Abstract. We came up with the concept b^*-open set which has stricter condition with respect to the notion b-open sets, introduced by Andrijevic [2] as a generalization of Levine’s [7] generalized closed sets. The condition imposes equality instead of inclusion. In this study, we gave some important properties of b^*-open sets with respect to an ideal, and b^*-compact spaces.

2020 Mathematics Subject Classifications: 54D30

Key Words and Phrases: b^*-open sets, b^*_J-open sets, ideals, b^*-compact space, b^*_J-compact space

1. Introduction

It was in the year 1970, when Levine [7] presented the concept of generalized closed sets, and anchoring on this notion, Andrijevic [2] presented yet another generalization of open sets called b-open sets. This study uses the notion of b-open sets to come up with a new concept called b^*-open sets.

The concept ideal topological spaces (or simply, ideal space) was first seen in [5]. Vaidyanathaswamy [19] investigated this concept in point set topology. Tripathy and Shravan [13, 14], Tripathy and Acharjee [17], Tripathy and Ray [18], Catalan et al. [4] among others, also made investigations in ideal topological spaces.

Several concepts in topology were generalized using this structure. One of which is the concept b^*-open sets. Consequently, using the notion of b^*-open sets, we introduced...
the concepts b^*-compact sets, compatible b_j^*-compact sets, countably b_j^*-compact sets, b_j^*-connected sets, in ideal generalized topological spaces.

Let W be a non-empty set. An ideal J on a set W is a non-empty collection of subsets of W which satisfies:

1. $B \in J$ and $D \subseteq B$ implies $D \in J$.
2. $B \in J$ and $D \in J$ implies $B \cup D \in J$.

Let W be a topological space and B be a subset of W. We say that B is b^*-open set if $B = \text{cl}(\text{int}(B)) \cup \text{int}(\text{cl}(B))$. For example, consider $W = \{a, b, c\}$ and the topology $\mathcal{J} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, W\}$ on W. Then the b^*-open subsets are \emptyset, $\{a, b\}$, $\{c\}$ and W.

Let W be a topological space and B be a subset of W. The set B is called b^*-open relative to an ideal J (or b_j^*-open), if there is an open set P with $P \subseteq \text{Int}(B)$, and a closed set S with $\text{Cl}(B) \subseteq S$ such that

1. $(\text{Int}(S) \cup \text{Cl}(\text{Int}(B))) \setminus B \in J$, and
2. $B \setminus (\text{Int}(\text{Cl}(B)) \cup \text{Cl}(P)) \in J$.

In addition, we say that a set B is a b_j^*-close set if B^C is b_j^*-open.

Consider the ideal space $\langle \{q, r, s\}, \{\emptyset, \{q\}, \{r\}, \{q, r\}, \{q, r, s\}, \{\emptyset, \{r\}\} \rangle$. Then $B = \{r, s\}$ is a b^*-open with respect to the ideal $J = \{\emptyset, \{r\}\}$. To see this, we let P be the open set $\{r\}$ and S be the closed set $\{r, s\}$. Then $\text{Int}(S) \cup \text{cl}(\text{int}(\{r, s\})) \setminus \{r, s\} = \text{Int}(\{r, s\}) \cup \text{cl}(\{r\}) \setminus \{r, s\} = \{r\} \cup \{r, s\} \setminus \{r, s\} = \emptyset \in J$. Also, $\text{Int}(\text{Cl}(\{r, s\}) \cup \text{Cl}(P)) \setminus \{r, s\} = \text{Int}(\{r, s\}) \cup \text{Cl}(\{r\}) \setminus \{r, s\} = \{r\} \cup \{r, s\} \setminus \{r, s\} = \emptyset \in J$. This shows that $B = \{r, s\}$ is a b_j^*-open.

