On \(k \)-Cost Effective Domination Number in the Join of Graphs

Jesrael B. Palco\(^1\),*, Rolando N. Paluga\(^2\), Gina A. Malacas\(^3\)

\(^1\) Department of Physical Sciences and Mathematics, College of Science and Environment, Mindanao State University at Naawan, 9023, Naawan, Misamis Oriental, Philippines
\(^2\) Department of Mathematics, College of Mathematics and Natural Sciences, Caraga State University, 8600, Ampayon, Butuan City, Philippines
\(^3\) Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines

Abstract. In this paper, we characterized the \(k \)-cost effective domination in the join of graphs. Further, we investigate the \(k \)-cost effective domination, cost effective domination index, maximal cost effective domination in the join of graphs.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases: \(k \)-cost effective set, \(k \)-cost effective domination index, maximal cost effective domination.

1. Introduction

Let \(G = (V(G), E(G)) \) be a connected simple graph and \(v \in V(G) \). The neighborhood of \(v \) in the set \(N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\} \). The degree of a vertex \(v \) in a graph \(G \), denoted by \(\text{deg}_G(v) \), is \(|N(v)| \). A subset \(S \) of \(V(G) \) is a dominating set of \(G \) if for every \(v \in V(G) \setminus S \), there exists \(u \in S \) such that \(uv \in E(G) \). The domination number \(\gamma(G) \) of \(G \) is the minimum cardinality of a dominating set of \(G \). A subset \(S \) of \(V(G) \) is an independent set of \(G \) if \(\text{deg}(uv) = 0 \) for distinct pairs of vertices \(u \) and \(v \) in \(S \). An independent dominating set in \(G \) is an independent set in \(G \) which is dominating in \(G \). The minimum cardinality \(\gamma_i(G) \) of an independent dominating set in \(G \) is called independence domination number.

Let \(k \geq 0 \) be an integer. Consider a vertex \(v \), its neighborhood set, \(N(v) \) and the vertex-set of \(G \), \(V(G) \). A vertex \(v \in S \subseteq V(G) \) is said to be \(k \)-cost effective if \(|N(v) \cap (V(G) \setminus S)| \geq |N(v) \cap S| + k \). A dominating set \(S \) is \(k \)-cost effective, if every vertex in \(S \) is \(k \)-cost effective. The minimum cardinality of a \(k \)-cost effective dominating set in \(G \) is called the \(k \)-cost effective domination number, denoted by \(\gamma_k(G) \).

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4117

Email addresses: jesrael.palco@msunaawan.edu.ph (J. B. Palco), rnpaluga@carsu.edu.ph (R. N. Paluga), gina.malacas@g.msuiit.edu.ph (G. A. Malacas)
set of G is the k-cost effective domination number $\gamma_{ce}^k(G)$ of G. In cases where there is no k-cost effective dominating set for G, the k-cost effective domination number of G is infinity. The \emph{k-cost effective domination index} of G, denoted by $\eta(G)$, is the maximum value of k such that k-cost effective domination number is finite. That is,

$$\eta(G) = \max \{ k : \gamma_{ce}^k(G) \text{ is finite} \}.$$

The \emph{maximal cost effective domination number} of G is equal to $\gamma_{ce}^{\eta(G)}(G)$.

2. Results

\textbf{Theorem 1.} Let G and H be connected graphs, $k \geq \max \{|V(G)|, |V(H)|\}$, and $S \subseteq V(G + H)$. Then S is a k-cost effective dominating set in $G + H$ if and only if one of the following holds:

(i) S is $(k - |V(H)|)$-cost effective dominating set in G;

(ii) S is $(k - |V(G)|)$-cost effective dominating set in H;

(iii) $V(G) \cap S$ is $(k - k_1)$-cost effective dominating set in G, where $k_1 = |V(H)| - 2|V(H) \cap S|$ and $V(H) \cap S$ is $(k - k_2)$-cost effective dominating set in H, where $k_2 = |V(G)| - 2|V(G) \cap S|$.

