Nuclearity of a class of vector-valued sequence spaces

Mohamed Ahmed Ould Sidaty¹,²

¹ Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud
Islamic University, Riyadh, Kingdom of Saudi Arabia
² École Normale Supérieure de Nouakchott, Mauritanie

Abstract. In this note, we deal with a perfect sequence space λ and a convex bornological space E to introduce and study the space λ(E) of all totally λ-summable sequences from E. We prove that λ(E) is complete if and only if λ and E are complete, nuclear if and only if λ and E are nuclear, and we make use of a result of Ronald C. Rosier [10] to give a similar characterization of the nuclearity of the space λ{E} of all absolutely λ-summable sequences in a locally convex E.

2020 Mathematics Subject Classifications: 46A17, 46A45, 47B37, 46B45

Key Words and Phrases: Sequence spaces, convex bornological spaces, locally convex sequence spaces, nuclearity, summability

Introduction

In connection with the nuclearity of a locally convex space E, A. Pietsch in [9] introduced the spaces ℓ_p(E) and ℓ_p{E} respectively of weakly ℓ_p-summable and absolutely ℓ_p-summables sequences in E. In [8], he used these spaces to study the absolutely p-summing operators. Later, he introduced and studied also the space λ{E} of λ-summable sequences in E, for a perfect sequence space λ in the sense of Köthe endowed with its normal topology. Many other authors were interested in the study of these spaces. Ronald C. Rosier in [10] considered a general polar topology on λ{E} and got a precise description of the topological dual and its equicontinuous subsets. M. Florencio and P. J. Paúl [3], considering general polar topologies, obtained many interesting results such as barreledness conditions. In [1] and [2], they studied the space λ(E) of weakly λ-summables sequences in E and represented this space as the completion of the injective tensor product λ⊗E. In [6] and [7], L. Oubbī and M. A. Ould Sidaty reconsidered the space λ(E) and obtained some of its properties. They mainly described the continuous dual space of λ(E). While in [11] and [13], characterizations of the reflexivity of λ(E) in terms of that of λ and E and the AK-property are given. A characterization of the nuclearity of the space of weakly λ-summable sequences is given in [12].

DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4831

Email address: sidaty1@hotmail.com (M. A. Sidaty)
In this note, we are concerned with the nuclearity of the convex bornological space $\lambda(E)$ of all totally λ-summable sequences in E, in the sense of [3], where E is a convex bornological space.

In sections 1 and 2, we endow this space with a structure of b-space, and study some of its properties.

The section 3 is devoted to the nuclearity of $\lambda(E)$. We prove mainly that $\lambda(E)$ possesses this property if and only if both of λ and E have.

In Section 4, we provide an application of the results of Section 3 on the nuclearity of the space $\lambda\{E\}$ of absolutely λ-summable sequences in a locally convex space E.

1. Preliminaries

For a linear space E, we mean by a convex bornology on E, a collection of subsets of E covering E, hereditary for the inclusion, and closed for the finite unions, the addition, the scalar multiplication and the formation of absolutely convex hulls. We say then that E is a convex bornological space or simply a b-space. The elements of the bornology of E are called bounded sets of E.

A collection B of bounded sets of E is a basis for its bornology if every bounded set in E is contained in an element of B. In the sequel, we assume that the members of B are absolutely convex.

A b-space E is said to be Hausdorff if the only bounded linear subspace of E is $\{0\}$. We say that a sequence $\{x_n\}_{n=1}^{\infty} \subset E$ converges to $x \in E$, or that x is a limit of $\{x_n\}_{n=1}^{\infty}$ in E if there exists an element $B \in B$ such that $\{x_n - x\}_{n=1}^{\infty}$ is contained and convergent to 0 in the normed space $(E_B, \| \cdot \|_B)$, where E_B is the subspace of E generated by B and $\| \cdot \|_B$ is the gauge of B.

A subset of a b-space E will be said to be closed if it contains the limits of all its sequences.

