The Fuglede-Putnam theorem and quasinormality for class p-$wA(s,t)$ operators

M.H.M. Rashid1, N. H. Altaweel2

1 Department of Mathematics, Faculty of Science P.O. Box(7), Mu’tah University, Al-Karak-Jordan
2 Department of Mathematics-Faculty of Science, University of Tabuk, P.O.Box 741- Tabuk 71491, Saudi Arabia

Abstract. In this work, we demonstrate that (i) if T is a class p-$wA(s,t)$ operator and $T(s,t)$ is quasinormal (resp., normal), then T is also quasinormal (resp., normal) (ii) If T and T^* are class p-$wA(s,t)$ operators, then T is normal; (iii) the normal portions of quasisimilar class p-$wA(s,t)$ operators are unitarily equivalent; and (iv) Fuglede-Putnam type theorem holds for a class p-$wA(s,t)$ operator T for $0 < s,t, s+t = 1$ and $0 < p \leq 1$ if T satisfies a kernel condition $\ker(T) \subset \ker(T^*)$.

2020 Mathematics Subject Classifications: 47A10, 47A11, 47B20

Key Words and Phrases: Quasinormal, Class $A(s,t)$ operators, Class p-$A(s,t)$ operators, Fuglede-Putnam theorem

1. Introduction

On a complex Hilbert space \mathcal{H}, let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators. Aluthge [2] investigated the p-hyponormal operator T, which is defined as $(T^*T)^p \geq (TT^*)^p$ with $0 \leq p \leq 1$ using the Furuta inequality [14]. When $p = 1$, T is said to be hyponormal. As a result, p-hyponormality is a broadening of hyponormality. Following [2], several authors are looking towards novel hyponormal operator generalizations.

It is known that p-hyponormal operators have many interesting properties as hyponormal operators, for example, Putnam’s inequality, Fuglede-Putnam type theorem, Bishop’s property (β), Weyl’s theorem and polaroid. Let $T \in \mathcal{B}(\mathcal{H})$ and $|T| = (T^*T)^{\frac{1}{2}}$. By taking $U|T|x = Tx$ for $x \in \mathcal{H}$ and $Ux = 0$ for $x \in \ker|T|$, T has a unique polar decomposition $T = U|T|$ with condition $\ker U = \ker|T|$. We say that $T = U|T|$ is the polar decomposition of T. In [2], Aluthge extended the class of hyponormal operators by introducing p-hyponormal operators and obtained some properties with the help of the transformation

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4412
Email addresses: malik.okasha@yahoo.com (M.H.M. Rashid), naltawil@ut.edu.sa (N. H. Altaweel)
Moreover, for each nonnegative integer \(n \), the \(n \)-th generalized Aluthge transform \(\Delta^n(T(s, t)) \) of \(T(s, t) \) is defined as follows:

\[
\Delta^n(T(s, t)) = \Delta(\Delta^{n-1}(T(s, t))), \quad \Delta^0(T(s, t)) = T(s, t).
\]

Definition 1. Let \(T = U|T| \) be the polar decomposition of an operator \(T \in \mathcal{B(H)} \). Then the generalized Aluthge transform \(T(s, t) \) of \(T \) is defined as follows:

\[
T(s, t) = |T|^s U|T|^t.
\]

Moreover, for each nonnegative integer \(n \), the \(n \)-th generalized Aluthge transform \(\Delta^n(T(s, t)) \) of \(T(s, t) \) is defined as follows:

\[
\Delta^n(T(s, t)) = \Delta(\Delta^{n-1}(T(s, t))), \quad \Delta^0(T(s, t)) = T(s, t).
\]

Definition 2. Let \(0 < s, t, \) and \(0 < p \leq 1 \). An operator \(T \) is said to be a class

(i) \(p\)-\(wA(s, t) \) if

\[
(|T^*|^t|T|^{2s}|T^*|^t)^{\frac{tp}{s+t}} \geq |T^*|^{2tp}
\]

and

\[
|T|^{2sp} \geq (|T|^s|T^*|^{2t}|T|^s)^{\frac{2t}{s+t}}.
\]

(ii) \(p\)-\(A(s, t) \) if

\[
(|T^*|^t|T|^{2s}|T^*|^t)^{\frac{tp}{s+t}} \geq |T^*|^{2tp}.
\]

(iii) \(p\)-\(A \) if \(|T|^2 \geq |T|^{2p} \).

(iv) \((s, p)\)-\(w\)-hyponormal if \(|T(s, s)|^p \geq |T|^{2sp} \geq |(T(s, s)^*)|^p \).

It is known that \(p\)-hyponormal operators and \(log\)-\(hyponormal \) operators are class \(1\)-\(wA(s, t) \) for any \(0 < s, t \). Class \(p\)-\(wA(s, s) \) is called class \((s, p)\)-\(w\)-hyponormal, class \(1\)-\(wA(1, 1) \) is called class \(A \) and class \(1\)-\(wA(\frac{1}{2}, \frac{1}{2}) \) is called \(w\)-hyponormal [13, 15, 18, 19, 33]. Hence class \(p\)-\(wA(s, t) \) operator is a generalization of class \((s, p)\)-\(w\)-hyponormal, class \(A \) and \(w\)-hyponormal operators. C. Yang and J. Yuan [34–36] studied class \(wF(p, r, q) \) operator \(T \), i.e.,

\[
(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{1}{2}} \geq |T^*|^{\frac{2(p+r)}{r}}
\]

and

\[
|T|^{2(p+r)(1-\frac{1}{q})} \geq (|T|^p|T^*|^{2r}|T|^p)^{1-\frac{1}{q}}
\]

where \(0 < p, 0 < r, 1 \leq q \). If we take small \(p_1 \) such that \(0 < p_1 \leq \frac{p+r}{qr} \) and \(p_1 \leq \frac{(p+r)(q-1)}{pq} \), then \(T \) is class \(p_1\)-\(wA(p, r) \). Hence class \(p_1\)-\(wA(p, r) \) is a generalization of class \(wF(p, r, q) \). We will use this property frequently.
It is known that $T = U|T|$ is class p-$wA(s,t)$ if and only if
$$|T(s,t)|^{2rp} \geq |T|^{2p}, \quad |T|^{2rp} \geq |(T(s,t))^\ast|^{2rp}$$
by [26]. Hence
$$|T(s,t)|^{2rp} \geq |T|^{2rp} \geq |(T(s,t))^\ast|^{2rp}$$
and $T(s,t)$ is rp-hyponormal for all $r \in (0, \min\{s,t\}]$.

The following is a breakdown of the paper’s structure: In section 2, we prove that if T is a class of p-$wA(s,t)$ operators and its Aluthge transform $T(s,t)$ is quasinormal (respectively, normal), then T is also quasinormal (resp., normal). The normal parts of quasisimilar class p-$wA(s,t)$ operators are unitarily equivalent in section 3. The major goal of Section 4 is to demonstrate that the Fuglede-Putnam theorem holds for a class p-$wA(s,t)$ operator T with $0 < s, t, s+t = 1$ and $0 < p \leq 1$ if T fulfills the kernel condition $\ker(T) \subset \ker(T^\ast)$.

2. Quasinormality

Let $T = U|T|$ be the polar decomposition of $T \in \mathcal{B(H)}$. T is said to be quasinormal if $|T|U = U|T|$, or equivalently, $TT^\ast T = T^\ast TT$. S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida [27] proved that if T is class $A(s,t)$ and $T(s,t)$ is quasinormal, then T is quasinormal and $T = T(s,t)$ if $s + t = 1$. The following is a generalization of this result.

Theorem 1. Let T be a class p-$wA(s,t)$ operator with the polar decomposition $T = U|T$. If $T(s,t) = |T|U|T|^\ast$ is quasinormal, then T is also quasinormal. Hence T coincides with its generalized Aluthge transform $T(s,t)$.

Proof. Since T is a class p-$A(s,t)$ operator,
$$|T(s,t)|^{2rp} \geq |T|^{2rp} \geq |(T(s,t))^\ast|^{2rp}$$
for all $r \in (0, \min\{s,t\})$ by [19, Theorem 3] and Löwner-Heinz inequality. Then Douglas’s theorem [11] implies
$$\text{ran}(T(s,t)) = \overline{\text{ran}((T(s,t))^\ast)} \subset \text{ran}(|T|) = \overline{\text{ran}(|T(s,t)|)}$$
where $\overline{\mathcal{M}}$ denotes the norm closure of \mathcal{M}. Let $T(s,t) = W|T(s,t)|$ be the polar decomposition of $T(s,t)$. Then $E := W^\ast W = U^\ast U \geq WW^\ast =: F$. Put
$$|(T(s,t))^\ast|^{1\over 2rp} = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}$$
on $\mathcal{H} = \overline{\text{ran}(T(s,t))} \oplus \ker((T(s,t))^\ast)$.

Then X is injective and has a dense range. Since $T(s,t)$ is quasinormal, W commutes with $|T(s,t)|$ and
$$|T(s,t)|^{2rp} = W^\ast W|T(s,t)|^{2rp} = W^\ast |T(s,t)|^{2rp} W$$

Theorem 1.