\textbf{Proof:} Let $k \geq \max \{|V(G)|, |V(H)|\}$, and $S \subseteq V(G + H)$. Suppose S is a k-cost effective dominating set in $G + H$ and let $x \in S$. Then

$$|N_{G + H}(x) \setminus S| - |N_{G + H}(x) \cap S| \geq k.$$

Suppose $S \subseteq V(G)$. Then S is a dominating set in G. Now,

$$|N_{G + H}(x) \setminus S| - |N_{G + H}(x) \cap S| = |V(H)| + |N_G(x) \setminus S| - |N_G(x) \cap S| \geq k.$$

This implies that,

$$|N_G(x) \setminus S| - |N_G(x) \cap S| \geq k - |V(H)|.$$

Hence, S is $(k - |V(H)|)$-cost effective dominating set in G. Similarly, if $S \subseteq V(H)$, then S is $(k - |V(G)|)$-cost effective dominating set in H.

Suppose that $S_1 = V(G) \cap S \neq \emptyset$ and $S_2 = V(H) \cap S \neq \emptyset$. Since S is a k-cost effective dominating set in $G + H$,

$$|N_{G + H}(x) \setminus S| - |N_{G + H}(x) \cap S| \geq k.$$

Let $x \in S_1 \subseteq S$. Then

$$|N_{G + H}(x) \setminus S| - |N_{G + H}(x) \cap S| = |N_G(x) \setminus S_1| + |V(H) \setminus S_2| - |N_G(x) \cap S_1| - |S_2|$$
Similarly, for each x^k, let

$$\text{Corollary 1.}$$

This implies that,

$$|N_G(x) \setminus S_1| - |N_G(x) \cap S_1| \geq k - |V(H)| + 2|V(H) \cap S|$$

$$= k - (|V(H)| - 2|V(H) \cap S|)$$

$$= k - k_1,$$

where $k_1 = |V(H)| - 2|V(H) \cap S|$. Thus, $S_1 = V(G) \cap S$ is $(k - k_1)$-cost effective dominating set in G. Similarly, $S_2 = V(H) \cap S$ is $(k - k_2)$-cost effective dominating set in H.

Conversely, suppose that S satisfies Property (i). Then S is a dominating set in $G + H$ and

$$|N_G(x) \setminus S| - |N_G(x) \cap S| \geq k - |V(H)|, \forall x \in S.$$

Now,

$$|N_G(H) \setminus S| - |N_G(H) \cap S| = |V(H)| + |N_G(x) \setminus S| - |N_G(x) \cap S|$$

$$\geq |V(H)| + k - |V(H)|$$

$$= k,$$

for all $x \in S$. Since x is arbitrary, S is a k-cost effective dominating set in $G + H$. Similarly, if S satisfies Property (ii), then S is a k-cost effective dominating set in $G + H$. Suppose S satisfies Property (iii) and $x \in V(G) \cap S$. Then

$$|N_G(x) \setminus S| - |N_G(x) \cap S| \geq k - k_1,$$

where $k_1 = |V(H)| - 2|V(H) \cap S|$. Now,

$$|N_G(H) \setminus S| - |N_G(H) \cap S| = |N_G(x) \setminus S| + |V(H) \setminus S| - |N_G(x) \cap S| + |V(H) \cap S|$$

$$= |N_G(x) \setminus S| - |N_G(x) \cap S| + |V(H) \setminus S| - |V(H) \cap S|$$

$$= |N_G(x) \setminus S| - |N_G(x) \cap S| + |V(H)| - 2|V(H) \cap S|$$

$$\geq k - k_1 + k_1$$

$$= k.$$

Similarly, for each $x \in V(H) \cap S$, $|N_G(H) \setminus S| - |N_G(H) \cap S| \geq k$. Therefore, S is a k-cost effective dominating set in $G + H$.

Corollary 1. Let G and H be connected graphs, $k \geq \max\{|V(G)|, |V(H)|\}$. If S is a k-cost effective dominating set in $G + H$, then one of the following holds:

(i) $S \subseteq V(G)$ and $k \leq \eta(G) + |V(H)|$

(ii) $S \subseteq V(H)$ and $k \leq \eta(H) + |V(G)|$.
Thus, γ and η

Let Corollary 3.