Let W be a topological space and B be a subset of W. The set B is called nearly b^*-open relative to an ideal J (or nearly b_j^*-open) if there is an open set P with $P \subseteq \text{Int}(B)$, and a closed set S with $\text{Cl}(B) \subseteq S$ such that

1. $(\text{Int}(S) \cup \text{Cl}(\text{Int}(B))) \setminus \text{Cl}(B) \in J$, and
2. $B \setminus (\text{Int}(\text{Cl}(B)) \cup \text{Cl}(P)) \in J$.

Consider the ideal topological space $\langle \{1, 2, 3\}, \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}, \{\emptyset, \{2\}\} \rangle$. Then $B = \{2, 3\}$ is a nearly b^*-open with respect to the ideal J (or nearly b_j^*-open). To see this, we let P be the open set $\{2\}$ and S be the closed set $\{2, 3\}$. Then $\text{Int}(S) \cup \text{cl}(\text{int}(\{2, 3\})) \setminus \text{cl}(\{2, 3\}) = \text{Int}(\{2, 3\}) \cup \text{cl}(\{2\}) \setminus \text{cl}(\{2, 3\}) = \{2, 3\} \setminus \{2, 3\} = \emptyset \in J$. Also, $\text{Int}(\text{Cl}(\{2, 3\}) \cup \text{Cl}(P)) \setminus \{2, 3\} = \text{Int}(\{2, 3\}) \cup \text{Cl}(\{2\}) \setminus \{2, 3\} = \{2\} \cup \{2, 3\} \setminus \{2, 3\} = \emptyset \in J$. This shows that $B = \{2, 3\}$ is a nearly b_j^*-open.

The set B is said to be b^*-compact if every cover of B by b^*-open sets, containing W, has a smaller finite sub-cover. The space W is said to be a b^*-compact space if W is b^*-compact set. Consider the topological space $(W = \{a, b, c\}, \{\emptyset, \{a\}, \{b, c\}, W\}, J = \{\emptyset, \{a\}\})$. Then $B = \{a\}$ is a b^*-compact set, while $D = \{a, b\}$ is not. To see this, we note that the
b^*-open sets of W are \emptyset, $\{a\}$, $\{b, c\}$ and W. Observe that the covering of B containing W is $\{\{a\}, W\}$. Thus, $\{\{a\}\}$ is a smaller cover. Hence, $B = \{a\}$ is a b^*-compact set.

On the other hand, observe that the covering of D containing W are $\{\{a\}, \{b, c\}, W\}$ and $\{\{b, c\}, W\}$. Since $\{\{b, c\}, W\}$ has no smaller subcover, $D = \{a, b\}$ is not a b^*-compact set.

The set B is called b^*_J-compact if every cover of B by b^*_J-open sets which contains W, has a smaller finite sub-cover. The space W is called b^*_J-compact space if it is b^*_J-compact set. Consider the ideal topological space $(W = \{x, y, z\}, \emptyset, \{\emptyset, \{x\}, \{y, x, y\}, W\}, \emptyset, \{\emptyset, \{y\}\})$. Then $B = \{y, z\}$ is a b^*_J-compact set where $J = \{\emptyset, \{y\}\}$. To see this, we note that the b^*_J-open sets of W are \emptyset, $\{y, z\}$ and W. Hence, every cover $\{P_\psi : \psi \in \Psi\}$ of B by b^*_J-open set must contain $\{y, z\}$ or W. Thus, each of the following is a covering of B: $\{\{y, z\}\}$; $\{\{y, z\}, W\}$; and $\{W\}$. Note that $\{\{y, z\}, W\}$ is a covering of B which has a smaller subcover $\{\{y, z\}\}$. This shows that $B = \{y, z\}$ is a b^*_J-compact set.

