Bounds on Intersection Number in the Join and Corona of Graphs

Jesrael B. Palco1,*, Rolando N. Paluga2

1 Department of Physical Sciences and Mathematics, College of Marine and Allied Sciences, Mindanao State University at Naawan, 9023, Philippines
2 Department of Mathematics, College of Mathematics and Natural Sciences, Caraga State University, 8600, Philippines

Abstract. In this paper, we provide an upper bound for the intersection number in the join and corona of graphs. Moreover, we give formulas for the intersection number of $K_n \circ G$, $P_n \circ G$, $C_n \circ G$ and $C_r n$.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases: Intersection number, extreme intersection graph, join and corona

1. Introduction

Let S be a set and $F = \{S_1, S_2, \ldots, S_p\}$, for some integer p, a nonempty family of distinct nonempty subsets of S whose union is S. The intersection graph of F is denoted by $\Omega(F)$ and defined by $V(\Omega(F)) = F$, with S_i and S_j adjacent whenever $i \neq j$ and $S_i \cap S_j \neq \emptyset$. A graph G is an intersection graph on S if there exists a family F of subsets of S for which $G \cong \Omega(F)$. The intersection number $\omega(G)$ of a given graph G is the minimum number of elements in a set S such that G is an intersection graph on S. The intersection number has been studied by [1]. They obtained the best possible upper bound for the intersection number of a graph with a given number of points. In [2], Frank Harary provided an upper bound for the intersection number of a graph G. He showed that $\omega(G) \leq |E(G)|$. In [3], the authors provided a lower bound for the intersection number of a graph G. They showed that $\log_2(|V(G)| + 1) \leq \omega(G)$. Moreover, the authors provided formulas for the intersection numbers of P_n, C_n, W_n, F_n, K_n, and $G+K_1$ for any connected graph G. They also defined the concept of an extreme intersection graph. A graph G is an extreme intersection graph if for any family F of subsets of $S = \{1, 2, 3, \ldots, \omega(G)\}$ such that $\Omega(F) \cong G$, then $S \in F$.

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4744

Email addresses: jesrael_palco@msunaawan.edu.ph (Jesrael B. Palco), rnpaluga@carsu.edu.ph (Rolando N. Paluga)

https://www.ejpam.com 1318 © 2023 EJPAM All rights reserved.
Therefore, \(\phi \) is not an extreme intersection graph. Then for any graph \(H \), \(\omega(G + H) \leq \omega(G)\omega(H) \).

Theorem 1. Suppose \(G \) is not an extreme intersection graph. Then for any graph \(H \), \(\omega(G + H) \leq \omega(G)\omega(H) \).

Proof. Let \(G \) be not an extreme intersection graph. Then there exists a family \(F_1 \) of nonempty subsets of a set \(S \) such that \(S \not\in F_1 \) and \(\Omega(F_1) \not\cong G \). That is, there is an isomorphism \(\phi_1 : V(G) \to F_1 \) such that \(\phi_1(x) \not= S_1 \), for all \(x \in V(G) \). Let \(H \) be any graph and suppose \(\omega(H) = m \). Let \(S_2 = \{1, 2, \ldots, m\} \) and \(F_2 \) be a nonempty subset of a set \(S_2 \) for which \(\Omega(F_2) \cong H \). That is, there is an isomorphism \(\phi_2 : V(H) \to F_2 \). Let \(S = S_1 \times S_2 \), and \(F = (\cup\{A \times S_2 : A \in F_1\}) \cup (\cup\{S_1 \times B : B \in F_2\}) \). Let \(\phi : V(G + H) \to F \) be a mapping defined by

\[
\phi(x) = \begin{cases}
\phi_1(x) \times S_2, & \text{if } x \in V(G) \\
S_1 \times \phi_2(x), & \text{if } x \in V(H).
\end{cases}
\]

Let \(x_1, x_2 \in V(G + H) \) such that \(\phi(x_1) = \phi(x_2) \). The case \(x_1 \in V(G) \) and \(x_2 \in V(H) \) is not possible. Since \(\phi(x_1) = \phi_1(x_1) \times S_2 \) and \(\phi(x_2) = S_1 \times \phi_2(x_2) \). Consider the following cases:

Case 1. Suppose \(x_1, x_2 \in V(G) \). Then \(\phi(x_1) = \phi_1(x_1) \times S_2 \) and \(\phi(x_2) = \phi_1(x_2) \times S_2 \). Note that \(\phi(x_1) = \phi(x_2) \), so we have \(\phi_1(x_1) = \phi_1(x_2) \). Since \(\phi_1 \) is one to one, \(x_1 = x_2 \).