Theorem 2. Let G and H be connected graphs such that $\gamma(G) = 1$ or $\gamma(H) = 1$ and $0 \leq k \leq |V(H)| + |V(G)| - 1$. Then $S \subseteq V(G + H)$ is a γ^k_{ce}-set in $G + H$ if and only if S is a γ-set in G or S is a γ-set in H.

Corollary 2. Let G and H be connected graphs such that $\gamma(G) = 1$ or $\gamma(H) = 1$. Then

$$\gamma^k_{ce}(G + H) = \begin{cases} 1, & \text{if } 0 \leq k \leq |V(H)| + |V(G)| - 1 \\ \infty, & \text{if } k > |V(H)| + |V(G)| - 1. \end{cases}$$

Corollary 3. Let G and H be connected graphs such that $\gamma(G) = 1$ or $\gamma(H) = 1$. Then $\eta(G + H) = |V(H)| + |V(G)| - 1$ and $\eta^k_{ce}(G + H) = 1$.

In the succeeding theorems, $\gamma(G) \geq 2$ and $\gamma(H) \geq 2$ and assume that $\Delta(G) + |V(H)| \leq \Delta(H) + |V(G)|$.

Theorem 3. Let G and H be connected graphs such that $\min\{\gamma(G), \gamma(H)\} \geq 2$ and $0 \leq k \leq \Delta(G) + |V(H)| - 2$. Then S is a γ^k_{ce}-set in $G + H$ if and only if $|S| = 2$ and one of the following holds:

(i) $|V(G) \cap S| = 1$ and $|V(H) \cap S| = 1$;

(ii) S is a γ-set in G such that $k - |V(H)| + 2 \leq \delta(S : G)$;

(iii) S is a γ-set in H such that $k - |V(G)| + 2 \leq \delta(S : H)$.

Proof: Suppose that $A = \{a, b\}$ such that $\text{deg}_G(a) = \Delta(G)$ and $\text{deg}_H(b) = \Delta(H)$. Clearly, A is a dominating set in $G + H$. Moreover,

$$|N_{G+H}(a) \setminus A| - |N_{G+H}(a) \cap A| = \text{deg}_G(a) + |V(H)|$$
$$= \Delta(G) + |V(H)|$$
$$\geq \Delta(G) + |V(H)| - 2$$
$$\geq k.$$

and

$$|N_{G+H}(b) \setminus A| - |N_{G+H}(b) \cap A| = \text{deg}_H(b) + |V(G)|$$
$$= \Delta(H) + |V(G)|$$
$$\geq \Delta(G) + |V(H)|$$
$$> \Delta(G) + |V(H)| - 2$$
$$\geq k.$$

Thus, A is a k-cost effective dominating set in $G + H$. Accordingly, $\gamma^k_{ce}(G + H) = |S| \leq 2$. Suppose that $|S| = 1$. Then $\gamma(G) = 1$ or $\gamma(H) = 1$, which is
a contradiction to that fact that \(\min \{ \gamma(G), \gamma(H) \} \geq 2 \). Therefore, \(\gamma^*_c(G + H) = 2 \). Since \(S \) is a \(\gamma^*_c \)-set in \(G + H \), \(|S| = 2 \).

Clearly, \(|V(G) \cap S| = 1 \) and \(|V(H) \cap S| = 1 \). Thus, Property (i) holds.

Suppose that \(S \subseteq V(G) \). Since \(S \) is a dominating set in \(G + H \), \(S \) is a dominating set in \(G \). Now, \(\gamma(G) \geq 2 \), so \(S \) is a minimum dominating set in \(G \), that is, \(S \) is a \(\gamma \)-set in \(G \).

Let \(S = \{ a_1, a_2 \} \subseteq V(G) \). Suppose \(a_1 \) and \(a_2 \) are adjacent in \(S \). Then

\[
|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = (|V(H)| + \deg_G(a_i) - 1) - 1
= |V(H)| + \deg_G(a_i) - 2
\geq |V(H)| + \delta(S : G) - 2
\geq k, \ i = 1, 2.
\]

Thus, \(k - |V(H)| + 2 \leq \delta(S : G) \). Suppose \(a_1 \) and \(a_2 \) are not adjacent in \(S \). Then

\[
|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = |V(H)| + \deg_G(a_i)
\geq |V(H)| + \delta(S : G) - 2
= k, \ i = 1, 2.
\]

Thus, \(k - |V(H)| + 2 \leq \delta(S : G) \). Similarly, \(k - |V(G)| + 2 \leq \delta(S : H) \).

