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Abstract. This paper investigates the companion of Ostrowski’s inequality in the framework of
fractal sets. First, a new identity related to local fractional integrals is introduced, serving as
the foundation for establishing a set of inequalities applicable to functions with generalized s-
convex and s-concave derivatives. An illustrative example is presented to validate the obtained
results, demonstrating their accuracy. Additionally, the paper discusses several practical applica-
tions, highlighting the significance of the established inequalities. The research presented in this
paper contributes to the growing field of studying functions on fractal sets, which has attracted
considerable interest from scientists and engineers.
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1. Introduction and preliminaries

Convexity is a fundamental property in mathematics that appears in various fields such
as optimization, convex analysis, geometry, probability theory, and finance. A function
J I — R is said to be convex if it satisfies the following condition

T (k1 + (1 — 3¢) ko) < 2T (k1) + (1 — 5) T (k2),

for all k1,k2 € I and all » € [0,1].

The most famous result connected to this notion is the one called the Hermite-Hadamard
inequality, which can be formulated as follows (see [22]): For a convex function J defined
on the interval I = [a,b], we have
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J ah < % J(t)dt < w (1)

Several scientists have been interested in inequalities related to (1). In [14], Kirmaci
established the following result connected to the left part of (1) for the class of functions
whose first derivatives in absolute value are convex, known as the midpoint inequality.

.
J & L gtdt <

a

(=8

2 J'a) + T (2)

« ‘

This estimate holds even for the right part of inequality (1), also known as the trapezoid
inequality, as was proved by Dragomir and Agarwal in [6].

2
J@HI0) 1 gnyar <22 Ta) + ) . (3)
a

In [11], Alomari et al. gave a companion of Ostrowski inequality for the same classe
of functions which represents a generalization of the two previous results as follows

4
J (x)+J (a+b x) 1 j(t)dt

2 b a
a

2 2 2
<ty J'e) + T+ ARE 2 F) + et b- )

Note that both inequalities (2) and (3) can be derived from the preceding result. Specif-
ically, the trapezoid type inequality is obtained for x = a, whereas midpoint inequality
can be deduced by substituting x = aTer and utilizing the convexity of | 77|, i.e.,

0 atb i3 (@)j+id’ (b)j
J 5 ST

On the other hand, in their paper [9], Hudzik and Maligranda explored the class of
s-convex functions in the second sense. This class is defined by the following property: A
function J : [0,00) — R is said to be s-convex in the second sense if the inequality

T (eu+ (1 —30)v) < 5T (u) + (1 — 2)° T (v)

holds for all u,v € I, 5 € [0,1], and s € (0, 1].
The counterpart of the Hermite-Hadamard inequality for s-convex functions was in-
troduced by Dragomir and Fitzpatrick in [5] in the following manner.

4

217 <gly T < 2GR 0

a
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Recently, scientists and engineers have taken a keen interest in fractal sets and fractal
theory. According to Mandelbrot [8, 15], a set is considered fractal when its Hausdorff
dimension exceeds its topological dimension. Recently, several studies have been conducted
with the aim of extending some results related to integral inequalities to fractal calculus,
using various forms of generalized convexity. Here are some references [1-4, 7, 10, 12, 13,
16-19, 23]. Yang’s research in [24] focuses extensively on investigating and advancing local
fractional calculus.

In their publications [24, 25], Gao-Yang-Kang proposed the concept of local fractional
integral and derivative. Their definition of the fractal set of real numbers R specifies the
following properties.

If Ky, Ky, and k4 are within the set R , then the following statements can be made:

® 1, + Ky and KKy belongs the set R

® K+ Ky =rky+ K =(K1+K) = (K2a+K1),
o iy + (ky + K3) = (K1 + K2) + kg,

® KKy = Kok = (K1K2) = (K2k1) ,

o iy (Kghg) = (Kyky) Ky,

o Ky (Ky + K3) = Ky kg + K K3,

k1 +0 =0 + kK =k and kK11 =1 K] =K.
Lemma 1 ([24]). Let C' ([a,b]) be the set of all local fractional continuous functions on

[a,b] and D ([a,b]) the set of all local fractional differentiable functions on |a,b]. It can
then be stated that:

(i) Suppose that J (t) = QL) (t) € C [a,b] , then we have
aly I (t) = Q(b) — Q(a).
(ii) Suppose that J,Q € D [a,b] and J() (t),Q0) (t) € C [a,b], then we have
aly T (1) Q) (1) = T (1) Q)] § — al, ') (1) Q(1).