Case 2. Suppose \(x_1, x_2 \in V(H) \). Then \(\phi(x_2) = S_1 \times \phi_2(x_1) \) and \(\phi(x_2) = S_1 \times \phi_2(x_2) \). Note that \(\phi(x_1) = \phi(x_2) \), so we have \(\phi_2(x_1) = \phi_2(x_2) \). Since \(\phi_2 \) is one to one, \(x_1 = x_2 \).

Therefore, \(\phi \) is one to one.

Let \(u \in F \). If \(u = S_1 \times B, B \in F_2 \). Since \(\phi_2 \) is onto, there exists \(x \in V(H) \subseteq V(G + H) \) such that \(\phi_2(x) = B \). Thus, \(\phi(x) = S_1 \times \phi_2(x) = S_1 \times B = u \). Therefore, \(\phi \) is onto.

If \(u = A \times S_2, A \in F_1 \). Since \(\phi_1 \) is onto, there exists \(x \in V(G) \subseteq V(G + H) \) such that \(\phi_1(x) = A \). Thus, \(\phi(x) = S_1 \times S_2 = A \times S_2 = u \). Therefore, \(\phi \) is onto.

Let \(x_1 \) and \(x_2 \) be adjacent in \(G + H \). Consider the following cases:

Case 1. Suppose \(x_1 \) and \(x_2 \) are adjacent in \(G \). Then \(\phi(x_1) = \phi_1(x_1) \times S_2 \) and \(\phi(x_2) = \phi_1(x_2) \times S_2 \). Now,

\[
\phi(x_1) \cap \phi(x_2) = (\phi_1(x_1) \times S_2) \cap (\phi_1(x_2) \times S_2) = (\phi_1(x_1) \cap \phi_1(x_2)) \times S_2 \\
\neq \emptyset, \text{since } \phi_1 \text{ preserves adjacency.}
\]

Therefore, \(\phi(x_1) \) and \(\phi(x_2) \) are adjacent in \(\Omega(F) \).

Case 2. Suppose \(x_1 \) and \(x_2 \) are adjacent in \(H \). Then \(\phi(x_1) = S_1 \times \phi_2(x_1) \) and \(\phi(x_2) = S_1 \times \phi_2(x_2) \). Now,

\[
\phi(x_1) \cap \phi(x_2) = (S_1 \times \phi_2(x_1)) \cap (S_1 \times \phi_2(x_2)) = S_1 \times (\phi_2(x_1) \cap \phi_2(x_2))
\]
Therefore, $\phi(x_1)$ and $\phi(x_2)$ are adjacent $\Omega(F)$.

Case 3. Suppose $x_1 \in V(G)$ and $x_2 \in V(H)$. Then $\phi(x_1) = \phi_1(x_1) \times S_2$ and $\phi(x_2) = S_1 \times \phi_2(x_2)$. Now,

$$
\phi(x_1) \cap \phi(x_2) = (\phi_1(x_1) \times S_2) \cap (S_1 \times \phi_2(x_2))
= (\phi_1(x_1) \cap S_1) \times (S_2 \cap \phi_2(x_2))
= \phi_1(x_1) \times \phi_2(x_2),\text{ since } \phi_1(x_1) \subseteq S_1 \text{ and } \phi_2(x_2) \subseteq S_2
\neq \emptyset.
$$

Therefore, $\phi(x_1)$ and $\phi(x_2)$ are adjacent $\Omega(F)$.

Let $u, v \in F$. If $u = A \times S_2$ and $v = S_1 \times B$ for some $A \in F_1$ and $B \in F_2$, then $u = \phi_1(x) \times S_2$ and $v = S_1 \times \phi_2(y)$ for some $x \in V(G)$ and $y \in V(H)$. Consequently, $\phi^{-1}(u) = x \in V(G)$ and $\phi^{-1}(v) = y \in V(H)$. It follows that x and y are adjacent in $G + H$.