A Banach disk in a b-space E is an element $B \in B$ for which the normed space E_B is complete. E is said to be b-complete or simply complete if every bounded set in E is contained in a Banach disk in E.

A linear mapping between two b-spaces E and F is said to be bounded if it transforms bounded sets of E to bounded sets of F. A bounded linear mapping transforms convergent sequences to convergent ones. A bornological isomorphism is a bounded linear bijection whose inverse is also bounded.

The Köthe dual of a sequence space λ is defined as

$$\lambda^\times = \left\{ (\beta_n) \subset \mathbb{C} : \sum_{n=1}^{\infty} |a_n \beta_n| \text{ converges for all } (a_n) \in \lambda \right\}.$$

We see that $\lambda \subset \lambda^{\times \times} = (\lambda^{\times})^{\times}$; we say that λ is perfect if the equality holds.

The normal cover of a subset S of λ is the subset of λ formed by the sequences of the
form $(\varepsilon_n\alpha_n)_n$ where $(\alpha_n)_n \in S$ and $(\varepsilon_n)_n \subset \mathbb{C}$ with $|\varepsilon_n| \leq 1$, for all n. We see that S is contained in its normal cover. S is said to be normal or solid if it coincides with its normal cover.

For the general theory of locally convex spaces and Köthe sequence spaces, we refer the reader to [5].

Throughout this paper, λ will be a perfect (and then a normal) sequence space endowed with a normal bornology, that is a convex bornology having a basis S of solid sets, and for which the standard coordinate projections from λ to \mathbb{C} are bounded.

Following the terminology of [3], a sequence $(x_n)_n \subset E$ is said to be totally λ-summable in E if there exists an absolutely convex element $B \in \mathbb{B}$ such that $(x_n)_n \subset E_B$ and $(\|x_n\|_B)_n \in \lambda$. In other words, $(x_n)_n = (\alpha_n b_n)_n$, with $(\alpha_n)_n \in \lambda$ and \{b_n\}_n=1^\infty \subset B.

Starting from this definition, we introduce the vector valued sequence space

$$
\lambda(E) = \left\{ (x_n) \in E : \exists B \in \mathbb{B}, (x_n)_n \subset E_B \text{ and } (\|x_n\|_B)_n \in \lambda \right\}.
$$

Due to the properties of \mathbb{B}, the triangle inequality of the norms $\| \cdot \|_B$ and the fact that λ is normal, we see that $\lambda(E)$ is a linear space. For $S \in S$ and $B \in \mathbb{B}$, we define

$$
S(B) = \left\{ (x_n)_n \subset E_B, (\|x_n\|_B)_n \in S \right\}.
$$

2. Properties of $\lambda(E)$

In the sequel, the b-spaces E equipped with the convex bornology with basis \mathbb{B} and λ with the normal bornology with basis S, will be supposed to be Hausdorff spaces.

Starting from this setting, one can define, in a natural way, a convex bornology on $\lambda(E)$ with basis $S(\mathbb{B})$ by setting

$$
S(\mathbb{B}) = \left\{ H \subset \lambda(E) : \exists S \in S, B \in \mathbb{B} \text{ such that } H = S(B) \right\}.
$$

In view of the hypothesis made on S and \mathbb{B}, $S(\mathbb{B})$ is indeed a basis for a convex bornology on $\lambda(E)$ for which $\lambda(E)$ is a Hausdorff space.

Lemma 1. For a fixed $k \in \mathbb{N}$, denote by π_k the projection from $\lambda(E)$ on E defined by

$$
\pi_k(x) = x_k, \text{ for all } x = (x_n) \in \lambda(E).
$$

Then, π_k is a bounded linear map.

Proof. Let $B \in \mathbb{B}$ and $S \in S$ and fix $k \in \mathbb{N}$. Since the bornology of λ is normal, the set $\{\alpha_k : (\alpha_n)_n \in S\}$ is bounded in \mathbb{C}, and then so is $\{\|x_k\| : (x_n)_n \in S(B)\}$. This means that $\{x_k : (x_n)_n \in S(B)\}$ is bounded in E_B. Thus, π_k is bounded. ■
Proposition 1. The spaces λ and E can be identified with closed subspaces of $\lambda(E)$.