Let T be a class p-$wA(s,t)$ operator with the polar decomposition $T = U|T$. If $T(s,t) = |T|U|T|^\ast$ is quasinormal, then T is also quasinormal. Hence T coincides with its generalized Aluthge transform $T(s,t)$.

Proof. Since T is a class p-$A(s,t)$ operator,
$$|T(s,t)|^{2rp} \geq |T|^{2rp} \geq |(T(s,t))^\ast|^{2rp}$$
for all $r \in (0, \min\{s,t\})$ by [19, Theorem 3] and Löwner-Heinz inequality. Then Douglas’s theorem [11] implies
$$\text{ran}(T(s,t)) = \overline{\text{ran}((T(s,t))^\ast)} \subset \text{ran}(|T|) = \overline{\text{ran}(|T(s,t)|)}$$
where $\overline{\mathcal{M}}$ denotes the norm closure of \mathcal{M}. Let $T(s,t) = W|T(s,t)|$ be the polar decomposition of $T(s,t)$. Then $E := W^\ast W = U^\ast U \geq WW^\ast =: F$. Put
$$|(T(s,t))^\ast|^{1\over 2rp} = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}$$
on $\mathcal{H} = \overline{\text{ran}(T(s,t))} \oplus \ker((T(s,t))^\ast)$.

Then X is injective and has a dense range. Since $T(s,t)$ is quasinormal, W commutes with $|T(s,t)|$ and
$$|T(s,t)|^{2rp} = W^\ast W|T(s,t)|^{2rp} = W^\ast |T(s,t)|^{2rp} W$$

Theorem 1.
\[
\geq W^*|T|^{2rp}W \geq W^*|(T(s, t))^*|^{2rp}W = |T(s, t)|^{2rp}.
\]

Hence
\[
|T(s, t)|^{2rp} = W^*|T(s, t)|^{2rp}W = W^*|T|^{2rp}W,
\]
and
\[
|(T(s, t))^*|^{2rp} = W^*|T(s, t)|^{2rp}W^* = WW^*|T|^{2rp}W^* = \begin{pmatrix} X^{2rp} & 0 \\ 0 & 0 \end{pmatrix}.
\]

Since \(WW^* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\), (1), (2) and (3) imply that \(|T(s, t)|^{2rp}\) and \(|T|^{2rp}\) are of the forms
\[
|T(s, t)|^{2rp} = \begin{pmatrix} X^{2rp} & 0 \\ 0 & Y^{2rp} \end{pmatrix} \geq |T|^{2rp} = \begin{pmatrix} X^{2rp} & 0 \\ 0 & Z^{2rp} \end{pmatrix},
\]
where \(\text{ran}(Y) = \text{ran}(Z) = \text{ran}(|T|) \oplus \text{ran}(T(s, t)) = \ker((T(s, t))^*) \oplus \ker(T)\).

Since \(W\) commutes with \(|T(s, t)|\),
\[
\begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix}.
\]

So \(W_1X = WX_1\) and \(W_2Y = WX_2\), and hence \(\overline{\text{ran}(W_1)}\) and \(\overline{\text{ran}(W_2)}\) are reducing subspaces of \(X\). Since \(W^*W|T(s, t)| = |T(s, t)|\), we have \(W_1^*W_1 = 1\) and
\[
X^k = W_1^*W_1X^k = W_1^*X^kW_1,
\]
\[
Y^k = W_2^*W_2Y^k = W_2^*X^kW_2,
\]
for \(k = 1, 2, \ldots\).

Put \(U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}\). Then \(T(s, t) = |T|^sU|T|^t = W|T(s, t)|\) implies
\[
\begin{pmatrix} X^s & 0 \\ 0 & Z^s \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} X^t & 0 \\ 0 & Z^t \end{pmatrix} = \begin{pmatrix} W_1 & W_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X^{s+t} & 0 \\ 0 & Y^{s+t} \end{pmatrix}.
\]

Hence
\[
X^sU_{11}X^t = W_1X^{s+t} = X^sW_1X^t,
\]
\[
X^sU_{12}Z^t = W_2Y^{s+t} = X^{s+t}W_2
\]
and
\[
X^s(U_{11} - W_1)X^t = 0,
\]
\[
X^s(U_{12}Z^t - X^tW_2) = 0.
\]
Since X is injective and has a dense range, $U_{11} = W_1$ is isometry and $U_{12}Z^t = X^tW_2$. Then
\[
U^*U = \begin{pmatrix}
U_{11}^*U_{11} + U_{21}^*U_{21} & U_{11}^*U_{12} + U_{21}^*U_{22} \\
U_{12}^*U_{11} + U_{22}^*U_{21} & U_{12}^*U_{12} + U_{22}^*U_{22}
\end{pmatrix}
\]
on $\mathcal{H} = \text{ran}(T(s, t)) \oplus \text{ker}((T(s, t))^*)$ is the orthogonal projection onto $\text{ran}([T^*]) \supset \text{ran}(T(s, t))$, we have $U_{21} = 0$ and
\[
U^*U = \begin{pmatrix}
1 & 0 \\
0 & U_{12}^*U_{12} + U_{22}^*U_{22}
\end{pmatrix}.
\]
Since $U_{12}Z^t = X^tW_2$, we have
\[
Z^{2t} = Z^tU_{12}^*U_{12}Z^t = W_2^tX^2W_2 = Y^{2t},
\]
and
\[
Z^{2rp} \geq (Z^tU_{12}^*U_{12}Z^t)^{2p} = (W_2^tX^tW_2)^{2p} = Y^{2rp} \geq Z^{2rp}
\]
by Löwner-Heinz inequality and (4). Hence
\[
(Z^tU_{12}^*U_{12}Z^t)^{2p} = Z^{2rp} = Y^{2rp},
\]
so $Z = Y$ and $|T(s, t)| = |T|^{s+t}$. Since
\[
Z^{2t} = Z^tU_{12}^*U_{12}Z^t \\
\leq Z^tU_{12}^*U_{12}Z^t + Z^tU_{22}^*U_{22}Z^t \leq Z^{2t}
\]
$Z^tU_{22}^*U_{22}Z^t = 0$ and $U_{22}Z^t = 0$. This implies $\text{ran}(U_{12}^*U_{12} \subset \text{ker}(Z))$. Since $\text{ran}(U_{12}^*U_{12} + U_{22}^*U_{22}) \subset \overline{\text{ran}(Z)}$ and $U_{22}^*U_{22} \leq U_{12}^*U_{12} + U_{22}^*U_{22}$, we have $\text{ran}(U_{22}^*) \subset \overline{\text{ran}(Z)}$. Hence
\[
U_{22} = 0, U = \begin{pmatrix}
W_1 & U_{12} \\
0 & 0
\end{pmatrix}
\]
and
\[
\text{ran}(U) \subset \overline{\text{ran}(T(s, t))} \subset \overline{\mathbb{R}([T])} = \text{ran}(E).
\]
Since W commutes with $|T(s, t)| = |T|^{s+t}$, W commutes with $|T|$ and
\[
|T|^s(W - U)|T|^t = W|T|^s|T|^t - |T|^sU|T|^t = W|T(s, t)| - T(s, t) = 0.
\]
Hence $E(W - U)E = 0$ and
\[
U = UE = EUE = EWE = WE = W.
\]
Thus $U = W$ commutes with $|T|$ and T is quasinormal.

Corollary 1. Let $T = U|T|$ be a class p-$wA(s, t)$ operator. If $T(s, t) = |T|^sU|T|^t$ is normal, then T is also normal.
Proof. Since $T(s, t)$ is normal, T is quasinormal by Theorem 1. Hence $T(s, t) = |T|^s U |T|^t = U |T|^{s+t}$ and $(T(s, t))^* = |T|^{s+t} U^*$. Hence

$|T|^{2(s+t)} = |T(s, t)|^2 = |(T(s, t))^*|^2 = |T^*|^{2(s+t)}$.

This implies $|T| = |T^*|$ and T is normal.

Theorem 2. [25] Let $s_1 > 0$, $s_2 > 0$, $t_1 > 0$, $t_2 > 0$ and $0 < p \leq 1$. If T belongs to class $p_1-wA(s_1, t_1)$ for $0 < p_1 \leq p$ and T^* belongs to class $p_2-wA(s_2, t_2)$ for $0 < p_2 \leq p$, then T is normal.

To prove Theorem 2, we need the following results.

Lemma 1. ([21]) If T is class $p-wA(s, t)$ and $0 < s \leq s_1$, $0 < t \leq t_1$, $0 < p_1 \leq p < 1$, then T is class $p_1-wA(s_1, t_1)$.

Theorem 3 (Furuta theorem [14]). If $A \geq B \geq 0$, then for each $r \geq 0$,

(i) $(B^\frac{r}{2} A^p B^\frac{r}{2})^\frac{1}{2} \geq B^{\frac{r+p}{2}}$ and

(ii) $A^{r+p} \geq (A^r B^p A^\frac{s}{2})^\frac{1}{2}$

hold for $p \geq 0$ and $q \geq 1$ with $(1 + r)q \geq p + r$.