If $u = A_1 \times S_2$ and $v = A_2 \times S_2$, for some $A_1, A_2 \in F_1$ then $u = \phi_1(x_1) \times S_2 = \phi(x_1)$ and $v = \phi_1(x_2) \times S_2 = \phi(x_2)$, for some $x_1, x_2 \in V(G)$. Consequently, $\phi^{-1}(u) = x_1 \in V(G)$ and $\phi^{-1}(v) = x_2 \in V(G)$. Thus, x_1 and x_2 are adjacent in G.

If $u = S_1 \times B_1$ and $v = S_1 \times B_2$, for some $B_1, B_2 \in F_2$ then $u = S_1 \times \phi_1(y_1) = \phi(y_1)$ and $v = S_1 \times \phi_1(y_2) = \phi(y_2)$ for some $y_1, y_2 \in V(H)$. Consequently, $\phi^{-1}(u) = y_1 \in V(H)$ and $\phi^{-1}(v) = y_2 \in V(H)$. Thus, y_1 and y_2 are adjacent in H. Therefore, ϕ preserves adjacency.

Hence, $\Omega(F) \cong G + H$

Accordingly, $\omega(G + H) \leq |S|$, since $S = S_1 \times S_2$. Then $|S| = |S_1||S_2| = \omega(G)\omega(H)$.

Hence, $\omega(G + H) \leq \omega(G)\omega(H)$. \hfill \Box

Let G be a connected graph. A subset S of $V(G)$ is a **clique** if $\langle S \rangle$ is a complete graph. A clique M is **maximal** if $a \in V(G) - M$, then $M \cup \{a\}$ is no longer a clique in G. The **clique graph** of G, denoted by $\zeta(G)$, is the intersection graph of the set of all maximal cliques of G. The **clique order** of G, denoted by $co(G)$, is $|V(\zeta(G))|$. That is, $co(G)$ is the number of maximal cliques in G.

Theorem 2. Let K_n, P_n and C_n be a complete graph, path and cycle, respectively. Then

(i) $co(K_n) = 1$, $n \geq 1$

(ii) $co(P_n) = n - 1$, $n \geq 2$

(iii) $co(C_n) = \begin{cases} 1, & \text{if } n = 3 \\ n, & \text{if } n \geq 4 \end{cases}$

The **corona** $G \circ H$ of two graphs G and H, is the graph obtained by making n copies $(n$ is the order of G) of H and joining every vertex of the ith copy of H with the vertex v_i of G. For each $a \in V(G)$, we denote by H^a the copy of H corresponding to the vertex a.

Theorem 3. Let G be a connected graph and H be any graph. Then

$$\omega(G \circ H) \leq co(G) + |V(G)| \cdot \omega(H).$$

Proof. Let $V(G) = \{a_1, a_2, a_3, \ldots, a_n\}$ and $V(\zeta(G)) = \{B_1, B_2, \ldots, B_{co(G)}\}$. For each $i = 1, 2, \ldots, n$, let F_i be a collection of nonempty subsets of $S_i = \{(i, j) : 1 \leq j \leq \omega(H)\}$ such that $\Omega(F_i) \cong H_{a_i}$. For each $i = 1, 2, \ldots, n$, let $\phi_i : V(H_{a_i}) \to F_i$ be an isomorphism. Let $S_o = \{(0, j) : 1 \leq j \leq co(G)\}$ and $S = \bigcup_{i=0}^n S_i$. For each $i = 1, 2, \ldots, n$, let $T_i = \{(0, j) : a_i \in B_j\}$ for some j. Let $F = (\bigcup_{i=1}^n F_i) \bigcup \{S_i \cup T_i : 1 \leq i \leq n\}$.

Define a mapping $\phi : V(G \circ H) \to F$ as follows

$$\phi(x) = \begin{cases} \phi_i(x), & \text{if } x \in V(H_{a_i}), \text{ for some } i \\ S_i \cup T_i, & \text{for some } i. \end{cases}$$

Let $x_1, x_2 \in V(G \circ H)$ such that $\phi(x_1) = \phi(x_2)$. Suppose $x_1 \in V(G)$ and $x_2 \in V(H_{a_i})$ for some i. Then $x_1 \in B_j$ for some j. Thus, $(0, j) \in \phi(x_1)$. Now, $\phi(x_2) = \phi_i(x_2) \subseteq S_i$, so $(0, j) \notin S_j$. This is a contradiction. Therefore, the case $x_1 \in V(G)$ and $x_2 \in V(H_{a_i})$ is not possible. Consider the following cases:

Case 1. Suppose $x_1, x_2 \in V(G)$. Then $x_1 = a_i$ and $x_2 = a_j$. Thus, $\phi(x_1) = S_i \cup T_i$ and $\phi(x_2) = S_j \cup T_j$. Note that $(i, 1) \in S_i \subseteq \phi(x_1) = \phi(x_2)$. It follows that $(i, 1) \in S_j \subseteq \{(j, 1), (j, 2), \ldots, (j, \omega(H))\}$. Consequently, $i = j$. In effect $x_1 = x_2$.

Case 2. Suppose $x_1 \in V(H_{a_i})$ and $x_2 \in V(H_{a_j})$. Suppose $i \neq j$. Then $\phi(x_1) \cap \phi(x_2) = \phi_i(x_1) \cap \phi_j(x_2) \subseteq S_i \cap S_j \neq \emptyset$. This is a contradiction. Hence, $i = j$. Consequently, $\phi_i(x_1) = \phi_i(x_2) = \phi_i(x_2) = \phi_i(x_2)$. Since ϕ_i is one to one, $x_1 = x_2$. Therefore, ϕ is one to one.

Suppose $B \in F_i$ for some i. Since $\phi_i : V(H_{a_i}) \to F_i$ is onto, there exists $x \in V(H_{a_i})$ such that $\phi_i(x) = B$. Consequently, $\phi(x) = \phi_i(x) = B$. Suppose $B = S_i \cup T_i$, for some i. Take $x = a_i$. Then $\phi(x) = \phi(a_i) = B$. Hence, ϕ is onto.

Let x_1 and x_2 be adjacent in $G \circ H$. Consider the following cases:

Case 1. Suppose x_1 and x_2 are adjacent in G. Then $x_1 = a_i$ and $x_2 = a_j$, for some i and j. In effect, $\phi(x_1) = S_i \cup T_i$ and $\phi(x_2) = S_j \cup T_j$. Since a_i and a_j are adjacent in G, there exists k such that $a_i, a_j \in B_k$. This implies that $(0, k) \in T_i$ and $(0, k) \in T_j$. It follows $\phi(x_1) \cap \phi(x_2) \neq \emptyset$. Therefore, $\phi(x_1)$ and $\phi(x_2)$ are adjacent in $\Omega(F)$.

Case 2. Suppose x_1 and x_2 are adjacent in H_{a_i}, for some i. Then $x_1, x_2 \in V(H_{a_i})$. It follows $\phi(x_1) = \phi_i(x_1)$ and $\phi(x_2) = \phi_i(x_2)$. Since ϕ_i preserves adjacency, $\phi(x_1) \cap \phi(x_2) = \phi_i(x_1) \cap \phi_i(x_2) \neq \emptyset$. Thus, $\phi(x_1)$ and $\phi(x_2)$ are adjacent in $\Omega(F)$.

Case 3. Suppose $x_1 = a_i$ and $x_2 \in V(H_{a_i})$. Then $\phi(x_1) = \phi(a_i) = S_i \cup T_i$ and $\phi(x_2) = \phi_i(x_2)$. Since $\phi_i(x_2) \subseteq S_i$, $\phi(x_1) \cap \phi(x_2) \neq \emptyset$. Thus, $\phi(x_1)$ and $\phi(x_2)$ are adjacent in $\Omega(F)$.

Suppose A and B are adjacent in $\Omega(F)$. That is, $A \cap B \neq \emptyset$. The case $A \in F_i$ and $B \in F_j$, where $i, j \neq 0$ and $i \neq j$, is not possible, since $S_i \cap S_j = \emptyset$ in this case. Consider the following cases:

Case 1. Suppose $A, B \in F_i$, for some i. Since ϕ_i is onto, there exists $x_1, x_2 \in V(H_{a_i})$ such that $\phi_i(x_1) = A$ and $\phi_i(x_2) = B$. Since ϕ_i preserves adjacency, x_1
and x_2 are adjacent in H_{n_i}. It follows that x_1 and x_2 are adjacent in $G \circ H$.