Proof. Let $I : E \rightarrow \lambda(E), t \rightarrow te_1$, where t is at the first component. It is clear that I is linear and one to one. Let $B \in \mathbb{B}$, and $S \in \mathbb{S}$ such that $e_1 \in S$, then $I(B) \subset S(B)$ and I is bounded. Inversely, $I^{-1} : I(E) = Ee_1 \rightarrow E$ is the restriction of π_1 to the subspace $I(E)$, and then it is bounded by Lemma 1. It remains to show that $I(E)$ is closed in $\lambda(E)$. We have $I(E) = \bigcap_{k \neq 1} \pi_k^{-1}\{\{0\}\}$. Since E is supposed to be a Hausdorff space, then $\{0\}$ is closed and so is $I(E)$.

Now, fix $0 \neq x_0 \in E$ and let $g : \lambda \rightarrow \lambda(E)$, $\alpha = (\alpha_n)_n \rightarrow (\alpha_n x_0)_n = \alpha x_0$. It is clear that g is bounded. Inversely, if $\lambda \in \mathbb{S}$ and $B \in \mathbb{B}$ with $x_0 \in B$. Then, $g(S) \subset S(B)$; so g is bounded. Inversely, if $S \in \mathbb{S}$ and $B \in \mathbb{B}$, then $g^{-1}(S(B) \cap \lambda x_0) = \frac{1}{\|x_0\|_B}S$, and then $g^{-1} : g(E) = \lambda x_0 \rightarrow \lambda$ is bounded. It remains to show that $g(\lambda)$ is closed in $\lambda(E)$. Let $(\alpha^{(k)}_n x_0 = (\alpha^{(k)}_n, x_0)_n)_{k=1}^\infty$ be a sequence in λx_0 which converges to $x = (x_n)_n \in \lambda(E)$. By Lemma 1, $(\alpha^{(k)}_n x_0)_{k=1}^\infty$ converges to x_n in E, for every n. As, the subspace $\mathbb{C} x_0$ of E is closed in E, x_n must belong to $\mathbb{C} x_0$. Then, there is $\alpha = (\alpha_n)$ such that $x = (x_n)_n = \alpha x_0$. It is easy to see that $\alpha \in \lambda$. We conclude that λx_0 is closed in $\lambda(E)$.

Proposition 2. $\lambda(E)$ is complete if and only if λ and E are complete.

Proof. If $\lambda(E)$ is complete, then so are λ and E by Proposition 1. Inversely, suppose λ and E are complete. We only show that if B and S are Banach disks in E and λ respectively, then $S(B)$ is a Banach disk in $\lambda(E)$. To simplify the notations, we set $F = \lambda(E)$, $H = S(B)$ and π the gauge of H.

Let $((x^i)_n)_{n=1}^\infty$ be a Cauchy sequence in (F, π). We have

$$\left\|\left\|x^i_n\right\|_B\right\|_S - \left\|\left\|x^j_n\right\|_B\right\|_S \leq \left\|\left\|x^i_n\right\|_B - \left\|x^j_n\right\|_B\right\|_S \leq \left\|\left\|x^i_n\right\|_B - \left\|x^j_n\right\|_B\right\|_S$$

This means that $\{\left\|x^i\right\|_B\}_{i=1}^\infty$ is a Cauchy sequence in the complete space $(\lambda_S, \|\cdot\|_S)$; let $\alpha = (\alpha_n)$ be its limit in λ_S. Fix $n \in \mathbb{N}$. Due to the boundedness of the projections, $\{\left\|x^i_n\right\|_B\}_{i=1}^\infty$ converges to α_n and $\{x^i_n\}_{i=1}^\infty$ is a Cauchy sequence in the complete space E_B; denote by x_n its limit. Thus, $\left\|x_n\right\|_B = \alpha_n$, and $x = (x_n)_n \in \lambda(E)$. It remains to prove the convergence of $\{x^i_n\}_{i=1}^\infty$ to x. This derives from the fact that $\{\left\|x^i - x\right\|_B\}_{i=1}^\infty$ is a Cauchy sequence in $(\lambda_S, \|\cdot\|_S)$ and its limit is nothing but the zero sequence in λ.