Now, consider the ideal topological space $(W = \{l, m, n\}, \emptyset, \{\emptyset, \{l\}, \{m\}, \{l, m\}, W\}, \emptyset, \{\emptyset, \{m\}\})$. Then $B = \{l, m\}$ is a not b^*_J-compact set where $J = \{\emptyset, \{m\}\}$. To see this, we note again that the b^*_J-open sets of W are \emptyset, $\{m, n\}$ and W. Hence, every cover $\{P_\psi : \psi \in \Psi\}$ of B by b^*_J-open set must contain W. Thus, each of the following is a covering of B: $\{\{m, n\}, W\}$; and $\{W\}$. Note that $\{\{m, n\}, W\}$ has no smaller. This shows that $B = \{l, m\}$ is not a b^*_J-compact set.

The set B is said to be compatible b^*_J-compact (or simply cb^*_J-compact) if any cover $\{P_\psi : \psi \in \Psi\}$ of B by b^*_J-open sets containing W, Ψ has a smaller finite subset Ψ_0 such that $B \setminus \bigcup \{U_\psi : \psi \in \Psi_0\} \in J$. The topological space W is said to be a cb^*_J-compact space if it is cb^*_J-compact as a set. Consider the ideal topological space $(Z, \zeta, J) = ((h, i, j), \emptyset, \{h, \{i, j\}, Z\}, \emptyset, \{i\})$. Then (h, i) is a compatible b^*_J-compact where $J = \{\emptyset, \{i\}\}$. To see this, we observe that the b^*_J-open sets of Z are \emptyset, $\{h, i\}$ and Z. Hence, every cover $\{P_\psi : \psi \in \Psi\}$ of Z by b^*_J-open set must contain $\{h, i\}$ or Z. Thus, $\{P_\psi : \psi \in \Psi\}$ is $\{\{h, \{i, j\}\} \text{ or } \\{\{h\}, Z\} \text{ or } \{Z, \{i, j\}, \{h\} \text{ or } \{Z, \{i, j\}\} \}$. In the first 3 cases, there is a smaller subset $\{\{h\}\}$ such that $\{h, i\}\{\{h\}\} = \{i\} \in J$, and for the last case, there exist a smaller subset $\{\{h, i\}\}$ such that $\{h, i\}\{\{h, i\}\} = \emptyset \in J$. This shows that $\{h, i\}$ is a compatible b^*_J-compact set. Next, consider the ideal topological space $(V = \{q, r, s\}, \emptyset, \{\emptyset, \{q\}, \{r, s\}, V\}, \emptyset, \{\emptyset, \{s\}\})$. Then $\{q, r\}$ is not compatible b^*_J-compact. To see this, we note that the b^*_J-open sets of V are \emptyset, $\{q, \{r, s\}\}$ and V. Hence, every cover $\{P_\psi : \psi \in \Psi\}$ of $\{q, r\}$ by b^*_J-open set must contain $\{q\}$, $\{r, s\}$ or V. Thus, $\{P_\psi : \psi \in \Psi\}$ is $\{\{q\}, \{r, s\}\}$ or $\{\{q\}, V\}$ or $\{V, \{r, s\}, \{q\}\}$ or $\{V, \{r, s\}\}$. Consider the open cover $\{\{q\}, \{r, s\}\}$. Note that its smaller covers are $\{\{q\}\}$ and $\{\{r, s\}\}$. Observe that $\{q, r\}\{q\} = \{r\} \notin J$ and $\{q, r\}\{r, s\} = \{q\} \notin J$. This shows that $\{q, r\}$ is not a compatible b^*_J-compact set.

2. Results

We present some of the important properties of b^*-open sets and b^*_J-open sets. Lemma 1 is a characterization of b^*-open sets.
Lemma 1. Let \((Y, \varsigma, J)\) be an ideal space and \(B\) be a subset of \(Y\). Then \(B\) is an \(b^*\)-open set precisely when there is an open set \(P\) with \(P \subseteq \text{Int}(B)\) and there is a close set \(S\) with \(\text{Cl}(B) \subseteq S\) such that \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \subseteq B \subseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(P)\).

