] studied the linear operators to approximate
signals of Lip (α, p), (p ≥ 1)-class, see [2, 12–14, 16] for more details.

Moreover, Kananthai [4] studied the fundamental solution for the (♢ + m4)k, which
related to the Klein-Gordon operator. From (7) the operator

( p∑
r=1

∂2

∂x2r

)2

+
m2

2

2

−

 p+q∑
j=p+1

∂2

∂x2j

2

− m2

2

2

k

can be expressed in the form
( p∑

r=1

∂2

∂x2r

)2

+
m2

2

2

−

 p+q∑
j=p+1

∂2

∂x2j

2

− m2

2

2

k

=

( p∑
r=1

∂2

∂x2r

)2

−

 p+q∑
j=p+1

∂2

∂x2j

2

+m2

k( p∑
r=1

∂2

∂x2r

)2

+

 p+q∑
j=p+1

∂2

∂x2j

2k

= (♢+m2)k
(
△2 +⊡2

2

)k



S. Bupasiri / Eur. J. Pure Appl. Math, 14 (4) (2021), 1306-1323 1309

= (♢+m2)k ⊙k . (10)

From (10) with q = m = 0 and k = 1, we obtain Laplace operator △4
p of p-dimension,

where

△p =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p
. (11)

In this article, we study the fundamental solution of the equation of the form
( p∑

r=1

∂2

∂x2r

)2

+
m2

2

2

−

 p+q∑
j=p+1

∂2

∂x2j

2

− m2

2

2


k

K(x,m) = δ,

or (
(♢+m2)

(
△2 +⊡2

2

))k

K(x,m) = δ,

where K(x,m) is the fundamental solution, δ is the Dirac delta function, k is a non-
negative integer, and m is a non-negative real number. Moreover, we study the Fourier

transform of the operator
(
(♢+m2)

(
△2+⊡2

2

))k
δ.

Preliminary Notes

Definition 1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional space Rn,

u = x21 + x22 + · · ·+ x2p − x2p+1 − x2p+2 − · · · − x2p+q, (12)

where p+ q = n.
Define Γ+ = {x ∈ Rn : x1 > 0 and u > 0}, which designates the interior of the forward

cone and Γ+ designates its closure and the following functions introduce by Nozaki [19,
Page 72], that

RH
α (x) =

{
u

α−n
2

Kn(α)
, if x ∈ Γ+;

0, if x ̸∈ Γ+

(13)

is called the ultra-hyperbolic kernel of Marcel Riesz. Here, α is a complex parameter and
n the dimension of the space. The constant Kn(α) is defined by

Kn(α) =
π

n−1
2 Γ

(
2+α−n

2

)
Γ
(
1−α
2

)
Γ(α)

Γ
(
2+α−p

2

)
Γ
(p−α

2

) (14)

and p is the number of positive terms of

u = x21 + x22 + · · ·+ x2p − x2p+1 − x2p+2 − · · · − x2p+q, p+ q = n
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and let supp RH
α (x) ⊂ Γ+. Now, RH

α (x) is an ordinary function if Re α ≥ n and is a
distribution of α if Re α < n. Now, if p = 1 then (13) reduces to the function Mα(u), and
is defined by

Mα(u) =

{
u

α−n
2

Hn(α)
, if x ∈ Γ+;

0, if x ̸∈ Γ+,
(15)

where u = x21 − x22 − · · · − x2n and Hn(α) = π
(n−1)

2 2α−1Γ(α−n+2
2 ). The function Mα(u) is

called the hyperbolic kernel of Marcel Riesz.

