EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (574-577) ISSN 1307-5543 – www.ejpam.com

Second Duals of Measure Algebras

M. Eshaghi Gordji^{1*}, and A. Ebadian²

 $^{1}\ Department$ of Mathematics, Semnan University, Semnan, Iran

² Department of Mathematics, Urmia University, Urmia, Iran

Abstract. In this paper we show that $M(G)^{**}$ determines *G* when *G* is a compact topological group. It is a new proof for theorem of Gharamani and Mcclure.

2000 Mathematics Subject Classifications: 46HXX

Key Words and Phrases: Topological group, Arens product, Isomorphism

The second dual space \mathscr{A}^{**} of a Banach algebra \mathscr{A} admits the Banach algebra product known as first (left) Arens product. This product extends the product of \mathscr{A} as canonically embedded in \mathscr{A}^{**} . We briefly recall the definition of this product. For $m, n \in \mathscr{A}^{**}$, their first (left) Arens product indicated by mn is given by

$$\langle mn, f \rangle = \langle m, nf \rangle \quad (f \in \mathscr{A}^*),$$

where $nf \in \mathscr{A}^*$ is defined by

$$\langle nf, a \rangle = \langle n, fa \rangle \quad (a \in \mathscr{A}).$$

*Corresponding author.

ebadian.ali@gmail.com(A.Ebadian)

http://www.ejpam.com 574 © 2009 EJPAM All rights reserved.

Email addresses: madjid.eshaghi@gmail.com&madjideg@walla.com(M. Gordji),

(See [1] and [2]). Wendel in [6] proved that for locally compact groups G_1 and G_2 , the group algebras $L^1(G_1)$ and $L^1(G_2)$ are isometrically isomorphic if and only if G_1 and G_2 are isomorphic in the category of topological groups. Johnson in [5] proved that the algebra M(G) determines G when G is a locally compact group. In [3] Ghahramani and Lau have proved that $L^1(G)^{**}$ determines G when G is a locally compact group. Ghahramani and Mcclure in [4] proved that the algebra $(M(G))^{**}$ determines G when G is a compact topological group. In this paper we define some new ideals in Banach algebras and we apply this ideals to consider a new proof to show that $(M(G))^{**}$ determines G when G is compact. Let \mathscr{A} be a Banach algebra. We consider

$$Z_l(\mathscr{A}) := \{ a \in \mathscr{A} : \mathscr{A}^{**} \cdot \exists \subseteq \mathscr{A} \}.$$

It is easy to show that $Z_l(\mathscr{A})$ is a two sided ideal of \mathscr{A} so it is a left ideal of \mathscr{A}^{**} . Also $Z_l(\mathscr{A})$ is the union of all two sided ideals of \mathscr{A} which are left ideals of \mathscr{A}^{**} . First we prove the following lemma.

Lemma 1. Let $\theta : \mathscr{A} \to \mathscr{B}$ be an isometrically isomorphism between Banach algebras. Then $\theta(Z_l(\mathscr{A})) = \mathscr{Z}_1(\mathscr{B})$.

Proof. Let $\theta : \mathscr{A} \to \mathscr{B}$ be an isometrically isomorphism between Banach algebras. Then θ'' is a isometrically isomorphism between Banach algebras \mathscr{A}^{**} and \mathscr{B}^{**} . Let $a \in Z_l(\mathscr{A})$ and $b'' \in \mathscr{B}^{**}$. Then there exists $a'' \in \mathscr{A}^{**}$ such that $b'' = \theta''(a'')$. Thus

$$b''\widehat{\theta(a)} = \theta''(a'')\widehat{\theta(a)} = \theta''(a''\widehat{a}) = \widehat{\theta(a''\widehat{a})} \in \widehat{\theta(\mathscr{A})} = \widehat{\mathscr{B}}.$$

Then $\theta(Z_l(\mathscr{A})) \subset \mathscr{Z}_{1}(\mathscr{B}).$

Theorem 1. Let G be a compact group. Then $Z_l((M(G))^{**}) = \pi''(L^1(G))^{**}$.