Proof. Necessity. Let \(B\) be a \(b^*\)-open set. Then \(B = \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B))\). Take the open set \(P = \text{Int}(B)\) and the close set \(S = \text{Cl}(B)\). Note that \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \subseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B)) = B\), and \(\text{Int}(\text{Cl}(B)) \cup \text{Cl}(P) \supseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B)) = B\). Hence, \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \subseteq B \subseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(P)\).

Sufficiency. Next, let \(P\) be an open set with \(P \subseteq \text{Int}(B)\) and let \(S\) be a closed set with \(\text{Cl}(B) \subseteq S\) such that \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \subseteq B \subseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(P)\). Then \(B \supseteq \text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \supseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B))\), and \(B \supseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(P) \subseteq \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B))\).

Therefore, \(B = \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B))\), that is \(B\) is a \(b^*\)-open set. \(\square\)

An open set is nearly \(b^*_J\)-open. The next lemma, Lemma 2, shows this idea.

Lemma 2. Let \((Y, \varsigma, J)\) be an ideal space. Then every open set is a \(b^*_J\)-open set.

Proof. Let \(B\) be an open set, and consider \(S = \emptyset = P\). Then \(S\) and \(P\) are both open and closed. Observed that \(\text{int}(\text{cl}(B)) \cup \text{cl}(P) \supseteq \text{Int}(B) \cup \text{Cl}(\emptyset) = \text{Int}(B) \cup \emptyset = \text{Int}(B) = B\), and \(\text{int}(S) \cup \text{cl}(\text{int}(B)) = \text{int}(\emptyset) \cup \text{cl}(\text{int}(B)) \subseteq \emptyset \cup \text{cl}(B) = \text{cl}(B)\).

Hence, we have \(B \setminus \text{int}(\text{cl}(B)) \cup \text{cl}(P) = \emptyset \in J\), and \(\text{int}(S) \cup \text{cl}(\text{int}(B)) \setminus \text{cl}(B) = \emptyset \in J\), that is, \(B\) is nearly \(b^*_J\)-open. \(\square\)

An element of ideal \(J\) is nearly \(b^*_J\)-open set. The next lemma, Lemma 3, shows this idea. Please see [9] and [4] to have more insights.

Lemma 3. Let \((Y, \varsigma, J)\) be an ideal space. Then each element of \(J\) is \(b^*_J\)-open.

Proof. Let \(B \in J\). Since \(B = \text{Int}(\text{cl}(B)) \cup \text{cl}(B) \subseteq B\), we have \(\text{int}(\text{cl}(B)) \cup \text{cl}(B) \in J\). Next, consider \(S = \emptyset\). Then \(\text{Int}(S) \cup \text{cl}(\text{int}(B)) \setminus \text{cl}(B) = \emptyset \cup \text{cl}(\text{int}(B)) \setminus \text{cl}(B) = \text{cl}(\text{int}(B)) \setminus \text{cl}(B) = \emptyset \in J\). Therefore, \(B\) is nearly \(b^*_J\)-open. \(\square\)

Lemma 4 says that each \(b^*\)-open set is \(b^*_J\)-open.

Lemma 4. Let \((Y, \varsigma, J)\) be an ideal space. Then a \(b^*\)-open set is \(b^*_J\)-open.

Proof. Let \(B\) be a \(b^*\)-open set. Then \(\text{int}(\text{cl}(B)) \cup \text{cl}(\text{int}(B)) = B\). Consider \(P = \text{int}(B)\) and \(S = \text{cl}(B)\). Then \(P\) is open with \(P \subseteq \text{int}(B)\), and \(S\) is closed with \(S \subseteq \text{cl}(B)\). Observed that \(\text{int}(\text{cl}(B)) \cup \text{cl}(P) = \text{int}(B) \cup \text{cl}(\text{int}(B)) = B\), and \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) = \text{Int}(\text{Cl}(B)) \cup \text{Cl}(\text{Int}(B)) = B\).