3. Nuclearity of $\lambda(E)$

A linear mapping $f : E \rightarrow F$ between complete normed spaces is said to be nuclear if there exist $(\varepsilon_n)_n \in \ell_1$, a bounded sequence $(a_n)_n$ in the continuous dual E' of E and a
bounded sequence \((y_n)_n \subset F\) such that

\[
f(x) = \sum_{n=1}^{\infty} \varepsilon_n a_n(x)y_n, \text{ for all } x \in E.
\]

A b-space \(E\) is said to be nuclear (a Schwartz space) if for every Banach disk \(A\) in \(E\) there is a Banach disk \(B \supset A\) in \(E\) such that the inclusion mapping \(E_A \to E_B\) is nuclear (compact).

Proposition 3. The tensor product \(\lambda \otimes E\) is identifiable with a subspace of \(\lambda(E)\).

Proof. We see that for all \(\alpha = (\alpha_n)_n \in \lambda\) and \(x \in E\), \((\alpha_n x)_n \in \lambda(E)\). Define the bilinear mapping \(\varphi : \lambda \times E \to \lambda(E)\), such that \(\varphi(\alpha, x) = (\alpha_n x)_n\). There exists a linear mapping \(\ell : \lambda \otimes E \to \lambda(E)\), with \(\ell(\alpha \otimes x) = (\alpha_n x)_n\). Let us show that \(\ell\) is one to one. Suppose that \(z \in \lambda \otimes E\) such that \(\ell(z) = 0\). We can write \(z = \sum_{i=1}^{k}(\alpha^i_n)_n \otimes x_i\), for which \((\alpha^i_n)_{i=1}^{k}\) and \((x_i)_{i=1}^{k}\) are linearly independent. But,

\[
\ell(z) = \sum_{i=1}^{k} \ell(\alpha^i \otimes x_i) = \sum_{i=1}^{k} (\alpha^i_n x_i)_n = \left(\sum_{i=1}^{k} \alpha^i_n x_i\right)_n.
\]

Since \(\ell(z) = 0\) then \(\left(\sum_{i=1}^{k} \alpha^i_n x_i\right)_n = 0\) and \(\sum_{i=1}^{k} \alpha^i_n x_i = 0\), for every \(n\). But, as \((x_i)_{i=1}^{k}\) is linearly independent, \(\alpha^i_n = 0\), for all \(1 \leq i \leq k\) and \(n \in \mathbb{N}\). Thus, \(z = \sum_{i=1}^{k}(\alpha^i_n)_n \otimes x_i = 0\), and \(\ell\) is one to one. \(\blacksquare\)

Lemma 2. Let \(S\) and \(B\) be Banach disks in \(\lambda\) and \(E\) respectively, \(N(x) = \left\|\left(\|x_n\|_B\right)_n\right\|_S\) for all \(x = (x_n)_n \in \lambda_S(E_B)\) and \(N_1(z) = N(\ell(z))\) for all \(z \in \lambda_S \otimes E_B\). Then,

1. \(N_1\) is a cross-norm on \(\lambda_S \otimes E_B\), that is \(N(\alpha \otimes x) = \left\|\alpha\right\|_S \|x\|_B\), for every \(\alpha \in \lambda_S\) and \(x \in E_B\).

2. The mapping \(\ell : \lambda_S \otimes E_B \to \lambda_S(E_B)\) is isometric and can be extended to a unique linear mapping \(\ell : \lambda_S \otimes N_1 E_B \to \lambda_S(E_B)\), where \(\lambda_S \otimes N_1 E_B\) the completion of the normed space \((\lambda_S \otimes N_1 E_B, N_1)\).