Proposition 1. ([19]) Let $A \geq 0$ and $B \geq 0$. If

$B^\frac{r}{2} A B^\frac{r}{2} \geq B^2$ and $A^\frac{r}{2} B A^\frac{r}{2} \geq A^2$, \hspace{1cm} (5)

then $A = B$.

Proof. [Proof of Theorem 2] Let $r = \max\{s_1, s_2, t_1, t_2\}$ and let $q = \min\{p_1, p_2\}$.

Firstly, if T belongs to class $p_1-wA(s_1, t_1)$, then T belongs to class $q-wA(r, r)$ by Lemma 1. Hence we have

$(|T^*|^r |T|^{2r} |T^*|^r)^\frac{2}{r} \geq |T^*|^{2rq}$ and $|T|^{2rq} \geq (|T|^r |T^*|^{2r} |T|^r)^\frac{2}{r}$ \hspace{1cm} (6)

Secondly, if T^* belongs to class $p_2-wA(s_2, t_2)$, then T^* belongs to class $q-wA(r, r)$ by Lemma 1. Hence we have

$(|T|^r |T^*|^{2r} |T|^r)^\frac{2}{r} \geq |T|^{2rq}$ and $|T|^{2rq} \geq (|T|^r |T^*|^{2r} |T|^r)^\frac{2}{r}$ \hspace{1cm} (7)

Therefore

$|T^*|^r |T|^{2r} |T^*|^r = |T^*|^{4r}$ and $|T|^{4r} = |T|^r |T^*|^{2r} |T|^r$

hold by (6) and (7), and then $|T| = |T^*|$ by Proposition 1.

The following result is very important in the sequel
Theorem 4. [17, Jensen’s Operator Inequality (JOI)] Suppose that f is a continuous function defined on an interval I. Then f is operator convex on an interval I containing 0 with $f(0) \leq 0$ if and only if $f(a^*xa) \leq a^*f(x)a$ for every self-adjoint x with spectrum in I and every contraction a.

Theorem 5. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H}. Then the following are equivalent:

(i) $\text{ran}(A) \subseteq \text{ran}(B);$
(ii) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0;$ and
(iii) there exists a bounded linear operator C on \mathcal{H} so that $A = BC$.

Lemma 2. Let A, B and C be positive operators. Then the following assertions hold for each $p \geq 0$, $r \in [0, 1]$ and $0 < q \leq 1$:

(i) If $(B^{r/2}A^pB^{r/2})^{\frac{r}{p+q}} \geq B^q$ and $B \geq C$, then $(C^{r/2}A^pC^{r/2})^{\frac{r}{p+q}} \geq C^q$.

(ii) If $A \geq B$, $B^q \geq (B^{r/2}C^pB^{r/2})^{\frac{r}{p+q}}$ and the condition

\[
\text{if } \lim_{n \to \infty} B^{1/2}x_n = 0 \text{ and } \lim_{n \to \infty} A^{1/2}x_n \text{ exists,}
\]

\[
\text{then } \lim_{n \to \infty} A^{1/2}x_n = 0 \text{ for any sequence of vectors } \{x_n\}
\]

(8)

hold, then $A^q \geq (A^{r/2}C^pA^{r/2})^{\frac{r}{p+q}}$.

Lemma 2 can be obtained as an application of the following results.

Theorem 6. ([11]) Let A and B be bounded linear operators on a Hilbert space \mathcal{H}. Then the following are equivalent:

(i) $\text{ran}(A) \subseteq \text{ran}(B);$
(ii) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0;$ and
(iii) there exists a bounded linear operator C on \mathcal{H} so that $A = BC$.

Moreover, if (i), (ii) and (iii) are valid, then there exists a unique operator C so that

(a) $\|C\|^2 = \inf\{\mu : AA^* \leq \mu BB^*\};$

(b) $\text{ker}(A) = \text{ker}(C);$ and

(c) $\text{ran}(C) \subseteq \overline{\text{ran}(B^*)}$.

Theorem 7. ([16]) Let X and A be bounded linear operator on a Hilbert space \mathcal{H}. We suppose that $A \geq 0$ and $\|X\| \leq 1$. If f is an operator monotone function defined on $[0, \infty)$, then

\[X^*f(A)X \leq f(X^*AX).\]
We remark that the condition (c) of Theorem 6 is equivalent to (c‘):
\[\text{ran}(C) \subseteq \text{ran}(B^*). \]
Here we consider when the equality of (c‘) holds.

Lemma 3. ([33]) Let \(A \) and \(B \) be operators which satisfy (i), (ii) and (iii) of Theorem 6 and \(C \) be the operator which is given in (iii) and determined uniquely by (a), (b) and (c) of Theorem 6. Then the following assertions are mutually equivalent:

(i) \(\text{ran}(C) = \text{ran}(B^*). \)

(ii) If \(\lim_{n \to \infty} A^* x_n = 0 \) and \(\lim_{n \to \infty} B^* x_n \) exists, then \(\lim_{n \to \infty} B^* x_n = 0 \) for any sequence of vectors \(\{x_n\}. \)

We also prepare the following lemma in order to give a proof of Lemma 2.

Lemma 4. ([33]) Let \(S \) be a positive operator and \(0 < q \leq 1 \). If \(\lim_{n \to \infty} S x_n = 0 \) and \(\lim_{n \to \infty} S^q x_n \) exists, then \(\lim_{n \to \infty} S^q x_n = 0 \) for any sequence of vectors \(\{x_n\}. \)

Proof. [Proof of Lemma 2] (i) The hypothesis \(B \geq C \) ensures then \(B^t \geq C^t \) for each \(t \in (0,1] \) by Löwner-Heinz theorem. By Theorem 6, there exists an operator \(X \) with \(\|X\| \leq 1 \) such that
\[B^\frac{t}{2} X = X^* B^\frac{t}{2} = C^\frac{t}{2}. \]

Then we have
\[(C^{r/2} A^p C^{r/2})^{\frac{r}{p+r}} = (X^* B^{r/2} A^p B^{r/2} X)^{\frac{r}{p+r}} \]
\[\geq X^*(B^{r/2} A^p B^{r/2})^{\frac{r}{p+r}} X \quad \text{(by Theorem 7)} \]
\[\geq X^* B^r X \quad \text{(by the hypothesis)} \]
\[= (C^{\frac{r}{2}} C^{\frac{r}{2}})^q = C^{rq} \quad \text{(by Equation (9))}. \]

(ii) The hypothesis \(A \geq B \) ensures \(A^s \geq B^s \) for \(s \in (0,1] \) by Löwner-Heinz theorem. By Theorem 6, there exists an operator \(X \) with \(\|X\| \leq 1 \) such that
\[A^{s/2} X = X^* A^{s/2} = B^{s/2}. \]

Then we have
\[X^*(A^{r/2} C^p A^{r/2})^{\frac{r}{p+r}} X \leq (X^* A^{r/2} C^p A^{r/2} X)^{\frac{r}{p+r}} \quad \text{(by Theorem 7)} \]
\[= (B^{r/2} C^p B^{r/2})^{\frac{r}{p+r}} \]
\[\leq B^{rq} \quad \text{(by the hypothesis)} \]
\[= (B^r)^q = (X^* A^{\frac{r}{2}} A^{\frac{r}{2}} X)^q \leq X^* A^{rq} X \quad \text{(by Theorem 4)} \]
so that \(A^{rq} \geq (A^{r/2} C^p A^{r/2})^{\frac{r}{p+r}} \) holds on \(\text{ran}(X) \). On the other hand, the hypothesis (8) implies the following (11)
\[\text{If } \lim_{n \to \infty} B^{r/2} x_n = 0 \text{ and } \lim_{n \to \infty} A^{r/2} x_n \text{ exists,} \]
Then by Theorem 3 it follows that
\[\text{ran}(X) = \text{ran}(A^{r/2}) \] by Lemma 3, hence we have
\[\ker((A^{r/2}C^pA^{r/2})_{\frac{r^p}{n}}) = \ker(A^{r/2}C^pA^{r/2}) \]
\[\supseteq \ker(A^{r/2}) = \ker(A^r) = \ker(X^r) = \ker(X^s), \]
so that \(A^{\frac{r^p}{n}} = (A^{r/2}C^pA^{r/2})_{\frac{r^p}{n}} = 0 \) holds on \(\ker(X^s) \). Consequently the proof is complete since \(H = \text{ran}(X) \oplus \ker(X^s) \).

Lemma 5. ([26]) Let \(T = U|T| \in B(H) \) be the polar decomposition of \(T \). Then \(T \) is class \(p-wA(s, t) \) if and only if \(|T(s, t)|^{\frac{2p}{p+1}} \geq |T|^{2p} \) and \(|T|^{2p} \geq \|T(s, t)\|^{\frac{2p}{p+1}} \).

Lemma 6. Let \(0 < s, t, s + t \leq 1 \) and \(0 < p \leq 1 \). Let \(T \in B(H) \) be class \(p-wA(s, t) \) and let \(M \) an invariant subspace of \(T \). Then the restriction \(T|_M \) is also class \(p-wA(s, t) \).