Conversely, suppose that \(S \) satisfies Property (i). Then \(S \) is a \(\gamma \)-set in \(G + H \). Moreover,

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = |V(H)| - 1 + \deg_G(a) - 1
= |V(H)| + \Delta(G) - 2
\geq k.
\]

and

\[
|N_{G+H}(b) \setminus S| - |N_{G+H}(b) \cap S| = |V(G)| - 1 + \deg_H(b) - 1
= |V(G)| + \Delta(H) - 2
= |V(H)| + \Delta(G) - 2
\geq k.
\]

Thus, \(S \) is a \(k \)-cost effective dominating set in \(G + H \). Hence, \(S \) is a \(\gamma^*_c \)-set in \(G + H \).

Suppose that \(S \) satisfies Property (ii). Then \(S \) is a \(\gamma \)-set in \(G + H \). Suppose \(a_1 \) and \(a_2 \) are adjacent in \(S \). Then

\[
|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = (|V(H)| + \deg_G(a_i) - 1) - 1
= |V(H)| + \deg_G(a_i) - 2
\geq |V(H)| + \delta(S : G) - 2
\geq k.
\]
Suppose \(a_1\) and \(a_2\) are not adjacent in \(S\). Then
\[
|N_{G+H}(a_i) \setminus S| - |N_{G+H}(a_i) \cap S| = |V(H)| + \deg_G(a_i)
> |V(H)| + \deg_G(a_i) - 2
\geq |V(H)| + \delta(S : G) - 2
= k.
\]

Thus, \(S\) is a \(k\)-cost effective dominating set in \(G + H\). Suppose that a singleton set is a dominating set in \(G + H\). Then \(\gamma(G) = 1\) or \(\gamma(H) = 1\), which a contradiction to the fact that \(\min\{\gamma(G), \gamma(H)\} \geq 2\). Hence, \(S\) is a \(\gamma^k_{ce}\)-set in \(G + H\). Similarly, if \(S\) satisfies Property (iii), then \(S\) is a \(\gamma^k_{ce}\)-set in \(G + H\).

Therefore, \(S\) is a \(\gamma^k_{ce}\)-set in \(G + H\).

\[\Box\]

Theorem 4. Let \(G\) and \(H\) be connected graphs such that \(\min\{\gamma(G), \gamma(H)\} \geq 2\) and \(k = \Delta(G) + |V(H)| - 1\). Then \(S\) is a \(k\)-cost effective dominating set in \(G + H\) if and only if one of the following holds:

(i) \(S\) is an independent dominating set in \(G\) such that \(\delta(S : G) \geq \Delta(G) - 1\);

(ii) \(S\) is a dominating set in \(H\) such that \(0 \leq r_H(a) + 2|N_H(a) \cap S| - t \leq 1\), where
\[
r_H(a) = \Delta(H) - \deg_H(a) \quad \text{and} \quad t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|,
\]
and
\[
\deg_H(a) + |V(G)| - 2|N_H(a) \cap S| = \Delta(G) + |V(H)| - 1.
\]

Proof: Suppose that \(S\) is a \(k\)-cost effective dominating set in \(G + H\). Consider the following cases:

Case 1: \(V(G) \cap S \neq \emptyset\) and \(V(H) \cap S \neq \emptyset\).

Let \(a \in V(G) \cap S\). Then
\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1
< \Delta(G) + |V(H)| - 1
= k,
\]
a contradiction. Thus, this case is not possible.

Case 2: \(S \subseteq V(G)\).