Proof. Since \(N\) is a solid norm and \(\ell\) is a one to one linear mapping, \(N_1\) is a norm. It is clear that \(N_1(\alpha \otimes x) = \|\alpha\|_S \|x\|_B\), and \(J.\) holds. By the definition of \(N_1\), we see that \(\ell\) is isometric from \(\lambda_S \otimes E_B\) to the complete space \(\lambda_S(E_B)\), and then it has an extension to the completion \(\lambda_S \otimes N_1 E_B\) of \(\lambda_S \otimes N_1 E_B\). This gives the second item. \(\blacksquare\)

We will make use of the following result to represent \(\lambda(E)\) as a bornological tensor product.

Proposition 4. [4, Ch VIII, Prop. 4]

1. There is a convex bornology \(b\) on \(\lambda \otimes E\) (the finest one) making bounded the inclusion mappings \(\lambda_S \otimes N_1 E_B \to \lambda(E)\). Moreover, \(\lambda \otimes_b E = \lim \lambda_S \otimes N_1 E_B\).

2. \(b\) is located between the projective bornology \(\pi\) and the injective bornology \(\varepsilon\).

3. If \(\lambda\) or \(E\) is nuclear, then \(\pi = b = \varepsilon\).

4. If \(\lambda\) and \(E\) are nuclear, the bornological completion \(\lambda \otimes_b E\) of \(\lambda \otimes_b E\) is the inductive limit of the Banach spaces \(\lambda_S \otimes N_1 E_B\).
Now, we prove

Theorem 1. If \(\lambda \) and \(E \) are nuclear, the equality \(\lambda(E) = \lambda \otimes_b E \) holds algebraically and bornologically.

Proof. Consider the linear mapping \(\ell : \lambda \otimes_b E \to \lambda(E) \) defined in the proof of Proposition 3.

According to the definition of the norms \(N \) and \(N_1 \), we see that \(\ell \) is bounded, and since \(\lambda(E) \) is complete, \(\ell \) can be extended to a bounded linear mapping \(\hat{\ell} \) from the bornological completion \(\lambda \otimes_b E \) of \(\lambda \otimes_b E \) to \(\lambda(E) \).

We will prove that \(\tilde{\ell} \) makes \(\lambda \otimes_b E \) and \(\lambda(E) \) bornologically isomorphic.

Let \(z \in \lambda \otimes_b E \) be such that \(\tilde{\ell}(z) = 0 \). By [4, Ch VIII, Prop. 2], a sequence \(\{z_k\}_{k=1}^{\infty} \) of elements of \(\lambda \otimes_b E \) converges to \(z \). Then \(\{z_k - z\}_{k=1}^{\infty} \) is a null sequence in some subspace \(\lambda S \otimes_b E_B \).

Thus,
\[
\tilde{\ell}(z) = \tilde{\ell}(\lim k \ell(z_k)) = \lim k(\ell \circ \iota)(z_k) = \lim k(\ell(z_k)) = \lim k(\ell(z_k)) = \tilde{\ell}(z) = 0.
\]

Here \(\iota \) is the canonical injection from \(\lambda \otimes_b E \) to its completion \(\lambda \otimes_b E \).

By Lemma 2, \(\ell \) is isometric and then it is one to one, then \(z = 0 \), and \(\tilde{\ell} \) is one to one.

We will prove that \(\tilde{\ell} \) is onto as follows. Let \(A \in B \) be a Banach disk; since \(E \) is nuclear we can select a Banach disk \(B \in \mathbb{B} \) containing \(A \) such that the inclusion \(E_A \to E_B \) is nuclear.