Proof. Let \(T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix} \) on \(H = M \oplus M^\perp \) and \(P \) the orthogonal projection onto \(M \). Let \(T_0 := TP = PTP = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} \). Then
\[|T_0|^{2t} = (P|T|^{2p})^t \geq P|T|^{2t} \]
for each \(0 < t \leq 1 \)
by Hansen’s inequality, and
\[|T^s|^2 = TT^* \geq TPT^* = |T_0|^2. \]
Hence
\[T \text{ is class } p-A(s, t) \iff |T^s|^{2tp} \leq (|T^s|^t|T|^{2s}|T^s|^t)^{\frac{2p}{p+1}} \]
\[\Rightarrow |T_0|^{2tp} \leq (|T_0^s|^t|T_0|^{2s}|T_0^s|^t)^{\frac{2p}{p+1}} \text{ (by Lemma 2)} \]
\[\Rightarrow |T_0|^{2tp} \leq (|T_0^s|^t|T_0|^{2s}|T_0^s|^t)^{\frac{2p}{p+1}} \text{ (since } |T_0^s|^t = |T_0^s|^t P = P|T_0^s|^t \text{ for every } 0 < t \leq 1). \]
Now
\[|T_0| = P|\widetilde{T}|P \geq P|T|P \geq P|\widetilde{T}|^s P = |T_0^s| |P = |T_0^s|. \]
Then by Theorem 3 it follows that
\[|T_0|^{2tp} \geq (|T_0^s|^t|T_0^s|^{2t}|T_0^s|^s)^{\frac{2p}{p+1}}. \]
Therefore, \(T|_M \) is class \(p-A(s, t) \) operator.

The following example shows that there exists a class \(p-wA(s, t) \) operator \(T \) such that \(T|_M \) is quasinormal but \(M \) does not reduce \(T \).
Example 1. Let T be a bilateral shift on $\ell^2(\mathbb{Z})$ defined by $Te_n = e_{n+1}$ and $\mathcal{M} = \bigvee_{n \geq 0} \mathbb{C}e_n$. Then T is unitary and $T|_{\mathcal{M}}$ is isometry. However, \mathcal{M} does not reduce T.

Lemma 7. Let $0 < s, t, s+t = 1$ and $0 < p \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-$wA(s, t)$ operator, let \mathcal{M} be an invariant subspace for T and a reducing subspace for $T(s, t)$ such that $T(s, t)|_{\mathcal{M}}$ the restriction of $T(s, t)$ to \mathcal{M} is an injective normal operator, then $T|_{\mathcal{M}} = T(s, t)|_{\mathcal{M}}$ and \mathcal{M} reduces T.

Proof. Let

$$T(s, t) = \begin{pmatrix} T_0 & 0 \\ 0 & A \end{pmatrix}, \quad T = \begin{pmatrix} S & B \\ 0 & D \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp.$$

Since T is class p-$wA(s, t)$ we have $|T(s, t)|^{2rp} \geq |T|^{2rp} \geq |(T(s, t))^*|^{2rp}$ for $r \in \min\{s, t\}$. Let P be the orthogonal projection onto \mathcal{M}. Then

$$|T_0| = P|T(s, t)|P \geq P|T|P \geq P|(T(s, t))^*|P = |T_0|^*.$$

By Löwner-Heinz theorem we get

$$|T_0|^{2rp} = P|T(s, t)|^{2rp}P \geq P|T|^{2rp}P \geq P|(T(s, t))^*|^{2rp}P = |T_0|^{2rp}. $$

Since $|T|^*T = T(s, t)|T|^*$ and $P|T|^*P = |T_0|^*$, we deduce that

$$|T_0|^*S = T_0|T_0|^*.$$

We have T_0 is an injective normal operator, then $S = T|_{\mathcal{M}} = T_0 = T(s, t)|_{\mathcal{M}}$, consequently

$$T = \begin{pmatrix} T_0 & B \\ 0 & D \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp.$$

Hence

$$T^*T = \begin{pmatrix} T_0^*T_0 & T_0^*B \\ B^*T_0 & B^*B + D^*D \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp.$$

So we can write

$$|T|^p = \begin{pmatrix} |T_0|^p & X \\ X^* & Y \end{pmatrix} \text{ on } \mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp.$$

Since

$$P|T|^p|T|^pP = |T_0|^{2rp},$$

then $|T_0|^{2rp} = |T_0|^{2rp} + XX^*$, and thus $X = 0$.

It follows that $|T|^p = |T_0|^p + Y^2$ implying $|T|^{2rp} = |T_0|^{2rp} + Y^4$. Consequently we get $B^*B = 0$ it follows that $B = 0$ and hence \mathcal{M} reduces T.

The next lemma is a simple consequence of the preceding one.
Lemma 8. Let $0 < s, t, s + t = 1$ and $0 < p \leq 1$. Let $T \in \mathcal{B}(\mathcal{H})$ be a class p-w$A(s, t)$ operator with $\ker(T) \subset \ker(T^*)$. Then $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ where T_1 is normal, $\ker(T_2) = \{0\}$ and T_2 is pure class p-w$A(s, t)$ i.e., T_2 has no non-zero invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal.

Lemma 9. Let $0 < s, t, s + t = 1$ and $0 < p \leq 1$. Let $T = U[T] \in \mathcal{B}(\mathcal{H})$ be class p-w$A(s, t)$ and $\ker(T) \subset \ker(T^*)$. Suppose $T(s, t) = |T|sU|T|t$ be of the form $N \oplus T^*$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$, where N is a normal operator on \mathcal{M}. Then $T = N \oplus T_1$ and $U = U_{11} \oplus U_{22}$ where T_1 is class p-w$A(s, t)$ with $\ker(T_1) \subset \ker(T_1^*)$ and $N = U_{11}|N|$ is the polar decomposition of N.

Proof. Since

$$|T(s, t)|^{2rp} \geq |T|^{2rp} \geq |(T(s, t))^*|^{2rp}$$

for $r \in \min\{s, t\}$, we have

$$|N|^{2rp} \oplus |T|^*|^{2rp} \geq |T|^{2rp} \geq |N|^{2rp} \oplus |T|^*|^{2rp}$$

by assumption. This implies that $|T|$ is of the form $|N| \oplus L$ for some positive operator L.

Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be 2×2 matrix representation of U with respect to the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp$. Then the definition $T(s, t)$ means

$$\begin{pmatrix} N & 0 \\ 0 & T^* \end{pmatrix} = \begin{pmatrix} |N|s & 0 \\ 0 & L^* \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |N|^t & 0 \\ 0 & L^t \end{pmatrix}$$

Hence, we have

$$N = |N|^sU_{11}|N|^t, \quad |N|^sU_{12}L^t = 0 \quad \text{and} \quad L^sU_{21}|N|^t = 0.$$

Since $\ker(T) \subset \ker(T^*)$,

$$\overline{\text{ran}(U)} = \overline{\text{ran}(T)} = \ker(T^*)^\perp \subset \ker(T)^\perp = \overline{\text{ran}(|T|)}.$$

Let $Nx = 0$ for $x \in \mathcal{M}$. Then $x \in \ker(|T|) = \ker(U)$, and

$$Ux = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} = 0.$$

Hence

$$\ker(N) \subset \ker(U_{11}) \cap \ker(U_{21}).$$

Let $x \in \mathcal{M}$. Then

$$U \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} U_{11}x \\ U_{21}x \end{pmatrix} \in \overline{\text{ran}(|T|)} = \overline{\text{ran}(|N| \oplus L)}.$$

Hence

$$\ker(U_{11}) \subset \ker(|N|), \quad \ker(U_{21}) \subset \overline{\text{ran}(L)}.$$
Similarly
\[\text{ran}(U_{12}) \subset \text{ran}(|N|), \ \text{ran}(U_{22}) \subset \overline{\text{ran}(L)}. \]

Let \(Lx = 0 \) for \(x \in M^{\perp}. \) Then \(x \in \ker(|T|) = \ker(U) \) and
\[
U \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} U_{12}x \\ U_{22}x \end{pmatrix} = 0
\]

Hence
\[\ker(L) \subset \ker(U_{12}) \cap \ker(U_{22}). \]

Let \(N = V|N| \) be the polar decomposition of \(N. \) Then
\[(V|N|^* - |N|^*U_{11})|N|^t = 0. \]

Hence \(V|N|^* - |N|^*U_{11} = 0 \) on \(\overline{\text{ran}(|N|)}. \) Since \(\ker(N) \subset \ker(U_{11}), \) this implies \(0 = V|N|^* - |N|^*U_{11} = |N|^*(V - U_{11}). \) Hence
\[\text{ran}(V - U_{11}) \subset \ker(|N|) \cap \overline{\text{ran}(|N|)} = \{0\}. \]

Hence \(V = U_{11} \) and \(N = U_{11}|N| \) is the polar decomposition of \(N. \) Since \(|N|^*U_{12}L^t = 0, \)
\[\text{ran}(U_{11}L^t) \subset \ker(|N|) \cap \overline{\text{ran}(|N|)} = \{0\}. \]