Case 2. Suppose $A = S_i \cup T_i$ and $B = S_j \cup T_j$ for some $i, j = 1, 2, 3, \ldots, n$, $i \neq j$. Since $A \cap B \neq \emptyset$, $(S_i \cap S_j) \cup (S_i \cap T_j) \cup (T_i \cap S_j) \cup (T_i \cap T_j) \neq \emptyset$. Note that $S_i \cap S_j = \emptyset$, $S_i \cap T_j = \emptyset$, $T_i \cap S_j = \emptyset$. Consequently, $(T_i \cap T_j) \neq \emptyset$. Moreover, $\phi(a_i) = A$ and $\phi(a_j) = B$. Let $t \in T_i \cap T_j$. Then $t \in T_i$ and $t \in T_j$. This implies that $t = (0, r)$ where $a_i \in B_r$ and $t = (0, s)$ where $a_j \in B_s$. Obviously, $r = s$ and $a_i, a_j \in B_r$. It follows that a_i and a_j are adjacent in G. Accordingly, a_i and a_j are adjacent in $G \circ H$.

Case 3. Suppose $A \in F_i$ and $B = S_j \cup T_j$ for some i and j. Suppose $i \neq j$. Then $\phi(a) = \phi_i(a) = A$ for some $a \in V(H_{n_i})$ and $\phi(a_j) = B$. Since $A \cap B \neq \emptyset$, $(A \cap S_j) \cup (A \cap T_j) \neq \emptyset$. Since $A \subseteq S_i$, $A \cap T_j \subseteq S_i \cap T_j = \emptyset$ and $A \cap S_j \subseteq S_i \cap S_j = \emptyset$. This is a contradiction. Thus, $i = j$. Consequently, $a \in V(H_{n_j})$. It follows that a and a_j are adjacent in $G \circ H$. Hence ϕ preserves adjacency.

Therefore, $\Omega(F) \cong G \circ H$.

Accordingly,

$$\omega(G \circ H) \leq |S| = \sum_{i=0}^{n} |S_i| = |S_a| + \sum_{i=1}^{n} |S_i| = \text{co}(G) + \sum_{i=1}^{n} \omega(H) = \text{co}(G) + n \cdot \omega(H) = \text{co}(G) + |V(G)| \cdot \omega(H).$$

Therefore, $\omega(G \circ H) \leq \text{co}(G) + |V(G)| \cdot \omega(H)$.

Corollary 1. Let G be a connected graph and $n \geq 2$. Then $\omega(K_n \circ G) = 1 + n \cdot \omega(G)$.

Proof. By Theorem 3, $\omega(K_n \circ G) \leq \text{co}(K_n) + |V(K_n)| \cdot \omega(G)$. By Theorem 2, $\text{co}(K_n) = 1$. Thus,

$$\omega(K_n \circ G) \leq \text{co}(K_n) + |V(K_n)| \cdot \omega(G) = 1 + n \cdot \omega(G).$$

Suppose $\omega(K_n \circ G) < 1 + n \cdot \omega(G)$. Let $V(K_n) = \{a_1, a_2, \ldots, a_n\}$ and for each i, $1 \leq i \leq n$, let G_i be the ith copy of G corresponding to the vertex a_i. Let F be a collection of subsets of $S = \{1, 2, 3, \ldots, \omega(K_n \circ G)\}$ such that $\Omega(F) \cong K_n \circ G$. Let $\phi : V(K_n \circ G) \to F$ be an isomorphism. For each i, $1 \leq i \leq n$, $\{\phi(x) : x \in V(G_i)\}$ is a set representation for G_i. Thus, $|\bigcup_{x \in V(G_i)} \phi(x)| \geq \omega(G_i) = \omega(G)$. Note that for each i, j, $i \neq j$, and each $a \in G_i$
and \(b \in G_j \), \(ab \notin E(K_n \circ G) \). Consequently, \(E_i = \bigcup_{x \in V(G_i)} \phi(x) \) and \(E_j = \bigcup_{x \in V(G_j)} \phi(x) \) are disjoint whenever \(i \neq j \). Now,

\[
| \bigcup_{i=1}^n E_i | = \sum_{i=1}^n |E_i| \\
\geq \sum_{i=1}^n \omega(G) \\
= n \cdot \omega(G).
\]