Suppose \(S\) is not an independent dominating set \(G\). Let \(a \in S\). Then there exists \(a' \in S\) such that \(d_G(a, a') = 1\). Now
\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1
< \Delta(G) + |V(H)| - 1
= k,
\]
a contradiction. Thus, in this case \(S\) is an independent dominating set in \(G\). Let \(r_G(a) = \Delta(H) - \deg_G(a)\). Now, \(S\) is a \(k\)-cost effective dominating set in \(G + H\), so
\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_G(a) + |V(H)|
\]
Hence, \(r_G(a) \leq 1 \) and \(\text{deg}_G(a) \geq \Delta(G) - 1 \) for all \(a \in S \). Hence, \(\delta(S : G) \geq \Delta(G) - 1 \).

Case 3: \(S \subseteq V(H) \).

Since \(S \) is a \(k \)-cost effective dominating set in \(G + H \), \(S \) is a dominating set in \(H \). Let \(a \in S \) and \(r_H(a) = \Delta(H) - \text{deg}_H(a) \), and \(t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)| \). Then

\[
\begin{align*}
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| &= \text{deg}_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S| \\
&= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)| \\
&= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S| \\
&= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t).
\end{align*}
\]

Thus, \(0 \leq r_H(a) + 2|N_H(a) \cap S| - t \leq 1 \). Hence, \(\text{deg}_H(a) + |V(G)| - 2|N_H(a) \cap S| = \Delta(G) + |V(H)| - 1 \).

Conversely, suppose that \(S \) satisfies Property (i). Then \(S \) is a dominating set in \(G + H \). Let \(a \in S \). Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \text{deg}_G(a) + |V(H)| \\
= \Delta(G) - 1 + |V(H)| \\
= k.
\]

Hence, \(S \) is a \(k \)-cost effective dominating set in \(G + H \).

Suppose that \(S \) satisfies Property (ii). Then \(S \) is a dominating set in \(G + H \). Now,

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \text{deg}_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S| \\
= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)| \\
= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S| \\
= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t).
\]

If \(r_H(a) + 2|N_H(a) \cap S| - t = 0 \), then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \text{deg}_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S| \\
= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)| \\
= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S| \\
= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t) \\
= \Delta(G) + |V(H)| - 1 \\
= k.
\]

Hence, \(S \) is a \(k \)-cost effective dominating set in \(G + H \). If

\[
r_H(a) + 2|N_H(a) \cap S| - t = 1
\]
Hence, S is a k-cost effective dominating set in $G + H$.

Therefore, S is a k-cost effective dominating set in $G + H$.

Theorem 5. Let G and H be connected graphs such that

$$\min\{\gamma(G), \gamma(H)\} \geq 2$$

and $k = \Delta(G) + |V(H)|$. Then S is a k-cost effective dominating set in $G + H$ if and only if one of the following holds:

(i) S is an independent dominating set in G such that $\delta(S : G) = \Delta(G)$;

(ii) S is a dominating set in H such that $\deg_H(a) + |V(G)| = 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$

and $r_H(a) + 2|N_H(a) \cap S| - t = 0$, where $r_H(a) = \Delta(H) - \deg_H(a)$,

$t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$.

Proof: Suppose that S is a k-cost effective dominating set in $G + H$. Consider the following cases:

Case 1: $V(G) \cap S \neq \emptyset$ and $V(H) \cap S \neq \emptyset$.

Let $a \in V(G) \cap S$. Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_G(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t)$$

$$= \Delta(G) + |V(H)| - 1$$

$$= k.$$

a contradiction. Thus, this case is not possible.

Case 2: $S \subseteq V(G)$.

Suppose S is not an independent dominating set G. Let $a \in S$. Then there exists $a' \in S$ such that $d_G(a, a') = 1$. Now

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1$$

$$< \Delta(G) + |V(H)|$$

$$= k,$$

a contradiction. Thus, in this case S is an independent dominating set in G. Now,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_G(a) + |V(H)|$$

$$= \Delta(G) + |V(H)|$$
Thus, $\deg_G(a) = \Delta(G) \forall a \in S$. Hence, $\delta(S : G) = \Delta(G)$.

Case 3: $S \subseteq V(H)$.