Hence, we have \(B \setminus \text{int}(\text{cl}(B)) \cup \text{cl}(P) = \emptyset \in J\), and \(\text{Int}(S) \cup \text{Cl}(\text{Int}(B)) \setminus B = \emptyset \in J\), that is, \(B\) is \(b^*_J\)-open. \(\square\)
Lemma 5. Let \((Y, \varsigma, J)\) be an ideal space with \(J = \{\emptyset\}\). Then \(B\) is \(b^\ast\)-open precisely if \(B\) is \(b^\ast_J\)-open.

Proof. Necessity. Let \(B\) be \(b^\ast_J\)-open. Then there is an open set \(P\) such that \(P \subseteq \text{int}(B)\), and there is a close set \(S\) such that \(S \subseteq \text{cl}(B)\). Hence, \(B \subseteq \text{int}(\text{cl}(B)) \cup \text{cl}(P)\), and \(\text{int}(S) \cup \text{cl}(\text{int}(B)) \subseteq B\). Thus, \(\text{int}(\text{cl}(B)) \cup \text{cl}(\text{int}(B)) = \text{int}(S) \cup \text{cl}(\text{int}(B)) \subseteq B\), and \(\text{int}(\text{cl}(B)) \cup \text{cl}(\text{int}(B)) = \text{int}(\text{cl}(B)) \cup \text{cl}(P) \supseteq B\). Therefore, \(\text{int}(\text{cl}(B)) \cup \text{cl}(\text{int}(B)) = B\), that is, \(B\) is \(b^\ast\)-open.

Sufficiency. The converse follows from Lemma 4. \(\square\)

If \(J\) is the minimal ideal, then the notions \(b^\ast\)-compact, \(b^\ast_J\)-compact and \(cb^\ast_J\)-compact are the same. Theorem 1 shows this idea.

Theorem 1. Let \((Y, \varsigma, J)\) be an ideal space with \(J = \{\emptyset\}\). Then the following are equivalent.

(i). \((Y, \varsigma, J)\) is a \(b^\ast\)-compact ideal space.

(ii). \((Y, \varsigma, J)\) is a \(b^\ast_J\)-compact ideal space.

(iii). \((Y, \varsigma, J)\) is a \(cb^\ast_J\)-compact ideal space.

Proof. (i) implies (ii): Let \(\{U_\psi : \psi \in \Psi\}\) be a \(b^\ast_J\)-open covering \(Y\). By Lemma 5, \(\{U_\psi : \psi \in \Psi\}\) is also a \(b^\ast\)-open covering \(Y\). Since \(Y\) is a \(b^\ast\)-compact ideal space, \(\Psi\) has a smaller finite subset, say \(\Psi_0\), with \(\{U_\psi : \psi \in \Psi_0\}\) still covering \(Y\). Thus, by Lemma 5, \(\{U_\psi : \psi \in \Psi_0\}\) is a smaller finite \(b^\ast_J\)-covering of \(Y\). This shows that \(Y\) is a \(b^\ast_J\) compact set.

(ii) implies (iii): Let \(\{U_\psi : \psi \in \Psi\}\) be a \(b^\ast_J\)-open covering \(Y\). Since \(Y\) is a \(b^\ast_J\)-compact ideal space, \(\Psi\) has a smaller finite subset, say \(\Psi_0\), with \(\{U_\psi : \psi \in \Psi_0\}\) still covering \(Y\). Thus, \(Y - \bigcup_{\psi \in \Psi_0} U_\psi = \emptyset \in J\). Therefore, \(Y\) is \(cb^\ast_J\) compact set.