Definition 2. Let f(x) ∈ L1(Rn) (the space of integrable function in Rn). The Fourier
transform of f(x) is defined as

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−iξ·xf(x)dx, (16)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, ξ · x = (ξ1x1, ξ2x2, . . . , ξnxn) is the
usual inner product in Rn and dx = dx1dx2 . . . dxn. The inverse of the Fourier transform
is defined by

f(x) =
1

(2π)n/2

∫
Rn

e−iξ·xf̂(ξ)dξ. (17)

If f is a distribution with compact supports, by [24, Theorem 7.4-3], Equation (17) can be
written as

f̂(ξ) = Ff(x) =
1

(2π)n/2

〈
f(x), e−iξ·x

〉
. (18)

Lemma 1. [5] Given the equation △ku(x) = δ for x ∈ Rn, where △k is the Laplace opera-
tor iterated k-times, which is defined by (2). Then u(x) = (−1)kRe

2k(x) is the fundamental
solution of the operator △k, where

Re
2k(x) =

Γ
(
n−2k

2

)
22kπ

n
2 Γ(k)

|x|2k−n. (19)

Lemma 2. [22] If ⊡ku(x) = δ for x ∈ Γ+ = {x ∈ Rn : x1 > 0 and u > 0}, where ⊡kis the
ultra-hyperbolic operator iterated k-times, which is defined by (3). Then u(x) = RH

2k(x) is
the unique fundamental solution of the operator ⊡k, where

RH
2k(x) =

u(
2k−n

2
)

Kn(2k)
=

(x21 + x22 + · · ·+ x2p − x2p+1 − · · · − x2p+q)
( 2k−n

2 )

Kn(2k)
(20)

and

Kn(2k) =
π

n−1
2 Γ

(
2+2k−n

2

)
Γ
(
1−2k
2

)
Γ(2k)

Γ
(
2+2k−p

2

)
Γ(p−2k

2 )
. (21)
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Lemma 3. [5] Given the equation ♢ku(x) = δ for x ∈ Rn, then u(x) = (−1)kRe
2k(x) ∗

RH
2k(x) is the unique fundamental solution of the operator ♢k, where ♢k is the diamond

operator iterated k-times, which is defined by (1), Re
2k(x) and RH

2k(x) are defined by (19)
and (20), respectively. Moreover, (−1)kRe

2k(x) ∗RH
2k(x) is a tempered distribution.

It is not difficult to show that Re
−2k(x) ∗RH

−2k(x) = (−1)k♢kδ, for k is a non-negative
integer.

Definition 3. Let x = (x1, x2, . . . , xn) be a point of Rn, the function Pα(x,m) is defined
by

Pα(x,m) =

∞∑
r=0

(
−α/2

r

)
(m2)r(−1)α/2+rRe

α+2r(x) ∗RH
α+2r(x), (22)

where α is a complex parameter, m is a non-negative real number, RH
α+2r(x) and Re

α+2r(x)
are defined by (20) and (19), respectively.

From the definition of Pα(x,m) and by putting α = −2k, we have

P−2k(x,m) =
∞∑
r=0

(
k

r

)
(m2)r(−1)−k+rRe

2(−k+r)(x) ∗R
H
2(−k+r)(x).

Since the operator (♢+m2)k defined in equation (9) is a linearly continuous and has 1−1
mapping, then it has inverse. From Lemma 3, we obtain

P−2k(x,m) =

∞∑
r=0

(
−k

r

)
(m2)r♢−k−rδ

= (♢+m2)kδ. (23)

By putting k = 0 in (23), we have P0(x,m) = δ. By putting α = 2k into (22), we have

P2k(x,m) =

(
−k

0

)
(m2)0(−1)k+0Re

2k+0(x) ∗RH
2k+0(x)

+

∞∑
r=1

(
−k

r

)
(m2)r(−1)k+rRe

2k+2r(x) ∗RH
2k+2r(x). (24)

The second summand of the right-hand member of (24) vanishes for m = 0 and then, we
have

P2k(x,m = 0) = (−1)kRe
2k(x) ∗RH

2k(x) (25)

is the fundamental solution of the diamond operator ♢k.

Lemma 4. The function RH
−2k(x) and (−1)kRe

−2k(x) are the inverse in the convolution

algebra of RH
2k(x) and (−1)kRe

2k(x), respectively. That is,

RH
−2k(x) ∗RH

2k(x) = RH
−2k+2k(x) = RH

0 (x) = δ

and
(−1)kRe

−2k(x) ∗ (−1)kRe
2k(x) = (−1)2kRe

−2k+2k(x) = Re
0(x) = δ.
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For the proof of the this Lemma is given in [1, 21, 23].