Lemma 2 ([24]). For J(t) =t* , we have following equations

dtk _ TO+4k) 4k 1)
dt T T4k 1)) ;
2
k T'(1+k k+1 k+1

a
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Lemma 3 (Generalized Holder’s inequality [4]). Let J,Q € C [a,b], p,q > 1 with %—i—% =

1, then
2 © 2 ;0 2 13
sy O =@t (TP @) A @i [Q) () A

a a a

Definition 1 ([24]). Let 7 : I CR — R . For any k1,k2 € I and » € [0,1], if
J (k1 + (1 —30) ko) <3¢ T (k1) + (1 —5) T (ko)
holds, then J is a generalized convex function on I.

More scientists have made efforts to extend the notion of convexity in order to cover
a wider class of functions. One of the most interesting extensions that has emerged is the
generalized s-convexity introduced in [20].

Definition 2. Let 7 : I CR — R . For any k1,k2 € I and » € [0,1], if
T (k1 + (1 — 30) ko) < 5 T (k1) + (1 — 2)° T (k2)

holds for some fized s € (0,1], then J is a generalized s-convex function in the second
sense on I.

In [21], the authors gave the analogue of inequality (1) for generalized s-convex func-
tions on fractal set as follows

%((51:))~7 ah < ?Qbi)(t) < r(fil(:i)) 7 (J(a)+T(0), 0<s <1 (5)

This paper examines the companion of Ostrowski’s inequality, as studied by the authors

in [11], within the context of fractal sets. We start by introducing a new identity related to

local fractional integrals, on the basis of which we establish several inequalities for functions

possessing generalized s-convex and s-concave derivatives. The study is concluded with an

example that justifies the correctness of the obtained results, as well as a few applications.

2. Main results

In order to demonstrate our results, it is necessary to present the following lemma.

Lemma 4. Suppose J : I = [a,b] = R s a differentiable function on I with a < b, and
J) e C la,b]. Then, for all z € [a, aT'H’], the following equation is satisfied
J(x)+~J2(a+b x) 1(“b( —g)l) albj(t)
2
=0 a @F( 1+1) n j( ) (1 =n)a+nz)(dn)
0
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2 1

+ o =1 T =) (a+b—a) +ub) (dn) A

0
o 2

2
+ @2 @ s (p-1) O (L-n)a+ 3D (dn)

0 1

2
ey 1 IV A-m)E P (atb-a) (dn) A,
0

Proof. Let
_ 2 +b 2x)? +b 2x)? (x a)?
I—(é ‘3 L+ ® :)) L+ 4 ® ;()) I3+ 5oy 14
where
A
h=rtg 0 T =n)a+nz)(dn)
0
A
L=ty (-1 T A=naz+n2 (dn) ,
0
A
I =r n IV (1=n)2P+n(a+b—=z) (dn)
0
and

YA

L=ty =1 T =n)(a+b—x)+nd)(dn) .

0

Using Lemmas 1 and 2, we get

=1
I = gy T (L=n)a+nz)

2
~wawrcm DO+1DIT (1 —mn)a+nz)(dn)

2
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Similarly, we obtain

1
IQZW(H_U J (1—7])37—1—77%“’ » (8)
A
~ @ LO+DT (L —n)e -+ (dn)

0
a+b

:(Hbzigx)j (z) - m (@) (dew)

=1
Is= rgsgn I (1—n) 2L +n(a+b—2) (9)

A
—m Fy+1)J (1—n)a7+t’+77(a+b—w) (dn)
0

afb x
=@ 7 (b —2) = e J (@) (dw)

a+tb
2

and

L= =1 J(A—n)(a+b—a)+m) (10)

A
s PO+ DI (1 =n) (@+b—x)+nb) (dn)
0

y.4
:ﬁj(aqtbfx)f% J (@) (dw) .