Hence \(U_{12}L^t \) and \(U_{12} = 0. \) Similarly we have \(U_{21} = 0 \) by \(L^*U_{21}|N|^t = 0. \) Hence \(U = U_{11} \oplus U_{22}. \) So we obtain
\[T = U|T| = U_{11}|N| \oplus U_{22}L = N \oplus T_1, \]
where \(T_1 = U_{22}L. \)

3. Quasisimilarity

An operator \(X \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) is called quasiaffinity if \(X \) is both injective and has a dense range. For \(T \in \mathcal{B}(\mathcal{H}) \) and \(S \in \mathcal{B}(\mathcal{K}), \) if there exist quasiaffinities \(X \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) and \(Y \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) such that \(TX = XS \) and \(YT = SY, \) then we say that \(T \) and \(S \) are quasisimilar. The operator \(T \in \mathcal{B}(\mathcal{H}) \) is said to be pure if there exists no nontrivial reducing subspace \(\mathcal{M} \) of \(\mathcal{H} \) such that the restriction of \(T \) to \(\mathcal{M} \) is normal and is completely hyponormal if it is pure. Recall that every operator \(T \in \mathcal{B}(\mathcal{H}) \) has a direct sum decomposition \(T = T_1 \oplus T_2, \) where \(T_1 \) and \(T_2 \) are normal and pure parts, respectively. Of course in the sum decomposition, either \(T_1 \) or \(T_2 \) may be absent. The following lemma is due to Williams [32, Lemma 1.1].

Lemma 10. Let \(T \in \mathcal{B}(\mathcal{H}) \) and \(S \in \mathcal{B}(\mathcal{K}) \) be normal operators. It there exist injective operators \(X \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) and \(Y \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) such that \(TX = XS \) and \(YT = SY, \) then \(T \) and \(S \) are unitarily equivalent.
Corollary 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-$wA(s,t)$ operator for $0 < s, t, s + t = 1$ and $0 < p \leq 1$. Then $T = T_1 \oplus T_2$ on the space $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where T_1 is normal and T_2 is pure and class p-$wA(s,t)$, i.e., T_2 has no invariant subspace \mathcal{M} such that $T_2|_{\mathcal{M}}$ is normal.

The next result was proved for dominant operators in [28, Theorem 1], for p-hyponormal operators in [20] and for w-hyponormal operators in [22, Lemma 2.12].

Proposition 2. Let $T \in \mathcal{B}(\mathcal{H})$ be class p-$wA(s,t)$ operator for $0 < s, t, s + t = 1$ and $0 < p \leq 1$ such that $\ker(T) \subset \ker(T^*)$ and let $S \in \mathcal{B}(\mathcal{K})$ be a normal operator. If there exists a quasiaffinity $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ with dense range such that $TX = XS$, then T is normal.

To prove Proposition 2, we need the following lemmas.

Lemma 11. [9] If N is a normal operator on \mathcal{H}, then we have

$$\bigcap_{\lambda \in \mathbb{C}} (N - \lambda)\mathcal{H} = \{0\}.$$

Lemma 12. ([10]) Let $T \in \mathcal{B}(\mathcal{H})$, $D \in \mathcal{B}(\mathcal{H})$ with $0 \leq D \leq M(T - \lambda)(T - \lambda)^*$ for all $\lambda \in \mathbb{C}$, where M is a positive real number. Then for every $x \in D\frac{1}{2}\mathcal{H}$ there exists a bounded function $f : \mathbb{C} \rightarrow \mathcal{H}$ such that $(T - \lambda)f(\lambda) \equiv x$.

Proof. [Proof of Proposition 2] $\ker(T) \subset \ker(T^*)$ implies $\ker(T)$ reduces T. Also $\ker(S)$ reduces S since S is normal. Using the orthogonal decompositions $\mathcal{H} = \overline{\text{ran}(T)} \oplus \ker(T)$ and $\mathcal{H} = \overline{\text{ran}(S)} \oplus \ker(S)$, we can represent T and S as follows: $T = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$, $S = \begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$, where T_1 is an injective class p-$wA(s,t)$ operator on $\overline{\text{ran}(T)}$ and S_1 is injective normal on $\overline{\text{ran}(S)}$. The assumption $TX = XS$ asserts that X maps $\text{ran}(S)$ to $\text{ran}(T) \subset \overline{\text{ran}(T)}$ and $\ker(S)$ to $\ker(T)$, hence X is the form: $X = \begin{pmatrix} X_1 & 0 \\ 0 & X_2 \end{pmatrix}$, where $X_1 \in \mathcal{B}(\overline{\text{ran}(S)}, \overline{\text{ran}(T)})$, $X_2 \in \mathcal{B}(\ker(S), \ker(T))$. Since $TX = XS$, we have that $T_1 X_1 = X_1 S_1$. Since X is injective with dense range, X_1 is also injective with dense range. Put $W_1 = [T_1^* X_1$, then W_1 is also injective with dense range and satisfies $T(s,t)W_1 = W_1 S$. Put $W_n = (\Delta^n(T(s,t))W_{n-1}$, then W_n is also injective with dense range and satisfies $\Delta^n(T(s,t))W_n = W_n S$. From [26, Corollary 2.7] and [6], if there exists an integer m such that $\Delta^m(T(s,t))$ is a hyponormal operator, then $\Delta^n(T(s,t))$ is a hyponormal operator for $n \geq m$. It follows from Lemma 12 that there exists a bounded function $f : \mathbb{C} \rightarrow \mathcal{H}$ such that $(\Delta^n(T_1(s,t))^* - \lambda)f(\lambda) \equiv x$, for every $x \in (\Delta^n(T_1(s,t))^* \Delta^n(T_1(s,t) - \Delta^n(T_1(s,t))(\Delta^n(T_1(s,t))^*) \frac{1}{2}\mathcal{H})$. Hence

$$W_n^* x = W_n^* (\Delta^n(T_1(s,t))^* - \lambda)f(\lambda)$$

$$= (S_1^* - \lambda)W_n^* f(\lambda) \in \text{ran}(S_1^* - \lambda)$$

for all $\lambda \in \mathbb{C}$.

By Lemma 11, we have $W_n^* x = 0$, and hence $x = 0$ because W_n^* is injective. This implies that $\Delta^n(T_1(s, t))$ is normal. By Corollary 1, T_1 is normal and therefore $T = T_1 \oplus 0$ is also normal.

Theorem 8. Let T and S^* be class p-$wA(s, t)$ operators with $0 < s, t, s + t = 1$ and $0 < p \leq 1$ such that $\ker(T) \subset \ker(T^*)$ and $\ker(S^*) \subset \ker(S)$. If there exist a quasi-affinity X such that $TX = XS$, then T and S are unitarily equivalent normal operators.

Proof. First decompose T and S^* into their normal and pure parts by $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and $S^* = S_1^* \oplus S_2^*$ on $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$, where T_1, S_1 are normal and T_2, S_2^* are pure. Let $X = [X_{ij}]_{i,j=1}^2$. Then $TX = XS$ implies that $T_2X_{21} = X_{21}S_1$ and $T_2X_{22} = X_{22}S_2$. Let $T_2 = U_2|T_2|$, $S_2 = V_2^*|S_2^*|$ be the polar decompositions of T_2 and S_2^*, respectively and

$$T_2(s, t) = |T_2|^s U_2|T_2|^t, \quad S_2(s, t) = |S_2|^s V_2^*|S_2^*|^t, \quad W = |T_2|^s X_{22}|S_2|^t.$$

Then

$$T_2(s, t)W = |T_2|^s T_2X_{22}|S_2|^t = |T_2|^s X_{22}S_2|S_2^*|^t = W(S_2^*(s, t))^t.$$

Since $\text{ran}(W^*)$ reduces $T_2(s, t)$ and $\ker(W)^\perp$ reduces $S_2^*(s, t)$, and $T_2(s, t)|_{\text{ran}(W^*)}$ and $S_2(s, t)|_{\ker(W)^\perp}$ are unitarily equivalent normal operators, and since T_2, S_2 are injective class p-$wA(s, t)$ operators, we have $T_2|_{\text{ran}(W^*)} = T_2(s, t)|_{\text{ran}(W^*)}$ and $S_2|_{\ker(W)^\perp} = S_2^*(s, t)|_{\ker(W)^\perp}$ by Lemma 9. Since T_2, S_2^* are pure, it implies $W|T_2|^s X_{22}|S_2|^t = 0$. Hence $X_{22} = 0$. Similarly $X_{12} = 0, X_{21} = 0$. Hence $X = X_{11}$ and S, T are unitarily equivalent normal operators.

The following lemma is due to Williams [32, Lemma 1.1]

Lemma 13. Let $N_1 \in \mathcal{B}(\mathcal{H})$ and $N_2 \in \mathcal{B}(\mathcal{K})$ be normal. If $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and $Y \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ are injective such that $N_1X = XN_2$ and $YN_1 = N_2Y$, then N_1 and N_2 are unitarily equivalent.