Lemma 5. [20](Convolution of Re
α(x) and RH

α (x)). If Re
α(x) and RH

α (x) are defined by
(19) and (20), respectively, then

(i) Re
α(x) ∗Re

β(x) = Re
α+β(x), where α and β are complex parameters;

(ii) RH
α (x)∗RH

β (x) = RH
α+β(x), where α and β are both integers and except only the case

both α and β are both integers.

Lemma 6. [11] Given the equation (♢+m2)ku(x) = δ, where (♢+m2)k is the diamond
Klein-Gordon operator, which is defined by

(♢+m2)k =

( p∑
r=1

∂2

∂x2r

)2

−

 p+q∑
j=p+1

∂2

∂x2j

2

+m2

k

, (26)

where x = (x1, x2, . . . , xn) ∈ Rn, k is a non-negative integer, m is a non-negative real
number and δ is the Dirac delta function. Then, we obtain

P2k(x,m) =
∞∑
r=0

(
−k

r

)
m2r(−1)k+rRe

2k+2r(x) ∗RH
2k+2r(x) (27)

is the fundamental solution of the operator (♢ +m2)k, defined by (9), where RH
2k(x) and

Re
2k(x) are defined by (20) and (19), respectively. Moreover, u(x) = P2k(x,m) is tempered

distribution.

Lemma 7. [20] Given the equation

⊙kG(x) = δ, (28)

where ⊙k is the operator iterated k-times is defined by (6). Then, we obtain G(x) is the
fundamental solution of the equation (28), where

G(x) = (RH
4k(x) ∗ (−1)2kRe

4k(x)) ∗ (H∗k(x))∗−1 (29)

and

H(x) =
1

2
RH

4 (x) +
1

2
(−1)2Re

4(x). (30)

Here, H∗k(x) denotes the convolution of H(x) itself k-times, (H∗k(x))∗−1 denotes the
inverse of H∗k(x) in the convolution algebra. Moreover, G(x) is a tempered distribution.

Lemma 8. (The Fourier transform of
(
(♢+m2)

(
△2+⊡2

2

))k
δ.)

Let
||ξ|| =

(
ξ21 + ξ22 + · · ·+ ξ2n

)1/2
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for ξ ∈ Rn. Then∣∣∣∣∣F
(
(♢+m2)

(
△2 +⊡2

2

))k

δ

∣∣∣∣∣ ≤ 1

(2π)n/2
(||ξ||4 +m2)k||ξ||4k.

That is, F
(
(♢+m2)

(
△2+⊡2

2

))k
δ is bounded and continuous on the space S ′

of the

tempered distribution. Moreover, by the inverse Fourier transformation(
(♢+m2)

(
△2 +⊡2

2

))k

δ = F−1 1

(2π)n/2

[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 +
m2

2

)2

−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2
]k

.

Proof. From the Fourier transform (16), we have

F
(
(♢+m2)

(
△2 +⊡2

2

))k

δ

=
1

(2π)n/2

〈
δ, (♢+m2)k

(
△2 +⊡2

2

)k

e−iξ·x

〉

=
1

(2π)n/2

〈
δ, (♢+m2)k

(−1)2k

2

(
(ξ21 + ξ22 + · · ·+ ξ2n)

2 + (ξ21 + ξ22 + · · ·+ ξ2p

−ξ2p+1 − ξ2p+2 − · · · − ξ2n)
2
)k

e−iξ·x
〉

=
1

(2π)n/2

〈
δ,
(−1)2k

2

(
(ξ21 + ξ22 + · · ·+ ξ2n)