There are \((\epsilon_k)_k \in \ell_1 \), a bounded sequence \((a_k)_k \) in the continuous dual \((E_A)' \) of \(E_A \) and a bounded sequence \((y_k)_k \subset E_B \) such that
\[
x = \sum_{k=1}^{\infty} \epsilon_k a_k(x) y_k, \text{ for all } x \in E_A.
\]

Let \(x = (x_n)_n \in \lambda S(E_A) \), and \(\alpha^k = (\alpha^k_n)_n = (a_k(x_n))_n \). We have
\[
|\alpha^k_n| = |a_k(x_n)| \leq \|a_k\| \|x_n\|_A \leq \left(\sup_p \|a_p\| \right) \|x_n\|_A, \text{ for all } k, n.
\]

The sequence \((a_k)_k \) being bounded in \((E_A)' \), \(\sup_p \|a_p\| \) is finite, \(\alpha^k = (\alpha^k_n)_n \in \lambda S(E_A) \), for all \(k \), and, by (2), \(\|\alpha^k\|_S \leq (\sup_p \|a_p\|) (\|x_n\|_A)_n \|S \) and then \(\sup_k \|\alpha^k\|_S \) is finite. Then,
\[
\sum_{k=1}^{r} N_1(\epsilon_k \alpha^k \otimes y_k) = \sum_{k=1}^{r} |\epsilon_k| \|\alpha^k\|_S \|y_k\|_B \leq (\sup_p \|a_p\|)(\sup_p \|y_p\|) N(x) \sum_{k=1}^{r} \epsilon_k.
\]

As, \(\lambda S(E_B) \) is a complete normed spaces, the series \(\sum_{k=1}^{\infty} \epsilon_k \alpha^k \otimes y_k \) converges in \(\lambda S(E_B) \) to a limit \(g(x) \). Moreover,
\[
\tilde{\ell}(g(x)) = x.
\]

Indeed, if \(z = (z_n)_n \in \lambda S(E_B) \) is such that \(z = \tilde{\ell}(g(x)) \), then
\[
z = (z_n)_n = \tilde{\ell} \left(\sum_{k=1}^{\infty} \epsilon_k (a_k(x_n))_n \otimes y_k \right) = \sum_{k=1}^{\infty} \epsilon_k \tilde{\ell}((a_k(x_n))_n \otimes y_k)
\]
\[\sum_{k=1}^{\infty} \varepsilon_k \ell((a_k(x_n))_n \otimes y_k) = \sum_{k=1}^{\infty} \varepsilon_k (a_k(x_n)y_k)_n. \]

But the projections are bounded by Lemma 1, then
\[z_n = \sum_{k=1}^{\infty} \varepsilon_k a_k(x_n)y_k, \text{ for all } n. \]

By (1), \(z_n = x_n \), for all \(n \), and \(\tilde{\ell}(g(x)) = x \). This means that \(\tilde{\ell} \) is onto. In the other hand, if \(K \) is bounded in \(\lambda(E) \), then \(K \) is contained and bounded in some \(\lambda_S(E_B) \), and \(\tilde{\ell}(g(K)) = K \), from what, we conclude that the inverse of \(\tilde{\ell} \) is bounded.

We are now ready to prove the main result of this section.

Theorem 2. Let \(E \) be a complete b-space and \(\lambda \) be a normal sequence space. Then \(\lambda(E) \) is nuclear if and only if \(\lambda \) and \(E \) are nuclear.

Proof. If \(\lambda(E) \) is nuclear then, by Proposition 1, \(E \) and \(\lambda \) are closed subspaces of \(\lambda(E) \) and then they are nuclear also.

Inversely, suppose that \(E \) and \(\lambda \) are nuclear. By Proposition 4, \(\lambda \tilde{\otimes}_b E \) is nuclear. So by Theorem 1, \(\lambda(E) \) is nuclear. ■

Theorem 3. Let \(E \) be a complete b-space and \(\lambda \) be a normal sequence space.

(i) If \(\lambda \) is nuclear then, \(\lambda(E) \) is a Schwartz space if and only if \(E \) is a Schwartz space.