Stampfli and Wadhwa [28] proved that the normal parts of quasisimilar dominant operators are unitarily equivalent. This result was generalized to classes of p-hyponormal operators in [12]. We prove that theses results hold for class p-$wA(s, t)$ operators.

Theorem 9. Suppose that $0 < s, t, s + t = 1$ and $0 < p \leq 1$. For each $i = 1, 2$, let $T_i \in \mathcal{B}(\mathcal{H}_i)$ be class p-$wA(s, t)$ operators such that $\ker(T_j) \subset \ker(T_j^*)$ and let $T_i = N_i \oplus V_i$ on $\mathcal{H}_i = \mathcal{H}_{i1} \oplus \mathcal{H}_{i2}$, where N_i and V_i are the normal and pure parts, respectively of T_i. If T_1 and T_2 are quasisimilar, then N_1 and N_2 are unitarily equivalent and there exist $X_s \in \mathcal{B}(\mathcal{H}_{22}, \mathcal{H}_{12})$ and $Y_s \in \mathcal{B}(\mathcal{H}_{12}, \mathcal{H}_{22})$ having dense range such that $V_1X_s = X_sV_2$ and $Y_sV_1 = V_2Y_s$.

Proof. By hypothesis there exist quasiadjoints \(X \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1) \) and \(Y \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2) \) such that \(T_1 X = X T_2 \) and \(Y T_1 = T_2 Y \). Let

\[
X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix}
\]

with respect to \(\mathcal{H}_2 = \mathcal{H}_{21} \oplus \mathcal{H}_{22} \) and \(\mathcal{H}_1 = \mathcal{H}_{11} \oplus \mathcal{H}_{12} \), respectively. A simple calculation shows that

\[
V_1 X_3 = X_3 N_2 \quad \text{and} \quad V_2 Y_3 = Y_3 N_1.
\]

We claim that \(X_3 = Y_3 = 0 \). Let \(\mathcal{M} = \text{ran}(X_3) \). Then \(\mathcal{M} \) is a non-trivial invariant subspace of \(V_1 \). Since \(V_1^* X_3 = X_3 N_2^* \) by Proposition 2, \(\mathcal{M} \) is an invariant subspace of \(V_1^* \). Hence \(\mathcal{M} \) reduces \(V_1, \sigma(V_1|_\mathcal{M}) \subset \sigma(V_1) \) and \(V_1|_\mathcal{M} \) is invertible. Let \(V_1' = V_1|_\mathcal{M} \) and define an operator \(X_3' : \mathcal{H}_{12} \rightarrow \mathcal{M} \) by \(X_3' x = X_3 x \) for each \(x \in \mathcal{H}_{12} \). Then \(V_1' \) is class \(p-wA(s,t) \) by Lemma 6, so that \(X_3' \) has dense range and satisfies \(V_1' X_3' = X_3' N_2 \). Hence \(V_1' \) is normal by Proposition 2. Since \(V_1 \) is pure, this implies that \(\mathcal{M} = \{0\} \) and \(X_3 = 0 \). Similarly, we have \(Y_3 = 0 \). Hence \(X_1 \) and \(Y_1 \) are injective.

Since \(N_1 X_1 = X_1 N_2 \) and \(Y_1 N_1 = N_2 Y_1 \), \(N_1 \) and \(N_2 \) are unitarily equivalent, by Lemma 13. Also, \(X_4 \) and \(Y_4 \) have dense ranges. Hence \(V_1 X_4 = X_4 V_2 \) and \(Y_4 V_1 = Y_4 V_4 \), so the proof is complete.

Corollary 3. Let \(T_1 \in \mathcal{B}(\mathcal{H}_1) \) and \(T_2 \in \mathcal{B}(\mathcal{H}_2) \) be quasisimilar class \(p-wA(s,t) \) operators for \(0 < s, t, s + t = 1 \) and \(0 < p \leq 1 \). If \(T_1 \) is pure, then \(T_2 \) is also pure.

Corollary 4. Let \(T_1 \in \mathcal{B}(\mathcal{H}_1) \) be class \(p-wA(s,t) \) operators for \(0 < s, t, s + t = 1 \) and \(0 < p \leq 1 \) and \(T_2 \in \mathcal{B}(\mathcal{H}_2) \) be normal. If \(T_1 \) and \(T_2 \) are quasisimilar, then \(T_1 \) and \(T_2 \) are unitarily equivalent normal operators.

4. The Fuglede-Putnam Theorem

We offer various results related to the Fuglede-Putnam theorem in this section. If \(T^* X = X S^* \) whenever \(TX = XS \) for every \(X \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \), a pair \((T, S)\) is said to have the Fuglede-Putnam property. In operator theory, the Fuglede-Putnam theorem is well-known. It claims that the pair \((T, S)\) possesses the Fuglede-Putnam property for any normal operators \(T \) and \(S \). There are several generalizations of this theorem, the majority of which loosen the normality of \(T \) and \(S \); see, for example, \([22–24, 27, 28]\), and some references therein and for more details (see [3],[5],[4]). The Fuglede-Putnam theorem is the subject of the next lemma, which we will require in the future.

Lemma 14. ([29]) Let \(T \in \mathcal{B}(\mathcal{H}) \) and \(S \in \mathcal{B}(\mathcal{K}) \). Then the following assertions equivalent.

(i) The pair \((T, S)\) has the Fuglede-Putnam property.

(ii) If \(TX = XS \), then \(\text{ran}(X) \) reduces \(T \), \(\ker(X) \) reduces \(S \), and \(T|_{\text{ran}(X)} \), \(S|_{\ker(X)\perp} \) are unitarily equivalent normal operators.
Remark 1. A necessary condition for the pair \((T, T^*)\) to satisfy Fuglede-Putnam’s theorem is \(\ker(T) \subseteq \ker(T^*)\). Since for a class \(p\)-\(w\)(s, t) operator this is not always true, class \(p\)-\(w\)(s, t) operator do not Fuglede-Putnam’s theorem. For example, if \(P\) is the orthogonal projection onto \(\ker(T)\), with \(T\) is class \(p\)-\(w\)(s, t), then \(TP = PT^*\) but \(T^*P \neq PT^*\). The following result (Corollary 6) prove that if \(T^*\), \(S\) are \(p\)-class \(A(s, t)\) operators for \(0 < s, t, s + t = 1\) and \(0 < p \leq 1\) such that \(\ker(T^*)\) reduces \(T^*\) and \(\ker(S)\) reduces \(S\), then the pair \((T, S)\) satisfy Fuglede-Putnam’s theorem.

Theorem 10. Let \(T \in B(H)\) be class \(p\)-\(w\)(s, t) operator for \(0 < s, t, s + t = 1\) and \(0 < p \leq 1\) and \(\ker(T) \subseteq \ker(T^*)\). If \(L\) is self-adjoint and \(TL = LT^*\), then \(T^*L = LT\).

Proof. Since \(\ker(T) \subseteq \ker(T^*)\) and \(TL = LT^*\), \(\ker(T)\) reduces \(T\) and \(L\). Hence

\[
T = T_1 \oplus 0, \quad L = L_1 \oplus L_2 \quad \text{on} \quad H = \overline{\text{ran}(T^*)} \oplus \ker(T),
\]

\(T_1L_1 = L_1T^*\) and \(\{0\} = \ker(T_1) \subseteq \ker(T_1^*)\). Since \(\text{ran}(L_1)\) is invariant under \(T_1\) and reduces \(L_1\),

\[
T = \begin{pmatrix} T_{11} & S \\ 0 & T_{22} \end{pmatrix}, \quad L_1 = L_{11} \oplus 0 \quad \text{on} \quad H = \overline{\text{ran}(T^*)} = \overline{\text{ran}(L_1)} \oplus \ker(L_1).
\]

\(T_{11}\) is an injective class \(p\)-\(w\)(s, t) operator by Lemma 6 and \(L_{11}\) is an injective self-adjoint operator (hence it has dense range) such that \(T_{11}L_{11} = L_{11}T_{11}^*\). Let \(T_{11} = V_{11}|T_{11}|\) be the polar decomposition of \(T_{11}\) and \(T_{11}(s, t) = |T_{11}|^sV_{11}|T_{11}|^t\), \(W = |T_{11}|^sL_{11}|T_{11}|^t\). Then

\[
T_{11}(s, t)W = |T_{11}|^sV_{11}|T_{11}|^t|T_{11}|^sL_{11}|T_{11}|^t
= |T_{11}|^sT_{11}L_{11}|T_{11}|^t
= |T_{11}|^sL_{11}T_{11}^*|T_{11}|^t
= |T_{11}|^sL_{11}|T_{11}|^t|V_{11}|T_{11}|^s
= W(T_{11}(s, t))^t.
\]