(iii) implies (i): Let \(\{U_\psi : \psi \in \Psi\}\) be a \(b^\ast\)-open covering \(Y\). By Lemma 5, \(\{U_\psi : \psi \in \Psi\}\) is also a \(b^\ast\)-open covering \(Y\). Since \(Y\) is a \(b^\ast\)-compact ideal space, \(\Psi\) has a smaller finite subset, say \(\Psi_0\), with \(Y - \bigcup_{\psi \in \Psi_0} U_\psi = \emptyset \in J\), that is, \(\{U_\psi : \psi \in \Psi_0\}\) is a smaller finite \(b^\ast\)-covering of \(Y\). Therefore, \(Y\) is \(b^\ast\) compact set. \(\square\)

Another characterization of \(b^\ast_J\)-compact topological spaces is presented in Theorem 2.

Theorem 2. Let \((Y, \varsigma, J)\) be an ideal space. Then statement (i) is a necessary and sufficient condition for statement (ii).

i. \((Y, \varsigma, J)\) is a \(b^\ast_J\)-compact space.

ii. If \(\{S_\psi : \psi \in \Psi\}\) is a class of \(b^\ast_J\)-closed sets with \(\bigcap\{S_\psi : \psi \in \Psi\} = \emptyset\), then \(\Psi\) has a smaller finite subset, say \(\Psi_0\), with \(\bigcap\{S_\psi : \psi \in \Psi_0\} = \emptyset\).
Note that
\[\{T \\}\ \text{sufficient condition for statement (i)}\]

Definition 1. Let \(\Psi \) be a mapping. Then:

Remark 1. \(\{11\} \)

\(M. \text{ Baldado Jr.} / \text{Eur. J. Pure Appl. Math,} \text{ 16 (3) (2023),} \text{ 1809-1816} \)

\(\text{Proof.} \ (i) \implies (ii): \) Let \(\{S_\psi : \psi \in \Psi\} \) be a class of \(b^*_Y \)-closed sets with \(\bigcap \{S_\psi : \psi \in \Psi\} = 0. \) Then \(Y = 0^C = (\bigcap \{S_\psi : \psi \in \Psi\})^C = \bigcup \{S_\psi^C : \psi \in \Psi\}. \) Hence, \(\{S_\psi^C : \psi \in \Psi\} \) is a class of \(b^*_Y \)-open sets which covers of \(Y. \) By assumption, \(\Psi \) has a smaller finite subset, say \(\Psi_0, \) with the property \(\bigcup \{S_\psi^C : \psi \in \Psi_0\} = X. \) Hence, \((\bigcap \{S_\psi : \psi \in \Psi_0\}) = \bigcup \{S_\psi^C : \psi \in \Psi_0\})^C = Y^C = 0. \)

\((ii) \implies (i): \) Let \(\{P_\psi : \psi \in \Psi\} \) be a \(b^*_Y \)-open covering of \(Y, \) i.e. \(\bigcup \{P_\psi : \psi \in \Psi\} = Y. \) Then \(\bigcap \{P_\psi^C : \psi \in \Psi\} = (\bigcup \{P_\psi : \psi \in \Psi\})^C = 0. \) Note that \(P^C \) is \(b^*_Y \)-close since \(P \) is \(b^*_Y \)-open. By assumption, \(\Psi \) has a smaller finite subset, say \(\Psi_0, \) with the property that \(\bigcap \{P_\psi^C : \psi \in \Psi_0\} = 0. \) Note that \(\bigcup \{P_\psi : \psi \in \Psi_0\} = (\bigcap \{P_\psi^C : \psi \in \Psi_0\})^C = Y. \) Hence, \(\{P_\psi : \psi \in \Psi_0\} \) is a class of \(b^*_Y \)-open sets that covers \(Y. \)

Another characterization of \(cb^*_Y \)-compact topological spaces is presented in Theorem 3.

Theorem 3. Let \((Y, \zeta, J) \) be an ideal topological space. Then \((i) \) is a necessary and sufficient condition for statement \((ii) \).

\(i. \) \((Y, \zeta, J) \) is \(cb^*_Y \)-compact.