2 + (ξ21 + ξ22 + · · ·+ ξ2p

−ξ2p+1 − ξ2p+2 − · · · − ξ2n)
2
)k

(♢+m2)ke−iξ·x
〉

=
1

(2π)n/2

〈
δ,

( p∑
i=1

ξ2i

)2

+

 p+q∑
j=p+1

ξ2j

2k ( p∑
i=1

ξ2i

)2

−

 p+q∑
j=p+1

ξ2j

2

+m2

k

e−iξ·x

〉

=
1

(2π)n/2

〈
δ,


( p∑

i=1

ξ2i

)2

+
m2

2

2

−

 p+q∑
j=p+1

ξ2j

2

− m2

2

2

k

e−iξ·x

〉

=
1

(2π)n/2


( p∑

i=1

ξ2i

)2

+
m2

2

2

−

 p+q∑
j=p+1

ξ2j

2

− m2

2

2

k

=
1

(2π)n/2

[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 +
m2

2

)2

−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2
]k

.
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Next, we consider the boundedness of F
(
(♢+m2)

(
△2+⊡2

2

))k
δ. Since(

(♢+m2)

(
△2 +⊡2

2

))k

=

[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 +
m2

2

)2

−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2
]k

=
[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − (ξ2p+1 + ξ2p+2 + · · ·+ ξ2n)
2 +m2

)k
×
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 + (ξ2p+1 + ξ2p+2 + · · ·+ ξ2n)
2
)k]

=
[(
(ξ21 + ξ22 + · · ·+ ξ2n)(ξ

2
1 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2n) +m2

)k
×
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 + (ξ2p+1 + · · ·+ ξ2n)
2
)k]

.

Thus

F
(
(♢+m2)

(
△2 +⊡2

2

))k

δ

=
1

(2π)n/2

[(
(ξ21 + ξ22 + · · ·+ ξ2n)(ξ

2
1 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2n) +m2

)k
×
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 + (ξ2p+1 + · · ·+ ξ2n)
2
)k]

,∣∣∣∣∣F
(
(♢+m2)

(
△2 +⊡2

2

))k

δ

∣∣∣∣∣
=

1

(2π)n/2
(∣∣ξ21 + ξ22 + · · ·+ ξ2n

∣∣ ∣∣ξ21 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2n
∣∣+m2

)k
×
∣∣((ξ21 + ξ22 + · · ·+ ξ2p)

2 + (ξ2p+1 + · · ·+ ξ2n)
2
)∣∣k

≤ 1

(2π)n/2

(∣∣ξ21 + ξ22 + · · ·+ ξ2n
∣∣2 +m2

)k ∣∣ξ21 + ξ22 + · · ·+ ξ2n
∣∣2k

=
1

(2π)n/2
(||ξ||4 +m2)k||ξ||4k,

where ||ξ|| =
(
ξ21 + ξ22 + · · ·+ ξ2n

)1/2
, ξi(i = 1, 2, . . . , n) ∈ R. Hence, we obtain

F
(
(♢+m2)

(
△2 +⊡2

2

))k

δ

is bounded and continuous on the space S ′
of the tempered distribution.

Since F is 1− 1 transformation from the space S ′
of the tempered distribution to the

real space R, then by (17), we have(
(♢+m2)

(
△2 +⊡2

2

))k

δ
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=
1

(2π)n/2
F−1

[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 +
m2

2

)2

−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2
]k

.

Main Results

Theorem 1.

(
The fundamental solution of

(
(♢+m2)

(
△2+⊡2

2

))k)
.

Given the equation (
(♢+m2)

(
△2 +⊡2

2

))k

K(x,m) = δ, (31)

where
(
(♢+m2)

(
△2+⊡2

2

))k
is the operator iterated k-times, which is defined by (10), δ is

the Dirac-delta function, x ∈ Rn, m is a non-negative real number and k is a non-negative
integer. Then, we obtain

K(x,m) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m) (32)

is the fundamental solution for the operator iterated k-times, which is defined by (10). In
particular, for m = 0 then (31) becomes

⊕kK(x, 0) = δ, (33)

and we obtain

K(x, 0) =
(
RH

6k(x) ∗ (−1)3kRe
6k(x)

)
∗
(
(H∗k(x))∗−1

)
(34)

is the fundamental solution of the o-plus operator ⊕k, for q = m = 0 then (31) becomes