Since S is a k-cost effective dominating set in $G + H$, S is a dominating set in H. Let $a \in S$ and $r_H(a) = \Delta(H) - \deg_H(a)$, and $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$. Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t).$$

Thus, $r_H(a) + 2|N_H(a) \cap S| - t = 0$. Hence, $\deg_H(a) + |V(G)| = 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$.

Conversely, suppose that S satisfies Property (i). Then S is a dominating set in $G + H$. Let $a \in S$. Then

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_G(a) + |V(H)|$$

$$= \delta(S : G) + |V(H)|$$

$$= \Delta(G) + |V(H)|$$

$$= k.$$

Hence, S is a k-cost effective dominating set in $G + H$.

Suppose that S satisfies Property (ii). Then S is a dominating set in $G + H$. Now,

$$|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|$$

$$= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|$$

$$= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)| + \Delta(H) + |V(G)| - \Delta(G)$$

$$- |V(H)| - \Delta(H) + \deg_H(a) - 2|N_H(a) \cap S|$$

$$= |V(G)| + \deg_H(a) - 2|N_H(a) \cap S|$$

$$= \Delta(G) + |V(H)|$$

$$= k.$$

Thus, S is a k-cost effective dominating set in $G + H$.

Therefore, S is a k-cost effective dominating set in $G + H$. \qed

Theorem 6. Let G and H be connected graphs such that $\min\{\gamma(G), \gamma(H)\} \geq 2$ and $\Delta(G) + |V(H)| + 1 \leq k \leq \Delta(H) + |V(G)|$. Then S is a k-cost effective dominating set in $G + H$ if and only if S is a dominating set in H such that $t - r_H(a) - 2|N_H(a) \cap S| \geq p$, where $1 \leq p \leq t$ and $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$, and $r_H(a) = \Delta(H) - \deg_H(a)$ and $\deg_H(a) + |V(G)| \geq p + 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$.

Proof: Suppose that S is a k-cost effective dominating set in $G + H$. Consider the following cases:

Case 1: $V(G) \cap S \neq \emptyset$ and $V(H) \cap S \neq \emptyset$.

Let $a \in V(G) \cap S$. Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1
\]

\[
< \Delta(G) + |V(H)| + 1
\]

\[
\leq k,
\]

a contradiction. Thus, in this case is not possible.

Case 2: $S \subseteq V(G)$.

Suppose S is not an independent dominating set G. Let $a \in S$. Then there exists $a' \in S$ such that $d_G(a, a') = 1$. Now

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1
\]

\[
< \Delta(G) + |V(H)| + 1
\]

\[
\leq k,
\]

a contradiction. Thus, in this case S is an independent dominating set in G. Thus,

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_G(a) + |V(H)|
\]

\[
= \Delta(G) - r_G(a) + |V(H)|
\]

\[
\leq \Delta(G) + |V(H)| + 1
\]

\[
\geq k,
\]

a contradiction. Thus, in this case is not possible.

Case 3: $S \subseteq V(H)$.

Since S is a k-cost effective dominating set in $G + H$, S is a dominating set in H. Let $a \in S$, $r_H(a) = \Delta(H) - deg_H(a)$ and $1 \leq p \leq t$, where $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$. Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|
\]

\[
= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)|
\]

\[
= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S|.
\]

Thus, $t - r_H(a) - 2|N_H(a) \cap S| \geq p$. Hence, $deg_H(a) + |V(G)| \geq p + 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$.

Conversely, suppose that S is a dominating set in H such that $t - r_H(a) - 2|N_H(a) \cap S| \geq p$, where $1 \leq p \leq t$ and $t = \Delta(H) + |V(G)| - \Delta(G) - |V(H)|$, and $r_H(a) = \Delta(H) - deg_H(a)$ and $deg_H(a) + |V(G)| \geq p + 2|N_H(a) \cap S| + \Delta(G) + |V(H)|$. Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = deg_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S|
\]
Let \(k \geq \Delta(G) + |V(G)| + 1 \). Then \(\gamma^k_{ce}(G + H) = \infty \).

Proof: Let \(k \geq \Delta(G) + |V(G)| + 1 \). Suppose that there exists a \(k \)-cost effective dominating set \(S \) in \(G + H \). Consider the following cases:

Case 1: \(V(G) \cap S \neq \emptyset \) and \(V(H) \cap S \neq \emptyset \).