(ii) If \(E \) is nuclear then, \(\lambda(E) \) is a Schwartz space if and only if \(\lambda \) is a Schwartz space.

Proof. Suppose that \(E \) is nuclear. If \(\lambda(E) \) is a Schwartz space, then \(\lambda \), being a closed subspace of \(\lambda(E) \) by Proposition 1, is a Schwartz space. Inversely, suppose that \(E \) is nuclear and \(\lambda \) is a Schwartz space. Let \(A \in \mathcal{B} \) and \(S \in \mathcal{S} \) be a Banach disks in \(E \) and \(\lambda \) respectively. Since \(E \) is nuclear we can select a Banach disk \(B \in \mathcal{B} \) containing \(A \) such that the inclusion \(E_A \rightarrow E_B \) is nuclear. So, there are \((\varepsilon_k)_k \in \ell_1 \), a bounded sequence \((a_k)_k \) in the continuous dual \((E_A)' \) of \(E_A \) and a bounded sequence \((y_k)_k \subset E_B \) such that
\[x = \sum_{k=1}^{\infty} \varepsilon_k a_k(x)y_k, \text{ for all } x \in E_A. \]

(5)

Since \(\lambda \) is a Schwartz space, there is a Banach disk \(T \) in \(\lambda \) such that the injection \(\lambda_S \rightarrow \lambda_T \) is compact. We will show that the injection \(\lambda_S(E_A) \rightarrow \lambda_T(E_B) \) is compact. Let
\[\{x^i = (x^i_n)_n\}_{i=1}^{\infty} \]

(6)

\[x^i = \sum_{n=1}^{\infty} \varepsilon_n a_n^i(x_n)y_n, \text{ for all } x^i \in E_A. \]

(7)
be a sequence in $S(A)$. By (5), we have
\[x_n^i = \sum_{k=1}^{\infty} \varepsilon_k a_k(x_n^i)y_k, \text{ for all } n, i. \] (7)

The sequence $(a_k)_k$ being bounded in $(E_A)'$, there is a constant $c > 0$ such that
\[|a_k(x_n^i)| \leq c \|x_n^i\|_A \text{ for all } i, k, n. \]

This means that $\{(a_k(x_n^i))_k\}_{i=1}^{\infty} \subset \lambda_S$ and that
\[\{(a_k(x_n^i))_k\}_{i=1}^{\infty} \subset cS. \] (8)

A subsequence $\{(a_k(x_n^i))_k\}_{j=1}^{\infty}$ of $\{(a_k(x_n^i))_k\}_{i=1}^{\infty}$ should converge in λ_T to $\alpha^k = (\alpha^k_n)_n$.

In the other hand, the equation (8) shows that the sequence $\{(a_k(x_n^i))_k\}_{i=1}^{\infty}$ is bounded in λ_S. For every $n \in \mathbb{N}$, there $c_n > 0$ such that for all j, k
\[|a_k(x_n^i)| \leq c_n \text{ and then } |\alpha^k_n| \leq c_n. \] (9)

For every $n \in \mathbb{N}$, since $\{(\alpha^k_n)_k\}_{k=1}^{\infty}$ is bounded in the complete normed space E_B, the series $\sum_{k} \varepsilon_k \alpha^k_n y_k$ converges to a limit $x_n \in E_B$. Let $x = (x_n)_n$. Since $\{(\alpha^k_n)_k\}_{k=1}^{\infty}$ is bounded in λ_S and $\{y_k\}_{k=1}^{\infty}$ is bounded in E_B, the sequence $\{(\alpha^k_n y_k)_{k=1}^{\infty} \subset \lambda_T (E_B)$ and then in $\lambda_T (E_B)$. Thus, the series $\sum_k \varepsilon_k a_k^0 y_k_n$ converges in $\lambda_T (E_B)$ to $z = (z_n)_n$. Since the projections are bounded by Lemma 1, one has $z_n = \sum_k \varepsilon_k \alpha^k_n y_k$ for all n, and then $x = z \in \lambda_T (E_B)$.