△4k
p K(x, 0) = δ, (35)

and we obtain
K(x, 0) = Re

8k(x) (36)

is the fundamental solution of (35), where △4k
p is the Laplace operator of p-dimension,

iterated 4k-times which is defined by (11).
Moreover, from (34), we obtain(

RH
−4k(x) ∗ (−1)3kRe

−6k(x)
)
∗
(
H∗k(x)

)
∗K(x, 0) = RH

2k(x) (37)

is the fundamental solution of the ultra-hyperbolic operator ⊡k iterated k-times, which
defined by (3), where Re

−6k(x) and RH
−4k(x) are inverse of Re

6k(x) and RH
4k(x), respectively.
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From (34) and (37) with p = 1, q = n− 1, k = 1,m = 0 and x1 = t (time), we obtain(
(−1)3

2
Re

−6(x) +MH
−4(u) ∗

(−1)5

2
Re

−2(x)

)
∗K(x, 0) = MH

2 (u) (38)

or ((
−1

2
Re

−6(x)

)
+MH

−4(u) ∗
(
−1

2
Re

−2(x)

))
∗K(x, 0) = MH

2 (u) (39)

is the fundamental solution of the wave operator is defined by (4), where M2(u) is defined
by (15) with α = 2.

Proof. From (10) and (31), we have(
(♢+m2)

(
△2 +⊡2

2

))k

K(x,m) = (♢+m2)k
(
△2 +⊡2

2

)k

K(x,m) = δ. (40)

Convolving both sides of (40) by
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m), we

obtain[(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

]
∗ (♢+m2)k

(
△2 +⊡2

2

)k

K(x,m)

=
[(

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)
∗ P2k(x,m)

]
∗ δ.

By properties of the convolution, we have

(♢+m2)k(P2k(x,m)) ∗
(
△2 +⊡2

2

)k ((
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

))
∗K(x,m)

=
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m).

By Lemma 6 and Lemma 7, we obtain,

δ ∗ δ ∗K(x,m) = K(x,m) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m) (41)

is the fundamental solution of
(
(♢+m2)

(
△2+⊡2

2

))k
operator.

In particular, for m = 0 then (31) becomes

⊕kK(x, 0) = δ. (42)

From Lemma 5, (22) and (41), we obtain

K(x, 0) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x, 0)

=
(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ ((−1)kRe

2k(x) ∗RH
2k(x))
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=
(
RH

6k(x) ∗ (−1)3kRe
6k(x)

)
∗
(
(H∗k(x))∗−1

)
(43)

is the fundamental solution of the o-plus operator ⊕k.
Putting q = m = 0, then (31) becomes

△4k
p K(x, 0) = δ, (44)

where △4k
p is Laplace operator of p-dimension iterated 4k-times. By Lemma 1, we have

K(x, 0) = (−1)4kRe
8k(x) = Re

8k(x)

is the fundamental solution of (44).
On the other hand, we can also find K(x,m) from (41). Since q = 0, we have RH

2k(x)
reduces to (−1)kRe

2k(x). Thus, by (41) for q = m = 0, we obtain

K(x, 0) =
(
(−1)2kRe

4k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
(−1)2kRe

4k(x)
)∗−1

∗ P2k(x, 0)

= (−1)4kRe
4k+4k(x) ∗

(
(−1)2kRe

4k(x)
)∗−1

∗ ((−1)kRe
2k(x) ∗ (−1)kRe

2k(x))

= (−1)8kRe
8k(x) = Re

8k(x),

where (Re
4k(x))

∗−1 is the inverse of Re
4k(x) in the convolution algebra.

From (41), we have

K(x, 0) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
H∗k(x)

)∗−1
∗ P2k(x, 0).