(x a)
atb x

After substituting equations (7)-(10) into equation (6), we multiply and divide the resulting
equation by I'(y 4+ 1) to obtain the desired result.

Theorem 1. Suppose J : [a,b] — R is a differentiable function on [a,b] such that
J €D [a,b] and ') € C [a,b] with0 < a <b. If J') is generalized s-convex in the
second sense on |a,b], then the following inequality holds

J J b I 1
(x)+ 2(a+ xX) (b( Z))afbj(t)

2 I'(1+ I'(14(s+1
<GS e e 7@+ 700
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PR 700 + 0o

b 2
+ @2 LS 7O @) + I (a+b-a)

T'(1+s L'(1+(s+1) ) b
+2 ey - rare I A

Proof. Using Lemma 4, properties of modulus, and the generalized s-convexity of
J) | we can conclude that

J)+I@th x) T+ 7 T ()

2 (b a) a'b
2 O Z
<&@ty 0 T (1 —n)atnz) (dn)
0
4 1
+ ey (L=m) T (=) (a+b—x)+nb) (dn) A
0
2 O Z
+ GOt (- IO (—n)z 03 (dy)
0
2 1
+ o JY A=A an(atb—x) (dn) A
0
o 2

e @iy (1-n® IO+ T @ (dn)

0
2 1
tr =m0 (= IO (@+b—2) 497 TO0) () A
0
2 O Zl
+ @2 @ L (1) (- IO @)+ TO & (dy)
0
2 1
+1"(1+1) n (1_77)8 «—7() aTer +775 J()(a—}—b—x) (dn)A
06 2 1 o 2 1
=B @@Ly (-0 () A T () + @ty Y () A T (a)
0 0
(@) 2 1
+ @ty (=) () A T (a+b—2)

0
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O 2 1 1

+ @ty (L—n) 7° (dg) AT () A

0

2 (o]0} 2 1
;@207 @@ L (1- ) (dy) A JO) ()

o . 1
+O@rtyy (L—m) »° (dn) +r n (L=n)° (dg) A JL) 28
0 0
; 1 1
+ @ty Y (dg) AT (a+b-a) A
0

2 I'(1+ I(1+(s+1
:(EL 2\)) F(ln(L(S-SH)) §1+Ez+2§ % (@) + T 0)
< )

)
1+(s+1
e @+

+b 2x)2  T(1+(s+1
+(6“1 (b ;()) FE1+E§+2H j()(ﬂf)+.7()(a+b—a:)

a+b—ux)

I(1+ D(14(s+1 b
+ 2 F(l-(&-(sj—l)) ) FEH—E;-Q; g j( ) %

I

where we have used the facts that
ys Y
N (1=n)® (dn) =g (=) 7° (dn)
INGESY L n n INGES)) nyn-an
0 0

_ I(l4s )  T(Q4(s+1) )
T I(14+(s+1) ) F(1+(s+2) )

and
s !

1 I'(1+(s+1
o 1Y ) = e (=) (dn) = e

0 0
The proof is completed.

Corollary 1. In Theorem 1, if we take s = 1, we obtain

b
J(x)+JZ(a+ x) (b( ;rl) aI j( )

i (14 142
S(();J 21)) F((1+2 )) - Fgl+3 g T @) + 70 ()

+ i IO @) + IO (a+b—2)

S 90w - O

P+ ) LO4+2)  7() aTer

T2 gy T oTaEs)
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Corollary 2. In Theorem 1 applying the generalized s-convezity of J()

g et <o 9 I L) 70 @) + 7O (a+b-2)

)

we obtain
J(x)+J (at+b r'( +1 e
= 2( e (b( a) : a’p J (1)

2 (14 1+(s+1
§()§) 21)) r(14(r(s-su)) y~ E1+E§+2§ ; T (a) + T (b)
)

(x a)2 T(1+(s+1) ) , (at+h 2x)?
T ba Mi+s+2)) T 40 a

D(14+(s+1) )  2G~%) T(1+ T(1+s )
T(1+(s+2) ) L(1+(s+2) )

2
+ 22 9 T(1+7) et T @) + 7 @a+b—x)

Corollary 3. In Corollary 2, taking s = 1 we obtain

J (X)+J (a+b r( +1
x) 2(a X) (b( a))albj(t)

2 T+ I(1+2
<(()B ?) 1“((1+2 )) - PE1+3 ; T (@) + 70 @)

2 7142 (a+b 2x)2  T(A+2) 2 (T(1+ ))?
+ (z; 21)) FE1+3 ; +

10 a  I(1+3) I(1+3)

2
+2T(1+7) 1) T (@) + T (a+b—2)

Remark 1. For v =1, Corollary 3 will be reduces to Theorem 5 from [11].

