Computational Experience with Modified Coefficients Conjugate Gradient for Image Restoration

Basim A. Hassan1,*, Maysoon M. Aziz1

1Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Iraq

\textbf{Abstract.} The Conjugate Gradient Method is a numerical optimization technique that finds the optimal solution by focusing on the coefficient conjugate. This paper presents a new coefficients conjugate gradient method for removing impulse noise from images, which is based on a quadratic function and is proven to be globally convergent. Results show that it is an effective method for image restoration.

\textbf{2020 Mathematics Subject Classifications:} 65K10, 49M37, 90C06

\textbf{Key Words and Phrases:} Conjugate gradient method, Coefficient conjugate gradient, Image restoration

\section{1. Introduction}

This work presents a class of iterative methods for optimization problems where the objective function is an edge-preserving regularization (EPR) functional. The goal is to find the optimal solution to the problem. Impulse noise can be identified and filtered using an adaptive median filter (AMF) equation. The true image is denoted by X and the index set of X is denoted by $A = 1, 2, 3, ..., M \times 1, 2, 3, ..., N$. The sets $N \subset A$ and $P_{i,j}$ represent the indices of noise pixels detected in the first phase and the four closest neighbors of the pixel at position $(i, j) \in A$, respectively. Given a pixel value $y_{i,j}$ at position (i, j), $u_{i,j} = [u_{i,j}]_{(i,j)\in N}$ is a vector of length c that is ordered lexicographically.

The number of elements in a set N, represented by the letter c. Here c is the number of elements of N. A two-step process for recovering noise pixels. The first step involves minimizing a functional, and the second step involves minimizing a different functional to recover the noise pixels.

\begin{equation}
 f_a(u) = \sum_{(i,j)\in N} |u_{i,j} - y_{i,j}| + \frac{\beta}{2} (2 \times S_{i,j}^1 + S_{i,j}^2)
\end{equation}

*Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4754

\textit{Email addresses:} basimah@uomosul.edu.iq (B. A. Hassan), aziz.maysoon@uomosul.edu.iq (M. M. Aziz)
where, \(\beta \) is the regularization parameter, and:
\[
S_{i,j}^1 = 2 \sum_{(m,n) \in P_{i,j} \cap N_c} \phi_{\alpha}(u_{i,j} - y_{m,n}),
\]
\[
S_{i,j}^2 = \sum_{(m,n) \in P_{i,j} N} \phi_{\alpha}(u_{i,j} - y_{m,n})
\]
and the \(\phi_{\alpha} = \sqrt{a + x^2}, \alpha > 0 \) edge-preserving potential function is an example of a potential function that preserves edges in an image. It is used to reduce noise and enhance the edges of an image, making it easier to identify features. Optimization methods can be used to minimize a smooth edge-preserving regularization (EPR) functional. It is noted that the non-smooth data-fitting term is not needed in the second phase, where only noisy pixels are restored:

\[
f_{\alpha}(u) = \sum_{(i,j) \in N} \left[(2 \times S_{i,j}^1 + S_{i,j}^2) \right]
\]

Referring to [14] of additional information.

Conjugate gradient method is commonly used in image restoration, where it is used to minimize a given objective function:

\[
\min f(x), u \in R^n
\]

where a function is continuously differentiable. The Conjugate Gradient Method works by taking a starting point and then iteratively improving the solution:

\[
u_{k+1} = u_k + \alpha_k d_k
\]

until it converges to the optimal solution, a search direction \(d_k \) and exact step size \(\alpha_k \) can be used to optimize the quadratic case. These two elements are essential for achieving the best possible results:

\[
\alpha_k = \frac{-g_k^T d_k}{d_k^T Qd_k}
\]

In order to solve for general nonlinear functions, an iterative procedure must be used [11]. The Wolfe conditions are a set of criteria used to determine the step length in a given work:

\[
f(u_k + \alpha_k d_k) \leq f(u_k) + \delta \alpha_k g_k^T d_k
\]

\[
d_k^T g(u_k + a_k d_k) \geq \sigma d_k^T g_k
\]

where \(0 < \delta < \sigma < 1 \). Additional information. The following is the search direction equation:

\[
d_{k+1} = -g_{k+1} + \beta_k d_k
\]

where the coefficient \(\beta_k \) is selected in such a way that and must satisfy the conjugacy property. Fletcher and Reeves (FR) [2] and Dai and Yuan (DY) [1] are two well-known \(\beta_k \) that are thought to be the most effective approaches, as stated by:

\[
\beta_{FR} = \frac{g_{k+1}^T g_{k+1}}{g_k^T g_k}, \quad \beta_{DY} = \frac{g_k^T g_{k+1}}{d_k^T y_k}
\]
Alternatively, by other equations (see, for example, [3],[10], [12], [13]. Some computer-generated imagery conjugate gradient approaches are numerically efficient, while others are conceptually efficient. All of these strategies are equivalent if the objective function is strictly convex quadratic. When applied to generic non-quadratic functions, they behave differently, as shown in [4]. The conjugate gradient approach was later extended to larger unconstrained optimization problems in formula [2]. Conjugate gradient approaches are now recognized as being particularly useful for dealing with large-scale unconstrained optimization problems since they do not require the storing of matrices. Many conjugate gradient techniques have lately been proposed that offer both strong global convergence properties and good numerical performance. These approaches are based on the conjugacy requirement of multiple conjugate gradient parameters see, [7], [9], [8], [6]. Previous conjugate gradient algorithms made advantage of the conjugacy requirement:

\[d_{k+1}^T Q d_k = 0. \]

this is essential for the mathematical experiment and the convergence analysis [8].

Based on the quadratic function, a novel conjugate gradient method was developed, rationalized, and studied. Numerical studies demonstrated that the suggested technique outperformed other conjugate gradient methods.

2. Modification of Coefficients Conjugate Gradient

We utilizes the quadratic model to derivation the new coefficients conjugate gradient:

\[f_{k+1} = f_k + s_k^T g_k + \frac{1}{2} s_k^T Q(u_k) s_k \]

where \(Q(u_k) \) is the Hessian matrix. Taking the derivative of (11) on both sides for \(s_k \), we get:

\[\nabla f_{k+1} = g_k + Q(u_k) s_k \]

By combining 5 and 12 in 11, we get:

\[s_k^T Q(u_k) s_k = f_k - f_{k+1} + \frac{1}{2} s_k^T y_k \]

We may express the equation 13 using 3 as follows:

\[s_k^T Q(x_k) s_k = 2 \frac{(g_k^T s_k)^2}{(s_k^T y_k + 2(f_k - f_{k+1}))}. \]

The conjugacy condition, yields:

\[d_{k+1}^T Q s_k = 0 \]

From 14 through 15, and after some algebra, we get:

\[\beta_k = \frac{2 (g_k^T s_k)^2}{s_k^T y_k (s_k^T y_k + 2(f_k - f_{k+1}))} \frac{g_k^T y_{k+1}}{d_k^T y_k} \]

977
If exact line search is utilized in 16, then \(\beta_k \) is such that:

\[
\beta_{BE1}^k = \frac{2s_k^T g_k (s_k^T g_k + 2(f_k - f_{k+1}))}{d_k^T g_k} \left\| g_{k+1} \right\|^2
\]

(17)

and

\[
\beta_{BE2}^k = \frac{2s_k^T g_k (2(f_k - f_{k+1}) - s_k^T g_{k+1})}{d_k^T g_{k+1}} \left\| g_{k+1} \right\|^2
\]

(18)

By the above modification, it is not difficult to see that:

\[
\beta_{BE3}^k = \frac{2a_k \left\| g_k \right\|^2}{\left\| g_k \right\|^2 + 2(f_k - f_{k+1}} \left\| g_{k+1} \right\|^2
\]

(19)

from 17, 18 and 19 we define new formula denote by BE1, BE2 and BE3. Inspired by the above direction, we refer to the proposed algorithm as:

Algorithm (2.1): (BE1, BE2 and BE3).

Stage 1. Choose the first starting location \(u_1 \). Set \(d_1 = -g_1 \).

Stage 2. if \(\|g_k\| = 0 \) stop.

Stage 3. State Determine if \(\alpha_k \) meets the requirements 6 and 7.

Stage 4. Compute \(\beta_k \) as given in formula (2.17-2.19).

Stage 5. Create the search direction as \(d_{k+1} = -g_{k+1} + \beta_k d_k \).

Stage 6. Set \(k = k + 1 \) and go to Stage 2.

3. Convergence analysis

To give the convergence result, the following assumptions are given. Assumptions:

In an open convex set \(\Psi \) that contains the level set \(\Psi = x \in \mathbb{R}^n : f(x) \leq f(x_0) \), where \(x_0 \) is given, \(f \) is differentiable and its gradient is Lipschitz continuous, namely, there exists a constant \(L > 0 \) such that:

\[
\|g(z) - g(u)\| = L \| z - u \|, \forall z, u \in \mathbb{R}^n.
\]

(20)

With a constant \(\Upsilon \geq 0 \) such that \(\| \nabla f(x) \| = \Upsilon \), see [9].

The following important result was obtained by Zoutendijk [16].