Let \(a \in V(H) \cap S \). Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(H) - 1 + |V(G)| - 1 \\
\leq \Delta(H) + |V(G)| + 1 \\
= k,
\]

a contradiction. Thus, in this case \(S \) is not an independent dominating set in \(G \). Let \(a \in S \). Then there exists \(a' \in S \) such that \(d_G(a, a') = 1 \). Now

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| \leq \Delta(G) - 1 + |V(H)| - 1 \\
\leq \Delta(H) + |V(G)| + 1 \\
= k,
\]

a contradiction. Thus, in this case \(S \) is an independent dominating set in \(G \). Thus,

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \text{deg}_G(a) + |V(H)| \\
= \Delta(G) - r_G(a) + |V(H)| \\
= \Delta(H) - r_G(a) + |V(G)| \\
< \Delta(H) + |V(G)| + 1 \\
= k,
\]

a contradiction.

Case 3: \(S \subseteq V(H) \). Let \(a \in S \). Then

\[
|N_{G+H}(a) \setminus S| - |N_{G+H}(a) \cap S| = \text{deg}_H(a) - |N_H(a) \cap S| + |V(G)| - |N_H(a) \cap S| \\
= \Delta(H) - r_H(a) - 2|N_H(a) \cap S| + |V(G)| \\
= \Delta(G) + |V(H)| + t - r_H(a) - 2|N_H(a) \cap S| \\
= \Delta(G) + |V(H)| - (r_H(a) + 2|N_H(a) \cap S| - t)
\]
\[
\begin{align*}
\Delta(H) + |V(G)| - (r_H(a) + 2|N_H(a) \cap S| - t) \\
< \Delta(H) + |V(G)| + 1 \\
= k,
\end{align*}
\]
a contradiction. Hence, \(\gamma^k_{\text{ce}}(G + H) = \infty.\)

The next result follows from Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7.

Corollary 4. Let \(G\) and \(H\) be connected graphs such that \(\gamma(G) \geq 2\), \(\gamma(H) \geq 2\) and \(|V(H)| + \Delta(G) \leq |V(G)| + \Delta(H)\). Then

\[
\gamma^k_{\text{ce}}(G + H) = \begin{cases}
2, & \text{if } 0 \leq k \leq |V(G)| + \Delta(H) - 2 \\
\min\{\gamma^*(G), \gamma^*(H)\}, & \text{if } |V(G)| + \Delta(H) - 1 \leq k \leq \Delta(G) + |V(H)| \\
\gamma(H), & \text{if } |V(H)| + \Delta(G) + 1 \leq k \leq |V(G)| + \Delta(H), \\
\infty, & \text{if } k \geq |V(G)| + \Delta(H) + 1
\end{cases}
\]

where

\[
\gamma^*_i(G) = \min\{|S| : S \text{ is a } \gamma_i\text{-set in } G \text{ and } \delta(S : G) \geq \Delta(G) - 1\},
\]

\[
\gamma^*(H) = \min\{|S| : S \text{ is a } \gamma\text{-set in } G \text{ and } 0 \leq \Delta(G) + |V(H)| - |V(G)| - \text{deg}_H(a) + 2|N_H(a) \cap S| \leq 1\}, \text{ and}
\]

\[
\gamma(H) = \min\{|S| : S \text{ is a } \gamma\text{-set in } G \text{ and } \text{deg}_H(a) + |V(G)| - |V(H)| - 2|N_H(a) \cap S| \geq p\}.
\]

Corollary 5. Let \(G\) and \(H\) be connected graphs such that \(\gamma(G) \geq 2\), \(\gamma(H) \geq 2\) and \(|V(H)| + \Delta(G) \leq |V(G)| + \Delta(H)\). Then \(\eta(G + H) = |V(G)| + \Delta(H)\) and \(\gamma^\eta_{\text{ce}}(G + H) = \gamma(H)\).

Acknowledgements

The authors thank the peer reviewers of the paper and readers of European Journal of Pure and Applied Mathematics, for making the journal successful.

References