Since \(T_{11}(s, t)\) is \(\min\{sp, tp\}\)-hyponormal and \(\text{ran}(W)\) is dense (because \(\ker(W) = \{0\}\)), \(T_{11}(s, t)\) is normal by [12, Theorem 7]. Hence \(T_{11}\) is normal and \(T_{11} = T_{11}(s, t)\) by Corollary 1. Then \(\text{ran}(L_1)\) reduces \(T_1\) by Lemma 7 and \(T_{11}L_{11} = L_{11}T_{11}\) by Lemma 14. Hence

\[
T = T_{11} \oplus T_{22} \oplus 0, \quad L = L_{11} \oplus 0 \oplus L_2
\]

and

\[
T^*L = T_{11}^*L_{11} \oplus 0 \oplus 0 = L_{11}T_{11} \oplus 0 \oplus 0 = LT.
\]

Example 2. Let \(H = \bigoplus_{n=0}^{\infty} \mathbb{C}^2\) and define an operator \(R\) on \(H\) by

\[
R(\cdots \oplus x_{-2} \oplus x_{-1} \oplus x_0^{(0)} \oplus x_1 \oplus \cdots) = \cdots \oplus Ax_{-2} \oplus Ax_{-1}^{(0)} \oplus Bx_0 \oplus Bx_1 \oplus \cdots,
\]
where
\[A = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \]

Then \(R \) is a class \(p\)-\(w \)(\(s,t \)). Moreover, \(\text{ran}(E) = \ker(R) \), \(E \) is not a self-adjoint and \(\ker(R) \neq \ker(R^*) \), where \(E \) is the Riesz idempotent with respect to 0, see [31, Example 13]. Let \(T = R \) and \(L = P \) be the orthogonal projection onto \(\ker(T) \). Then \(T \) is a class \(p\)-\(w \)(\(s,t \)) operator and \(TL = 0 = LT^* \), but \(T^*L \neq LT \). Hence the kernel condition \(\ker(T) \subset \ker(T^*) \) is necessary for Theorem 10.

Corollary 5. Let \(T \in \mathcal{B}(\mathcal{H}) \) be a class \(p\)-\(w \)(\(s,t \)) operator for \(0 < s,t,s + t = 1 \) and \(0 < p \leq 1 \) and \(\ker(T) \subset \ker(T^*) \). If \(TX = XT^* \) for some \(X \in \mathcal{B}(\mathcal{H}) \) then \(T^*X = XT \).

Proof. Let \(X = L + iJ \) be the Cartesian decomposition of \(X \). Then we have \(TL = LT^* \) and \(TJ = JT^* \) by the assumption. By Theorem 10, we have \(T^*L = LT \) and \(T^*J = JT \). This implies that \(T^*X = XT \).

If we use the \(2 \times 2 \) matrix trick, we easily deduce the following result.

Corollary 6. Suppose that \(0 < s,t,s + t = 1 \) and \(0 < p \leq 1 \). Let \(T^* \in \mathcal{B}(\mathcal{H}) \) be a class \(p\)-\(w \)(\(s,t \)) operator and \(S \in \mathcal{B}(\mathcal{K}) \) be a class \(p\)-\(w \)(\(s,t \)) operator with \(\ker(T^*) \subset \ker(T) \) and \(\ker(S) \subset \ker(S^*) \). If \(X \in \mathcal{B}(\mathcal{H},\mathcal{K}) \) and \(XT = SX \), then \(XT^* = S^*X \).

Proof. Put \(A = \begin{pmatrix} T^* & 0 \\ 0 & S \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix} \) on \(\mathcal{H} \oplus \mathcal{K} \). Then \(A \) is a class \(p\)-\(w \)(\(s,t \)) operator on \(\mathcal{H} \oplus \mathcal{K} \) that satisfies \(BA^* = AB \) and \(\ker(A) \subset \ker(A^*) \). Hence we have \(BA = A^*B \), by Corollary 5, and so \(XT^* = S^*X \).

Example 3. Let \(S = T^* = R \) as in Example 2 and \(X = P \) be the orthogonal projection onto \(\ker(S) \). Then \(SX = 0 = XT \), but \(S^*X \neq XT^* \). Hence the kernel condition is necessary for Corollary 6.

As an application of Corollary 6, we establish the following result.

Corollary 7. Suppose that \(0 < s,t,s + t = 1 \). Let \(T \in \mathcal{B}(\mathcal{H}) \) and \(S^* \in \mathcal{B}(\mathcal{K}) \) be class \(p\)-\(w \)(\(s,t \)) and \(\ker(T) \subset \ker(T^*) \), \(\ker(S^*) \subset \ker(S) \). Let \(TX = XS \) for some operator \(X \in \mathcal{B}(\mathcal{K},\mathcal{H}) \). Then \(\text{ran}(X) \) reduces \(T \), \(\ker(S^*) \) reduces \(S \) and \(T^{\dagger}_{\text{ran}(X)} \), \(S^{\dagger}_{\ker(X)\dagger} \) are unitarily equivalent normal operators.

Proof. By Corollary 6, \(T^*X = XS^* \). Therefore \(T^*TX = XS^*S \) and so \(|T|X = X|S| \). Let \(T = U|T|, S = V|S| \) be the polar decomposition. Then \(UX|S| = U|T|X = TX = XS = XV|S| \). Let \(x \in \ker(|S|) \). Then \(Vx = 0 \) and \(TXx = XSSx = 0 \). Hence \(Xx \in \ker(T) = \ker(U) \) and \(UXx = 0 \). Hence \(UX = XV \). Since \(\ker(U) \subset \ker(T^*) \subset \ker(U^*) \), \(UU^* \leq U^*U \). Hence \(U^*UU = U^*UUU^*U = UU^*U = U \). This implies \(U \) and \(V^* \) are quasinormal. Hence \(U^*X = XV^*, \text{ran}(X) \) reduces \(U \), \(|T| \), \(\ker(X)^\dagger \) reduces \(V \), \(|S| \). We may assume \(t < s \). Then \(T, S^* \) are class \(p\)-\(w \)(\(s,s \)) operators with reducing kernels.
Let $T(s, s) = |T|^*U|T|^s, S(s, s) = |S|^*V|S|^s$. Then $T(s, s), S^*(s, s) = |S|^*V^*|S^*|^s = VS(s, s)V^*$ are $\frac{1}{2}$-hyponormal. Also, since
\[|S(s, s)^*| - |S(s, s)| = V^*|S^*(s, s)| - |S^*(s, s)^*|V \geq 0, \]
$S(s, s)^*$ is $\frac{1}{2}$-hyponormal, too. Then
\[T(s, s)X = |T|^*U|T|^sX = |T|^*UX|S|^s = |T|^*XV|S|^s = XS(s, s), \]
hence $T(s, s)^*X = XS(s, s)^*$, $\overline{\text{ran}(X)}$ reduces $T(s, s)$, $\ker(X)^\perp$ reduces $S(s, s)$ and
\[T|_{\overline{\text{ran}(X)}(s, s)} = T(s, s)|_{\overline{\text{ran}(X)}} = S(s, s)|_{\ker(X)^\perp} = S|_{\ker(X)^\perp}(s, s) \]
are unitarily equivalent normal operators. Hence $T|_{\overline{\text{ran}(X)}}, S|_{\ker(X)^\perp}$ are normal by Corollary 1, and that they are unitarily equivalent follows from the fact that if $N = U|N|$ and $M = W|M|$ are normal operators, then for a unitary operator V, $N = V^*MV$ if and only if $U = V^*WV$ and $|N|^s = V^*|M|^sV$ for any $s > 0$.

Theorem 11. Suppose that $0 < s, t, s + t = 1$. Let $T \in \mathcal{B}(H)$ be class p-wA(s, t) and N a normal operator. Let $TX = XN$. Then the following assertions hold.

(i) If the range $\text{ran}(X)$ is dense, then T is normal.

(ii) If $\ker(X^*) \subseteq \ker(T^*)$, then T is quasinormal.

Proof. Let $Z = |T|^sX$. Then
\[T(s, t)Z = |T|^*U|T|^s|T|^sX = |T|^sTX = |T|^sXN = ZN. \]
Since $T(s, t)$ is $\min\{sp, tp\}$-hyponormal, we have
\[T(s, t)^*Z = ZN^* \]
by [30]. Hence
\[(T(s, t)^*T(s, t) - T(s, t)T(s, t)^*)|T|^sX = T(s, t)^*T(s, t)Z - T(s, t)T(s, t)^*Z = T(s, t)^*ZN - T(s, t)ZN^* = ZN^*N - ZNN^* = 0. \]

(i) If $\overline{\text{ran}(X)}$ is dense, then
\[(T(s, t)^*T(s, t) - T(s, t)T(s, t)^*)|T|^s = 0. \]
Since
\[\ker(|T|^s) \subseteq \ker(T(s, t)) \cap \ker(T(s, t)^*), \]
this implies \(T(s,t) \) is normal. Hence \(T \) is normal by Corollary 1.