It follows that the elements of \(S - (\bigcup_{i=1}^n E_i) \) are used for the set representation of \(G \). Note that

\[
|S - (\bigcup_{i=1}^n E_i)| = |S| - |(\bigcup_{i=1}^n E_i)| \\
\leq \omega(K_n \circ G) - n \cdot \omega(G), \text{ since we suppose } \omega(K_n \circ G) < 1 + n \cdot \omega(G). \\
< 1.
\]

That is, \(|S - (\bigcup_{i=1}^n E_i)| = 0 \). This implies, \(S = \bigcup_{i=1}^n E_i \). Since \(a_1 \) and \(a_2 \) are adjacent, \(\phi(a_1) \cap \phi(a_2) \neq \emptyset \). Let \(t \in \phi(a_1) \cap \phi(a_2) \). Then \(t \in \phi(a_1) \) and \(t \in \phi(a_2) \). Since \(S = \bigcup_{i=1}^n E_i \), \(t \in E_r \) for some \(r \). Thus \(t \in \phi(x) \) for \(x \in V(G_r) \). Therefore, \(\{ \{x, a_1, a_2\} \} \) is complete. This is a contradiction.

Therefore, \(\omega(K_n \circ G) = 1 + n \cdot \omega(G) \).

\(\square \)

Corollary 2. Let \(G \) be a connected graph and \(n \geq 2 \). Then \(\omega(P_n \circ G) = (n - 1) + n \cdot \omega(G) \).

Proof. By Theorem 3, \(\omega(P_n \circ G) \leq \text{co}(P_n) + |V(P_n)| \cdot \omega(G) \). By Theorem 2, \(\text{co}(P_n) = n - 1 \). Thus,

\[
\omega(P_n \circ G) \leq \text{co}(P_n) + |V(P_n)| \cdot \omega(G) \\
= (n - 1) + n \cdot \omega(G).
\]

Suppose \(\omega(P_n \circ G) < (n - 1) + n \cdot \omega(G) \). Let \(V(P_n) = \{a_1, a_2, ..., a_n\} \), \(E(P_n) = \{a_ia_{i+1} : 1 \leq i \leq n - 1\} \) and for each \(i, 1 \leq i \leq n \), let \(G_i \) be the \(i \)th copy of \(G \) corresponding to the vertex \(a_i \). Let \(F \) be a collection of subsets of \(S = \{1, 2, 3, ..., \omega(P_n \circ G)\} \) such that \(\Omega(F) \cong P_n \circ G \). Let \(\phi : V(P_n \circ G) \to F \) be an isomorphism. For each \(i, 1 \leq i \leq n \), \(\{\phi(x) : x \in V(G_i)\} \) is a set representation for \(G_i \). Thus, \(|\bigcup_{x \in V(G_i)} \phi(x)| \geq \omega(G_i) = \omega(G) \).

Note that for each \(i, j, i \neq j \), and each \(a \in G_i \) and \(b \in G_j \), \(ab \notin E(P_n \circ G) \). Consequently, \(E_i = \bigcup_{x \in V(G_i)} \phi(x) \) and \(E_j = \bigcup_{x \in V(G_j)} \phi(x) \) are disjoint whenever \(i \neq j \). Now,

\[
| \bigcup_{i=1}^n E_i | = \sum_{i=1}^n |E_i| \\
\geq \sum_{i=1}^n \omega(G)
\]
It follows that the elements of $S - (\bigcup_{i=1}^{n} E_i)$ are used for the set representation of G. Note that

$$|S - (\bigcup_{i=1}^{n} E_i)| = |S| - |(\bigcup_{i=1}^{n} E_i)|$$

$$\leq \omega(P_n \circ G) - n \cdot \omega(G),$$

since we suppose $\omega(P_n \circ G) < (n - 1) + n \cdot \omega(G)$.

Since a_i and a_{i+1} are adjacent, $\phi(a_i) \cap \phi(a_{i+1}) \neq \emptyset$, for every i, $1 \leq i \leq n - 1$. Let $A_i = \phi(a_i) \cap \phi(a_{i+1})$, $1 \leq i \leq n - 1$. Since $|S - (\bigcup_{i=1}^{n} E_i)| < n - 1$, there exist i, j with $i < j$, such that $A_i \cap A_j \neq \emptyset$. Let $t \in A_i \cap A_j$. Then $t \in A_i$ and $t \in A_j$. It follows that $t \in \phi(a_i)$ and $t \in \phi(a_{j+1})$. Note that $j \geq i + 1$, it follows a_i and a_{j+1} are adjacent. This is a contradiction.