It remains to prove that $\{x^j\}_{i=1}^{\infty}$ converges in $(\lambda_T (E_B), N)$ to x. We have,
\[x^j - x = \sum_{k} \varepsilon_k (\alpha_n^j(x_n^i) - \alpha_n^0) y_k \]

and
\[N(x^j - x) \leq \sum_{k} |\varepsilon_k| ||(\alpha_n^j(x_n^i) - \alpha_n^0)| |_S ||y_k||_B \] (10)

For j, k, let
\[\beta^j_k = ||a_k(x_n^i) - \alpha^k_n||_T \text{ and } \gamma_k = ||y_k||_B. \] (11)

Then, $(\gamma_k)_k \subset c_0$ and $\{ (\varepsilon_k \beta^j_k)_k \}_{j=1}^{\infty}$ is a sequence in ℓ_1 which is $\sigma(\ell_1, c_0)$--bounded, then it has a convergent subsequence say,
\[\{(\varepsilon_k \beta^j_k)_k\}_{j=1}^{\infty}. \] (12)

As, $\lim_{r \to \infty} \varepsilon_k \beta^j_k = 0$, for all k, then the sequence in (12) converges to 0 in $(\ell_1, \sigma(\ell_1, c_0))$. By (11) and (10), we have
\[N(x^r - x) \leq \sum_{k} |\varepsilon_k \beta^j_k| \gamma_k, \text{ for all } r \in \mathbb{N}. \]

Thus, $\{x^r - x\}_{r=1}^{\infty}$ converges to 0 in $\lambda_T (E_B)$, and (6) has a convergent subsequence. This finishes the proof of (i). The proof of (ii) is similar by interchanging the roles of E and λ in the proof. ■
4. Nuclearity of $\lambda\{E\}$

Notice that a locally convex space is said to be nuclear (resp. a Schwartz space) if the convex bornology of equicontinuous subsets of its topological dual is nuclear (resp. of Schwartz).

Let λ be a perfect sequence space and E a locally convex space whose topology is defined by a family \mathcal{M} of absolutely convex equicontinuous subsets of its topological dual E'. Define

$$\lambda\{E\} = \{(x_n)_n \subset E : (P_M(x_n)) \subset \lambda\}, \text{ where } P_M(x_n) = \sup_{a \in M} |a(x_n)|.$$

If a topology on λ is defined by family S of normal, absolutely convex and $\sigma(\lambda^\times, \lambda)$–bounded subsets of λ^\times, then a locally convex topology can be defined on $\lambda\{E\}$ by the family of semi-norms $(\pi_{S,M})_{S \in S, M \in M}$, such that, if $x = (x_n)_n \subset \lambda\{E\}$ then

$$\pi_{S,M}((x_n)_n) = P_S((P_M(x_n))) = \sup \{ \sum_{n=1}^\infty |\alpha_n P_M(x_n)| : (\alpha_n)_n \in S \}.$$

For the topology so defined, Ronald C. Rosier in [10] proved that the dual space $(\lambda\{E\})^*$ of $\lambda\{E\}$ is $\lambda^\times(E')$ and that a subset of $(\lambda\{E\})^*$ is equicontinuous if and only if it is contained in some $S(M)$ for $S \in S$ and $M \in M$.

Starting from this setting, Theorem 2 gives

Theorem 4. $\lambda\{E\}$ is nuclear if and only if λ and E are nuclear.

Also, Theorem 3 gives

Theorem 5. If E (resp. λ) is nuclear, then $\lambda\{E\}$ is a Schwartz space if and only if λ (resp. E) is a Schwartz space.

5. Conclusion

In this paper we have characterized the bornological structure, the completeness and the nuclearity of $\lambda(E)$ in terms of that of λ and E. An application to the nuclearity of the locally convex space $\lambda\{E\}$ is given.

Acknowledgements

The author is grateful to reviewers for their suggestions and comments which improved the quality of the paper.
References