(ii) Let \(X^*|T^*x = 0 \). Then \(|T^*x| \in \ker(X^*) \subset \ker(T^*) = \ker(U^*) \) and \(T(s,t)^*x = |T^*U^*|T^*x = 0 \). Hence \(\ker(X^*|T^*) \subset \ker(T(s,t)^*) \) and \(\text{ran}(T(s,t)) \subset \text{ran}(|T^*X|) \). Hence

\[
(T(s,t)^*T(s,t) - T(s,t)T(s,t)^*)T(s,t) = 0
\]

by (i). This implies \(T(s,t) \) is quasinormal, and \(T \) is quasinormal by Theorem 1.

Theorem 12. Suppose that \(0 < s, t, s + t = 1 \) and \(0 < q \leq 1 \). Let \(T \in B(H) \) be such that \(T^* \) is \(p \)-hyponormal or log-hyponormal. Let \(S \in B(K) \) be class \(q \)-\(wA(s,t) \) with \(\ker(S) \subset \ker(S^*) \). If \(XT = SX \), for some \(X \in B(H,K) \). Then \(XT^* = S^*X \).

Proof. Let \(T^* \) be a \(p \)-hyponormal operator for \(p \geq \frac{1}{2} \) and let \(T = U|T| \) be the polar decomposition of \(T \). Then the generalized Aluthge transform \(T^*(s,t) \) of \(T^* \) is hyponormal and satisfies

\[
|T^*(s,t)|^2 \geq |T|^2 \geq \langle (T^*(s,t))^* \rangle^2,
\]

\[
X'T(s,t) = SX'
\]

where \(X' = XU|T| \). Using the decompositions \(H = \ker(X')^\perp \oplus \ker(X') \) and \(K = \text{ran}(X')^\perp \oplus \text{ran}(X')^1 \), we see that \(T(s,t), S \) and \(X' \) are of the form

\[
T^*(s,t) = \begin{pmatrix} T_1 & 0 \\ T_2 & T_3 \end{pmatrix}, \quad S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}, \quad X' = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix}
\]

where \(T_1 \) is hyponormal, \(S_1 \) is class \(q \)-\(wA(s,t) \) with \(\ker(S_1) \subset \ker(S_1^*) \) and \(X_1 \) is a one-one operator with dense range. Since \(X'T(s,t) = SX' \), we have

\[
X_1T_1 = S_1X_1.
\]

Hence \(T_1 \) and \(S_1 \) are normal by Corollary 6, so that \(T_2 = 0 \), by Lemma 12 of [30] and \(S_2 = 0 \) by Lemma 7. Then \(|T| = |T_1| \oplus P \), for some positive operator \(P \), by (12) and \(U = \begin{pmatrix} U_1 & U_2 \\ 0 & U_3 \end{pmatrix} \) by Lemma 13 of [30]. Let \(X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \) be a \(2 \times 2 \) matrix representation of \(X \) with respect to the decomposition \(H = \ker(X')^\perp \oplus \ker(X') \) and \(K = \text{ran}(X')^\perp \oplus \text{ran}(X')^1 \). Then \(X' = XU|T| \) implies that \(X_1 = X_{11}U_1|T_1| \) and hence \(\ker(T_1) \subset \ker(X_1) = \{0\} \). This shows that \(T_1 \) is one-one and hence it has dense range, so that \(U_2 = 0 \) and \(T = T_1 \oplus T_4 \) for some hyponormal operator \(T_4 \) by [30, Lemma 13]. Since

\[
\begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} = X' = XU|T| = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} U_1|T_1| & 0 \\ 0 & U_3|T_4| \end{pmatrix}
\]

we deduce the following assertions.

\[
X_{12}U_2|T_4| = 0; \quad \text{hence } X_{12}T_3 = 0 \text{ because } T_4 = U_3|T_4|.
\]
Since T_1 and S_1 are normal, we have $X_{11}T_1^* = S_1^*X_{11}$, by Fuglede-Putnam theorem. The p-hyponormality of T_1^* shows that $\text{ran}(T_1^*) \subset \text{ran}(T_4)$. Also, we have $\ker(S_3) \subset \ker(S_3^*)$. Hence, we also have $X_{12}T_4^* = S_1^*X_{12} = 0$ and $X_{22}T_4^*S_3^*X_{22} = 0$. This implies that $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S_*X$.

Next, we prove the case where T^* is p-hyponormal for $0 < p \leq \frac{1}{2}$. Let X' be as above. Then $T^*(s, t)$ is $(p + \frac{1}{2})$-hyponormal and satisfies $X'T(s, t) = SX'$. Use the same argument as above. We obtain $X_{21} = 0, X_{11}T_1^* = S_1^*X_{11}, X_{12}T_4^* = S_1^*X_{12} = 0$ and $X_{22}T_4^* = S_3^*X_{22} = 0$. Hence we have $XT^* = S_*X$.

Finally, we assume that T^* is log-hyponormal. Let $T(s, t)$ and X' be as above. Then $X'T(s, t) = SX'$ and $T^*(s, t)$ is semi-hyponormal and satisfies

$$|T^*(s, t)| \geq |T^*| \geq |(T^*(s, t))^*|.$$

By the same argument as above, we have $T(s, t) = T_1 \oplus T_3$ on $H = \ker(X') \oplus \ker(X')$ and $S = S_1 \oplus S_3$ on $K = \text{ran}(X') \oplus \text{ran}(X')^\perp$, where T_1 is an injective normal operator and S_1 is normal, T_3^* is invertible semi-hyponormal and S_3 is class $q-wA(s, t)$ with $\ker(S_3) \subset \ker(S_3^*)$. By Lemma 13 of [30], we have that T is of the form $T = T_1 \oplus T_4$, for some log-hyponormal T_4^*. Let $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$. Then $X' = UX[T]^t$ implies that $X_{12} = 0, X_{21} = 0$ and $X_{22} = 0$. The assumption $XT = SX$ implies that $X_{11}T_1 = S_1X_{11}$, hence $X_{11}T_1^* \oplus 0 = S_1^*X_{11}$ by Fuglede-Putnam theorem. Thus we have $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S_*X$. Therefore, the proof of the theorem is achieved.

Example 4. Let R be an operator such that $\ker(R)$ does not reduce R and let P be the orthogonal projection onto $\ker(R)$. Then P does not commute with T; otherwise $\text{ran}(R) = \ker(R)$ reduce T. Hence $PR \neq 0 = RP$. It is easy to see that $RP = PR^* = 0$ but $R^*P \neq PR(\neq 0)$ because $\text{ran}(R^*) \subset \text{ran}(R) \subset \ker(R^*) = I - P$. If we put $T = R$, then the assertion of Theorem 10 does not hold for such T. Also, if we put $T = R^*, S = I - P$ and $X = P$, then $XT = PR^* = 0 = (I - P)P = SX$. However, $XT^* = PR \neq 0 = (I - P)P = S_*X$. Hence the assertion of Theorem 12 does not hold for such T.

Theorem 13. Let $T \in \mathcal{B}(\mathcal{H})$ be such that T^* is an injective class p-$wA(s, t)$ for $0 < s, t, s + t$ and $0 < p \leq 1$. Let $S \in \mathcal{B}(\mathcal{K})$ be dominant. If $XT = SX$, for some $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $XT^* = S^*X$.

Proof. Assume that T^* is an injective p-w-hyponormal and let $T = U|T|$ be the polar decomposition of T. Let $T(s, t)$ be the aluthge transform of T and $X' = XU|T|^t$. Then $X'T(s, t) = SX'$ and $T^*(s, t)$ is rp-hyponormal and satisfies

$$|T^*(s, t)|^{2rp} \geq |T^*|^{2rp} \geq |(T^*(s, t))^*|^{2rp}$$

for $r \in \min\{s, t\}$. By the same argument in the proof of Theorem 12, we conclude that $T^*(s, t) = T_1 \oplus T_3$ on $\mathcal{H} = \ker(X') \oplus \ker(X')$ and $S = S_1 \oplus S_3$, where T_1 is an injective normal operator and S_1 is also normal, T^*_3 is invertible class p-$wA(s, t)$ and S_3 is dominant. Hence by Lemma 7, we have that T is of the form $T = T_1 \oplus T_4$ for some class p-$wA(s, t)$ T_4^*. Let

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}.$$

Then $X' = XU|T|^t$ implies that $X_{12} = 0$, $X_{21} = 0$ and $X_{22} = 0$. The assumption $XT = SX$ implies that $X_{11}T_1 = S_1X_{11}$, hence $X_{11}T_1^* = S_1^*X_{11}$ by Fuglede-Putnam theorem. Thus we have $XT^* = X_{11}T_1^* \oplus 0 = S_1^*X_{11} \oplus 0 = S^*X$. Therefore, the proof of the theorem is achieved.

Example 5. Let $T^* = R$ as in Example 2. Let $X = P$ be the orthogonal projection onto $\ker(T^*)$ and $S = I - P$. Then $SX = 0 = XT^*$, but $0 \neq S^*X = XT^*$. Hence the injectivity condition is necessary for Theorem 13.

References

[14] T. Furuta. $A \geq B \geq O$ assures $(B^r A^p B^r)^{1/2} \geq B^{r+2r} \geq B^{p+2r}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1 + 2r)q \geq (p + 2r)$. *Proc. Amer. Math. Soc.*, 101:85–88, 1987.