Corollary 4. In Theorem 1, taking x = a we get

280 LD 1 7 (1)

b I'(14+(s+1
<& Hiees 7@+ 700

I(1+ D(14(s+1 b
+2 F(1J(r(si1)) )y FEH—E;-Z% 3 j( ) %

Corollary 5. In Corollary 4 using the generalized s-convexity of J() i.e.

VAREE S Fl(“l(ﬁ(li(ll;r)*) T (a)

SaARN (O
we obtain

J(@a)+J (b I'(+1
(a)2 ()_(é a))aij(t)

b L(1+(s+1 2 ra+s) 2
<G rﬁuﬁimﬁ §+2( ) oy FA+)

_ 929 Fl(“l(_{i(;i(;)—i_)) g )(a) + ¢ )(b)
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Corollary 6. In Corollary 5, taking s = 1, we obtain

J J(b I 1
@30 _ LD g 7 ()

b r(1+42 ri+ ) 2 r(1+ )2
S(4a) FE1+3§+2 F((1+2)) F(1+7)_2% T a) + TV ()

Remark 2. For v =1, Corollary 6 will be reduces to Theorem 2.2 from [6].

Corollary 7. In Theorem 1, taking x = aTer we get

J B - gL )

b r(+ I'(1+(s+1
SER e i BV ORI

P(1+(s+1) ) +b
+2 e 7%

Corollary 8. In Corollary 7 using the generalized s-convexity of J()

J 3 - Eatal, I (1)

b I'(1+ F(1+(s+1 2 I'(14s )I'(1+
<CA e Mo} Musdh 0@ 4 700

Corollary 9. In Corollary 8 if we take s =1 we obtain

T - ah I ®)

b T'(1+ T(1+2 T(1+ ))?
<O a2 Taey IV @+ 700

Remark 3. For v =1, Corollary 9 will be reduces to Theorem 2.2 from [1]].

Theorem 2. Suppose J : [a,b] — R s a differentiable function on |a,b] such that
J € D [a,b] and J') € C [a,b] with0 < a < b. If JO) " is generalized s-convex on
[a,b], where ¢ > 1 with % + % =1, then we have

J)+I (@b x) T ;)1) LT (0)

2 ®

—_

1
P(l+p ) p P(l+s ) ¢
= T[(1+(p+1) ) T(1+(s+1) )

+
X
=
+
S
|
=
+
Bl
=
o=
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Proof. Using Lemma 4 as well as the generalized Holder inequality, properties of

modulus, and the generalized s-convexity of () q, we can conclude that

J0+J@th x)  T( +1) oL T (1)

2 (b a)
10 1
1p 2 1q

() g@r( = np (@) A @l T ((L-n)atn) (dn) A
0

1
1 1
o 2 15 O 2 q 1a
+@F(1+1) (1—=n)° (dn) A @ﬁ T =n)(a+b—=z)+nb) (dn) A §
0 0
O 1 1
2 o 2 15 O 2 q :I_a
+ G E@N Ly (=nf (d) A @ty JO (1—naz+n2f (dn)
0 0
1
1 11
o 2 15 o 2 a
+@r(1+1) P (dn) A @7“1“) g (1—77)%b+17(a+b—x §
0 0

O
1
< x a? I(1+p ) pg
=0 a T(+(p+1)

1
1
0] 2 q :La
PO (g JO@rb-) o JO® " @) A §
0
0]
1
0] 2 :L5
+b 2
+4 ® :)) g@r( Ly (=) (dn) A
0
1
0] 2 q :I_a
><@F( 1+1) (1—-n)° j()(ﬂf) +n° gt anrb (dn) A
0
1
O 2 15
+@ﬁ P (dn) A