Convolving the above equation by
(
RH

−4k(x) ∗ (−1)3kRe
−6k(x)

)
∗
(
H∗k(x)

)
. By Lemma 4,

Lemma 5, and (25), we obtain(
RH

−4k(x) ∗ (−1)3kRe
−6k(x)

)
∗
(
H∗k(x)

)
∗K(x, 0)

=
(
RH

4k(x) ∗RH
−4k(x)) ∗ ((−1)2kRe

4k(x) ∗ (−1)3kRe
−6k(x)

)
)

∗ (
(
H∗k(x)

)
∗
(
H∗k(x)

)∗−1
) ∗ P2k(x, 0)

or (
RH

−4k(x) ∗ (−1)3kRe
−6k(x)

)
∗
(
H∗k(x)

)
∗K(x, 0)

= δ(x) ∗ (−1)5kRe
−2k(x) ∗ δ(x) ∗ P2k(x, 0)

= δ(x) ∗ (−1)5kRe
−2k(x) ∗ δ(x) ∗ ((−1)kRe

2k(x) ∗RH
2k(x))

= δ(x) ∗ δ(x) ∗ δ(x) ∗RH
2k(x) = RH

2k(x).

It follows that (
RH

−4k(x) ∗ (−1)3kRe
−6k(x)

)
∗
(
H∗k(x)

)
∗K(x, 0) = RH

2k(x) (45)
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as the fundamental solution of the ultra-hyperbolic operator iterated k-times defined by
(3).

In particular, if we put p = 1, q = n − 1, k = 1,m = 0 and x1 = t (time) in (41) then
RH

−4(x) reduces to MH
−4(u) and RH

2 (x) reduce to MH
2 (u), where MH

4 (u) and MH
2 (u) are

defined by (15) with α = −4, α = 2, respectively. Thus, (45) becomes

(
MH

−4(u) ∗ (−1)3Re
−6(x)

)
∗
(
1

2
MH

4 (x) +
(−1)2

2
Re

4(x)

)
∗K(x, 0) = MH

2 (u). (46)

By Lemma 7, we obtain(
(−1)3

2
Re

−6(x) +MH
−4(u) ∗

(−1)5

2
Re

−2(x)

)
∗K(x, 0) = MH

2 (u) (47)

or ((
−1

2
Re

−6(x)

)
+MH

−4(u) ∗
(
−1

2
Re

−2(x)

))
∗K(x, 0) = MH

2 (u) (48)

as the fundamental solution of the wave operator defined by

⊡ =
∂2

∂t2
−

n−1∑
j=1

∂2

∂x2j
, (49)

where Re
−6(x) defined by (19). This completes the proof.

Theorem 2.

F
[(

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)
∗ P2k(x,m)

]
=

1

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2]k
=
∣∣∣F [(RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

]∣∣∣ ≤ 1

(2π)
n
2

M (50)

for a large ξi ∈ R, where m is a non-negative real number and M is a constant. That is,
F is bounded and continuous on the space S ′

of the tempered distributions.

Proof. By Theorem 1, we obtain(
(♢+m2)

(
△2 +⊡2

2

))k ((
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

)
= δ

or((
(♢+m2)

(
△2 +⊡2

2

))k

δ

)
∗
((

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)
∗ P2k(x,m)

)
= δ.
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Taking the Fourier transform on both sides of the above equation, we obtain

F

(((
(♢+m2)

(
△2 +⊡2

2

))k

δ

)
∗
((

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)

∗P2k(x,m))) = Fδ =
1

(2π)n/2
.

By (18), we have

1

(2π)n/2

〈((
(♢+m2)

(
△2 +⊡2

2

))k

δ

)
∗
((

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)

∗P2k(x,m)) , e−i(ξ·x)
〉
=

1

(2π)n/2
.

By the definition of convolution

1

(2π)n/2

〈((
(♢+m2)

(
△2 +⊡2

2

))k

δ

)
∗
((

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)

∗P2k(x,m)) , e−iξ·(x+r)
〉
=

1

(2π)n/2
,

1

(2π)n/2

〈
(RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1) ∗ P2k(x,m), e−i(ξ·r)

〉
×

〈(
(♢+m2)

(
△2 +⊡2

2

))k

δ, e−i(ξ·x)

〉
=

1

(2π)n/2
,

F((RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1) ∗ P2k(x,m))(2π)
n
2 F

((
(♢+m2)

(
△2 +⊡2

2

))k

δ

)
=

1

(2π)n/2
.