Lemma 1. Any iteration method in which \(a_k \) is obtained by the Wolfe line search and the Assumptions holds. Then:

\[
\sum_{k=1}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < \infty.
\]

(21)

Theorem 1. Let the direction \(d_{k+1} \) be yielded by the new Algorithms. Then, we obtained:

\[
d_{k+1}^T g_{k+1} < 0 \quad \text{and} \quad d_{k+1}^T g_{k+1} = \beta_k d_k^T g_k.
\]

(22)
Proof.
Using 8, it holds that:
\[
d_{T_k+1}g_{k+1} = -g_{T_k+1}g_{k+1} + \beta_k d^T_k g_{k+1}
\] (23)

On 17 and after some algebra another is propose as:
\[
\|g_{k+1}\|^2 = \frac{\beta_k d^T_k y_k}{2\sigma_k^2 y_k (\sigma_k^2 y_k + 2(f_k - f_{k+1}))}
\] (24)

Applying 24 on 23 will lead to the following:
\[
d_{T_k+1}g_{k+1} = \beta_k d^T_k y_k - \beta_k d^T_k g_{k} < 0
\] (25)

This inequality implies 22 is satisfied for \(k + 1\).

Theorem 2. Suppose that Assumptions hold. Let \(\{u_k\}\) be generated by new Algorithm. Then one has:
\[
\lim_{k \to \infty} \inf |g_k| = 0.
\] (26)

Proof. Similar to the proof done in Hassan [6].

4. Computational Experience

After that, we do numerical experiments to evaluate Algorithm (2.1) and compare the performance of the FR technique to salt-and-pepper impulse noise reduction. Table 1 shows the techniques used to evaluate photographs: placeLena, Home, Cameraman, and Elaine. To assess restoration success qualitatively, we use the PSNR (peak signal to noise ratio):
\[
PSNR = 10 \log_{10} \frac{255^2}{\sum_{ij} (u^*_{ij} - u^*_{ij})^2}
\] (27)

where \(u^*_{ij}\) and \(u^*_{ij}\) represent the restored and original image pixel values.

Both approaches’ stopping criteria are:
\[
\frac{|f(u_k) - f(u_{k-1})|}{|f(u_k)|} \leq 10^{-4} \text{ and } \|f(u_k)\| = 10^{-4}(1 + |f(u_k)|)
\] (28)

For more details see [5],[15].

Table (1) displays the PSNR, total number of iterates (NI), and function evaluation (NF).
Table 1: Numerical results of FR, BE1, BE2 and BE3 algorithms.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NI</td>
<td>NF</td>
<td>PSNR (dB)</td>
<td>NI</td>
<td>NF</td>
</tr>
<tr>
<td>Le</td>
<td>50</td>
<td>82</td>
<td>30.5529</td>
<td>83</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>81</td>
<td>30.5529</td>
<td>98</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>108</td>
<td>22.8853</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>Ho</td>
<td>50</td>
<td>32</td>
<td>30.6645</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>63</td>
<td>31.2564</td>
<td>39</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>111</td>
<td>25.2877</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td>El</td>
<td>50</td>
<td>35</td>
<td>33.9129</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>38</td>
<td>31.8642</td>
<td>32</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>65</td>
<td>28.2099</td>
<td>52</td>
<td>104</td>
</tr>
<tr>
<td>c512</td>
<td>50</td>
<td>87</td>
<td>35.5359</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>78</td>
<td>30.6259</td>
<td>48</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>121</td>
<td>24.3962</td>
<td>72</td>
<td>145</td>
</tr>
</tbody>
</table>

Table (1), shows that the suggested algorithms beat the FR technique in terms of iterations and function evaluations, as well as peak signal to noise ratio.

1. Lena image

Figure 1: Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise, (b) recovered images through FR, (c), (d) and (e) restored images using BE1, BE2 and BE3 of 256 × 256.

2. House image

Figure 2: Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise, (b) recovered images through FR, (c), (d) and (e) restored images using BE1, BE2 and BE3 of 256 × 256.

3. Elaine image

Figure 3: Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise, (b) recovered images through FR, (c), (d) and (e) restored images using BE1, BE2 and BE3 of 256 × 256.
Figure 4: Comparing images results of algorithms: (a) denoised images with 70% salt-and-pepper noise, (b) recovered images through FR, (c), (d) and (e) restored images using BE1, BE2 and BE3 of 256×256.

5. Conclusions

In this study, we introduce a parameter conjugate gradient strategy based on the quadratic function for picture restoration problems, and we analyze its global convergence under various mild circumstances. Our solution is promising and practical, as demonstrated by numerical tests for restricted picture restoration challenges.

References

REFERENCES