0
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1
1
0] 2 q q :|_a
c @ - g 2 T g0t @) A K
0
1 1
_ _I'+p) p '+4s ) ¢
L(1+(p+1) ) L(1+(s+1) )

1 1
YO 70 arb—2) + gO@m) " O

2 q
% (();) 6;1)) T )(a) + g )(JU)

1
Gt 20° )y Ty 7() ath T

10 a
11
q q 1
+ g e Ty g0 @+b-2) "
where we have used the fact that
A A
P ) = (=) () = gty
rc+n T\ = T N = T+p+1) )
0 0

The proof is completed.

Corollary 10. In Theorem 2, taking x = a, we obtain

Jd (a)+J (b) F( +1) ]—b j (t)

2 (b a @
1 1
< 2 I'(14p ) p T'(1+s ) q
= 4 L(1+(p+1) ) L(1+(s+1) ) '
1 1°-

x  JO@" 4 g0 a T AL g0 an T g0) g

Corollary 11. In Theorem 2, taking x = aTer, we obtain

J - it al, T (1)

1 1
< a F+p) p _T(O4s) 4@
= 4 P(1+(p+1) ) T(1+(s+1) )

1
1 1

x g0 @ g0 am Ta L g0 aw Ty g0 )t

Theorem 3. Suppose J : [a,b] — R s a differentiable function on |a,b] such that
J € D [a,b] and J') € C [a,b] with0 < a < b. If JO) " is generalized s-convex on
[a,b], where ¢ > 1, then we have

J (x)+J (a+b r( +1
(x) 2(3 X) (b( a))albj(t)
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ras) g
S Tz
1
2 r(1+ C(1+(s+1 9 D(14(s+1 a3
x &3 Mo e I @ e IO @)

L(1+(s+1) ) L(1+s ) C(1+(s+1) ) 4 79
j ! Ma+b-a) M)~ raaeey I 0

1
+h 207 D(1+(s+1 a r(1+ D(1+(s+1 b 9 a
+ S5 tmen) 7@+ memy e I %
1y
1!

+ Pl+s ) _ D(l4(s+1) a g
P(1+(s+1) )  T(1+(s+2)

QU
S
QD
\+
o

4 p4(s+1
2 T 0 (g

Proof. Using Lemma 4 as well as the generalized power mean inequality, properties of
modulus, and the generalized s-convexity of 7() q, we can conclude that

a)
1 1
1, a0 2 q 1a
G2 E@F( o0 A A @ty g T -nat ) (dn) A
0
o) 2 1, |
+@ty (1-n) (dn)
0
1
1
o) 2 11
x @ty (1—n) T —n)(at+b—2)+nb) (dn)A§
0
% 2 1, 1
+(a+b 2x)° g@ (1—n) (d ) A
10 a T( +1) ) an
0
o) 2 11
x @ty (1—n) JU) (l—ma+n3 (dn)
0
o) 2 1, [0 2 11

+@riy () A Oty T 1-narna+b-2) d77 A§
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o 1%
1 g q g
R 5@ m 1=n® TO@ +0° TO@) " (dn) A
1
1
o 2 q q 1a
b0 (- (- O @rb-n) e JOB @) A §
0
% 1
2 q
+ 52 5@ A -nm) (=) JO@) gt g0 T () A
0
11
1
© 2 q 13
+ Oty 0 - U 2 Tyt T (atb—a) (dy) A §§
0
1
ra+) g
T(1+2 )
1
2 O(1+ D(1+(s+1 9 T(+(s+1 4 q
X (()E) aa)) F(l—(‘r(s—?—l)) ) r§1+§+2§ 3 T (@) "+ rE1+E§+2§ 3 g (@)
1
L
T(14(s+1 4 (14 D(14(s+1 4 q
T FE1+E§+2§ ; T a+b—z) + F(li(s-srl)) ) F51+E§+2§ ; VRO
1
( +b 2 (s+1) L(l4+s ) _ T(A+4(s+1) ) b T a
+ G20t ) 7O @)+ i - R g0 ap
]
1
T+ L(1+(s+1 b 4, TU+(s+1)) aq
+ r(14(r(str1)) ) FE1+E2+2§ ; VAR F§1+E§+2§ ) T (a+b—2) v
where we have used (11) and (12). The proof is completed.
Corollary 12. In Theorem 3, taking x = a, we obtain
20— Eaal T ()
ba rar) g
a
S+ T(1+2 )
1
(14 (s4+1 I(1+s ) I(14(s+1) ) b 9 g
X FE1+E:+2§ ; T (@) "+ F(1+(si1) ) T T(+(s+2) ) VAR =
1 L
99