By Lemma 8, we obtain

F((RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1) ∗ P2k(x,m))

×

[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 +
m2

2

)2

−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2
]k

=
1

(2π)n/2
.

It follows that

F((RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1) ∗ P2k(x,m))



S. Bupasiri / Eur. J. Pure Appl. Math, 14 (4) (2021), 1306-1323 1320

=
1

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2]k .
Since

1[(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 + m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

2 − m2

2

)2]
=

1[
(ξ21 + ξ22 + · · ·+ ξ2p)

2 + (ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)
2
]

× 1[
(ξ21 + ξ22 + · · ·+ ξ2n)(ξ

2
1 + ξ22 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2p+q) +m2

] . (51)

Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Γ+ with Γ+ defined by Definition 1. Then (ξ21 + ξ22 + · · ·+ ξ2p +
ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q) > 0 and for a large k, the right-hand side of (51) tend to zero. It
follows that it is bounded by a positive constant M say, that is we obtain (50) as required
and also by (50) F is continuous on the space S ′

of the tempered distribution.

Theorem 3.

F
([(

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)
∗ P2k(x,m)

]
∗
[(

RH
4l (x) ∗ (−1)2lRe

4l(x) ∗ (H∗l(x))∗−1
)
∗ P2l(x,m)

])
= (2π)n/2F

[(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

]
×F

[(
RH

4l (x) ∗ (−1)2lRe
4l(x) ∗ (H∗l(x))∗−1

)
∗ P2l(x,m)

]
=

1

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2]k+l
,

where k and l are non-negative integers and F is bounded and continuous on the space S ′

of tempered distribution.

Proof. Since RH
4k(x), R

e
4k(x) and P2k(x,m) are tempered distribution with compact

support,([(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

]
∗
[(

RH
4l (x) ∗ (−1)2lRe

4l(x) ∗ (H∗l(x))∗−1
)
∗ P2l(x,m)

])
=
[
RH

4k(x) ∗RH
4l (x)

]
∗
[
(−1)2k+2lRe

4k(x) ∗Re
4l(x)

]
∗
[
(H∗k(x))∗−1(H∗l(x))∗−1

]
∗ [P2k(x,m) ∗ P2l(x,m)]
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=
[
RH

4(k+l)(x)
]
∗
[
(−1)2(k+l)Re

4(k+l)(x)
]
∗
[
(H∗(k+l)(x))∗−1

]
∗
[
P2(k+l)(x,m)

]
by [8, Pages 156–159] and [21, Lemma 2.45]. Taking the Fourier transform on both sides
and using Theorem 2, we obtain

F
([(

RH
4k(x) ∗ (−1)2kRe

4k(x) ∗ (H∗k(x))∗−1
)
∗ P2k(x,m)

]
∗
[(

RH
4l (x) ∗ (−1)2lRe

4l(x) ∗ (H∗l(x))∗−1
)
∗ P2l(x,m)

])
=

1

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2]k+l

=
1

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2]k
× (2π)n/2

(2π)n/2
[(

(ξ21 + ξ22 + · · ·+ ξ2p)
2 + m2

2

)2
−
(
(ξ21 + ξ22 + · · ·+ ξ2p)

2 − m2

2

)2]l
= (2π)n/2F

[(
RH

4k(x) ∗ (−1)2kRe
4k(x) ∗ (H∗k(x))∗−1

)
∗ P2k(x,m)

]
×F

[(
RH

4l (x) ∗ (−1)2lRe
4l(x) ∗ (H∗l(x))∗−1

)
∗ P2l(x,m)

]
.

Since
(
RH

4(k+l)(x) ∗ (−1)2(k+l)Re
4(k+l)(x) ∗ (H

∗(k+l)(x))∗−1
)
∗
(
P2(k+l)(x,m)

)
∈ S ′

, the space

of tempered distribution and by Theorem 2, we obtain that F is bounded and continuous
on S ′

.
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