Proof. Let (e_{α}) be a bounded approximate identity of $L^{1}(G)$ with bound 1, and with cluster point $E \in L^{1}(G)^{**}$. We denote $\pi : L^{1}(G) \longrightarrow M(G)$ the inclusion map,

M. Gordji and A. Ebadian / Eur. J. Pure Appl. Math, **2** (2009), (574-577) then the map

$$m \longmapsto (\pi^{''}(E))\widehat{m} : M(G) \longrightarrow \pi^{''}(L^1(G)^{**})$$

is isometric embedding. We denote this map with Γ_E . Since the restriction of Γ_E to $L^1(G)$ is identity map, then $\Gamma_E(m) \in \widehat{\pi(L^1(G))}$ if and only if $m \in L^1(G)$. It is easy to show that $\Gamma_E^{''}$ is isometrically embedding from $(M(G)^{**})$ into $\pi^{'''}((L^1(G))^{****})$. The restriction of $\Gamma_E^{''}$ to $\pi^{''}(L^1(G)^{**})$ is identity map, then for every $m'' \in (M(G)^{**})$, $\Gamma_E^{''}(m'') \in \widehat{\pi'(L^1(G)^{**})}$ if and only if $m'' \in \widehat{\pi'(L^1(G)^{**})}$. Let now $m'' \in Z_l((M(G)^{**}))$, then $(M(G))^{****}\widehat{m''} \subseteq \widehat{(M(G)^{**})}$. Thus

$$\pi''''(L^1(G))^{****}\widehat{m''} \subseteq (\widehat{M(G)^{**}}).$$
 (1)

On the other hand, we have direct sum decompositions

$$(L^{1}(G))^{****} = \widehat{L^{1}(G)^{**}} \oplus \widehat{(L^{1}(G)^{*})}^{\perp}$$
(2)

and

$$(M(G))^{****} = \widehat{M(G)^{**}} \oplus \widehat{(M(G)^*)}^{\perp}.$$
(3)

So we have

$$\pi^{''''}(\widehat{(L^1(G)^*)}^{\perp}) \subseteq \widehat{(M(G)^*)}^{\perp}.$$
(4)

Since $\pi'''(L^1(G)^{****})$ is an ideal of $M(G)^{****}$, then by (2) and (4), we have $\pi'''(L^1(G))^{****}\widehat{m''} \subseteq [((\widehat{M(G)^{**}})) \cap \pi''''(L^1(G))^{****}] = \pi''(L^1(G)^{**})$. Therefore $\Gamma_E''(m'') \in \pi''(L^1(G)^{**})$ and $m'' \in \pi''(L^1(G)^{**})$, hence, $Z_l(M(G)^{**}) \subseteq \pi''(L^1(G)^{**})$. On the other hand since *G* is compact then $\pi''(L^1(G)^{**})$ is a two sided ideal of $\pi''''(L^1(G)^{***})$, so $Z_l(\pi''(L^1(G)^{**})) = \pi''(L^1(G)^{**})$ and $Z_l(\pi''(L^1(G)^{**}))$ is a two sided ideal of $M(G)^{****}$. Hence, $\pi''(L^1(G)^{**}) \subseteq Z_l(M(G)^{**})$.

We now apply above theorem to show that $M(G)^{**}$ determines *G* when *G* is a compact topological group. It is a new proof for the main result of [4]. By Lemma 1 and Theorem 1 we have the following.

REFERENCES

Corollary 1 (Theorem 7 of 4). If G_1 and G_2 are compact groups, and if θ is an isometric isomorphism from $M(G_1)^{**}$ onto $M(G_2)^{**}$, then $\theta(L^1(G_1)^{**}) = L^1(G_2)^{**}$.

Since $L^{1}(G)^{**}$ determines G [3], then we have

Corollary 2. If G is a compact group, then $M(G)^{**}$ determines G.

References

- [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2(1951), 839–848.
- [2] J. Duncan and S. A. Hosseiniun, The second dual of Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309–325.
- [3] F. Ghahramani and Anthony To-Ming Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, Journal of functional analysis 132 (1995) 170–191.
- [4] F. Ghahramani and J. P. Mcclure, The second dual algebra of the measure algebra of a compact group, Bull. London Math. Soc. 29 (1997) 223–226.
- [5] B. E. Johnson, Isometric isomorphisms of measure algebras, Proc. Amer. Math. Soc. 15(1964), 186–188.
- [6] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952) 251–256.