I'(1+ I'(14(s+1 b q F(l—‘r(S—l—l) )
- FUi(SL)) ) FEH@H% ; JU 22+ Ry I 0)
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Corollary 13. In Theorem 3, taking v = aTer’ we obtain

7 aTer _F( ))afbj()
1

1
(b a) r(1+ ) q

<77 T(1+2 )
1
Tss ) D(l+(s+l L (s+1) ) b 99
8 F<1J(r(S-SH) ) F§1+§2+2§ ; va )(“) T % VAR
I
, !
L(1+(s+1) a+b I'(14s ) L'(14(s+1) ) j( )(b) a9 q

)
+ T(1+(s+2) ) j( ) 2 + T(1+(s+1) )  T(+(s+2) )

Theorem 4. Suppose J : [a,b] — R is a differentiable function on [a,b] such that
J € D [a,b] and J') € C [a,b] with0 < a <b. If JU) " is generalized s-concave on
[a, b], where ¢ > 1 with % + é =1, then we have

b
J(x)+~12(a+ X) 1(“( +1) aI j( )

1 1
T4+p) P (x &> (xa26D q () atx () at2b x
S TOtmE) 0 a) 1) JVEE T 2

1
at+h 2x)2  (at+b 2x) 26-D g

+(4(ba) 2 T(1+ ) gl a4 g() Satsh

Proof. By utilizing Lemma 4, as well as the generalized Holder’s inequality, properties
of the modulus function, and the generalized s-concavity of J() q, we have

J( )+J(a+b X) F( +1 aI j()

20 (b a)
1 1
150 2 q :l_a
<t 8 . np () A @t 7O (- n)atno) () A
0
1
1 1
(@) 2 170 2 q :|_a
L0 P ) A O () (a b)) ) A
0 0
11
p

+b 2
+ ot 2 %@F =3 S A

(@) 11
2 q q
x @ty T (I—na+n2 (dy) A

0



W. Saleh et al. / Eur. J. Pure Appl. Math, 16 (3) (2023), 1359-1380 1374

1
1 1
o 2 15 (@] 2 q 1a
PO P ) A @l 7O (1-n)aig(atbox) ) A K
0 0
L(1+p ) % (x a? (x a) 267V é () atx () at2b x
= T(1+(p+1) ) (b a) I'(1+ ) J =2t J 2
1 L |
2 S— -
+ (T?b 2;)) (a+b2 ?2)1 +2<) D g 70) a+b4+2x + 70 3a+321b 2x
The proof is completed.
Corollary 14. In Theorem 4, taking x = a, we obtain
J (x)+J (atb L +1
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Corollary 15. In Theorem 4, taking x = aT*'b, we obtain
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3. Example and Applications

The purpose of this section is to verify the correctness and effectiveness of the results
obtained. To achieve this, we start with an example that includes a graphical representa-
tions to demonstrate the accuracy of our results. We then provide a few applications for
estimating the error of a given quadrature formula.

3.1. Example supporting our findings

In an effort to provide additional support and substantiation for the results derived in
this study, we present an illustrative example that encompasses various cases and incorpo-
rates 2D and 3D graphical depictions. The purpose of this example is to demonstrate the
effectiveness and accuracy of our findings. It is important to note that the figures presented
herein were generated utilizing Matlab, where the color green denotes the Right Hand Side
(RHS) and red signifies the Left Hand Side (LHS) of their respective inequalities.

Example 1. We present the function J : [0,1] — R , which is defined for a fixed value

s€(0,1] as J(t) = %t(sﬂ) . The crucial aspect of this function, which underpins

our investigation, is that its derivative J() =15 is a generalized s-convex function.