Hence, $\omega(P_n \circ G) = (n - 1) + n \cdot \omega(G)$.

Corollary 3. Let G be a connected graph. Then

$$\omega(C_n \circ G) = \begin{cases} 1 + 3\omega(G), & \text{if } n = 3 \\ n + n \cdot \omega(G), & \text{if } n \geq 4 \end{cases}$$

Proof. By Theorem 3, $\omega(C_n \circ G) \leq co(C_n) + |V(C_n)| \cdot \omega(G)$. By Theorem 2,

$$co(C_n) = \begin{cases} 1, & \text{if } n = 3 \\ n, & \text{if } n \geq 4 \end{cases}$$

The case $n = 3$, follows from Corollary 1 and for $n \geq 4$,

$$\omega(C_n \circ G) \leq co(C_n) + |V(C_n)| \cdot \omega(G)$$

$$= n + n \cdot \omega(G).$$

Suppose $\omega(C_n \circ G) < n + n \cdot \omega(G)$. Let $V(C_n) = \{a_1, a_2, ..., a_n\}$, $E(C_n) = \{a_i a_{i+1} : 1 \leq i \leq n - 1\} \cup \{a_1 a_n\}$ and for each i, $1 \leq i \leq n$, let G_i be the ith copy of G corresponding to the vertex a_i. Let F be a collection of subsets of $S = \{1, 2, 3, ..., \omega(C_n \circ G)\}$ such that $\Omega(F) \cong C_n \circ G$. Let $\phi : V(C_n \circ G) \rightarrow F$ be an isomorphism. For each i, $1 \leq i \leq n$, $\{\phi(x) : x \in V(G_i)\}$ is a set representation for G_i. Thus, $|\cup_{x \in V(G_i)} \phi(x)| \geq \omega(G_i) = \omega(G)$. Note that for each i, j, $i \neq j$, and each $a \in G_i$ and $b \in G_j$, $ab \notin E(C_n \circ G)$. Consequently, $E_i = \cup_{x \in V(G_i)} \phi(x)$ and $E_j = \cup_{x \in V(G_j)} \phi(x)$ are disjoint whenever $i \neq j$. Now,

$$|\cup_{i=1}^{n} E_i| = \sum_{i=1}^{n} |E_i|$$
\[
\geq \sum_{i=1}^{n} \omega(G) = n \cdot \omega(G).
\]

It follows that the elements of \(S - (\bigcup_{i=1}^{n} E_i) \) are used for the set representation of \(G \). Note that

\[
|S - (\bigcup_{i=1}^{n} E_i)| = |S| - |(\bigcup_{i=1}^{n} E_i)| \leq \omega(C_n \circ G) - n \cdot \omega(G), \text{since we suppose } \omega(C_n \circ G) < n + n \cdot \omega(G).
\]

Since \(a_i \) and \(a_{i+1} \) are adjacent, \(\phi(a_i) \cap \phi(a_{i+1}) \neq \emptyset \), for every \(i, \ 1 \leq i \leq n \). Let \(A_i = \phi(a_i) \cap \phi(a_{i+1}), \ 1 \leq i \leq n \). Since \(|S - (\bigcup_{i=1}^{n} E_i)| < n \), there exist \(i, j \) with \(i < j \), such that \(A_i \cap A_j \neq \emptyset \). Let \(t \in A_i \cap A_j \). Then \(t \in A_i \) and \(t \in A_j \). It follows that \(t \in \phi(a_i) \) and \(t \in \phi(a_{j+1}) \). Note that \(j \geq i + 1 \), it follows \(a_i \) and \(a_{j+1} \) are adjacent. This is a contradiction.

Hence, \(\omega(C_n \circ G) = n + n \cdot \omega(G) \). \(\square \)

Corollary 4. Let \(n \geq 3 \). Then

\[
\omega(Cr_n) = \begin{cases}
4, & \text{if } n = 3 \\
2n, & \text{if } n \geq 4.
\end{cases}
\]

Proof. The proof follows from Corollary 3. \(\square \)

Acknowledgements

The author would like to thank the peer reviewers of the paper and this research is funded by the Mindanao State University at Naawan.

References