\(ii. \) If \(\{S_\psi : \psi \in \Psi\} \) is a class of \(b^*_Y \)-closed sets with \(\bigcap \{S_\psi : \psi \in \Psi\} = 0, \) then \(\Psi \) has a smaller finite subset, say \(\Lambda_0, \) with the property that \(\bigcap \{P_\lambda : \lambda \in \Lambda_0\} \in J. \)

\(\text{Proof.} \ (i) \implies (ii): \) Let \(\{S_\psi : \psi \in \Psi\} \) be a class of \(b^*_Y \)-closed sets such that \(\bigcap \{S_\psi : \psi \in \Psi\} = 0. \) Note that \(\bigcup \{S_\psi^C : \psi \in \Psi\} = (\bigcap \{S_\psi : \psi \in \Psi\})^C = Y. \) Hence, \(\{S_\psi^C : \psi \in \Psi\} \) is a class of \(b^*_Y \)-open sets covering \(Y. \) By assumption, \(\Psi \) has a finite subset, say \(\Psi_0, \) with \(Y - \bigcup \{S_\psi^C : \psi \in \Psi_0\} \in J, \) i.e. \(\bigcap \{S_\psi : \psi \in \Psi_0\} \in J. \)

\((ii) \implies (i): \) Let \(\{P_\psi : \psi \in \Psi\} \) be a \(b^*_Y \)-open covering of \(Y, \) i.e. \(\bigcup \{P_\psi : \psi \in \Psi\} = Y. \) Note that \(\bigcap \{P_\psi^C : \psi \in \Psi\} = (\bigcup \{P_\psi : \psi \in \Psi\})^C = 0. \) By assumption, \(\Psi \) has a smaller finite subset, say \(\Psi_0, \) with \(\bigcap \{P_\psi^C : \psi \in \Psi_0\} \in J, \) i.e. \(Y - \bigcup \{P_\psi : \psi \in \Psi_0\} \in J. \)

Remark 1. \([11] \) Let \((Y, \zeta, J) \) and \((W, \xi, K) \) be ideal topological spaces, and \(\zeta : Y \to W \) be a mapping. Then:

\(i. \) \(\zeta(J) = \{\zeta(B) : B \in J\} \) is an ideal in \(W; \) And,

\(i. \) if \(\zeta \) is a one to one correspondence, then \(\zeta^{-1}(K) = \{\zeta^{-1}(D) : D \in K\} \) is an ideal in \(Y. \)

Definition 1. Let \((Y, \zeta, J) \) and \((W, \xi, K) \) be ideal spaces. A mapping \(\zeta : Y \to W \) is

\(i. \) \(b^*_Y \)-open if \(\zeta(B) \) is \(b^*_K \)-open for every \(b^*_Y \)-open set \(B \) in \(Y, \) and

\(ii. \) \(b^*_Y \)- irresolute if \(\zeta^{-1}(D) \) is \(b^*_Y \)-open for each \(b^*_K \)-open set \(D \) in \(W. \)

If the domain of a \(b^* \)- irresolute map is \(cb^*_Y \)-compact with respect to an ideal, then so is the image. We show this idea in Theorem 4.
Theorem 4. Let (Y, ς, J) and (W, ξ, K) be ideal spaces, and $\zeta : Y \to W$ be a b^*_J-irresolute function with $\zeta(J) = K$. If Y is a cb^*_J-compact, then $\zeta(Y)$ is cb^*_K-compact.

Proof. Let $\{P_\psi : \psi \in \Psi\}$ be a b^*_K-open covering of $\zeta(Y)$. Since ζ is b^*_J-irresolute, $\{\zeta^{-1}(P_\psi) : \psi \in \Psi\}$ is a b^*_J-open covering Y. By assumption, Ψ has a smaller finite subset, say Ψ_0, with $Y - \bigcup \{\zeta^{-1}(P_\psi) : \psi \in \Psi_0\} \in J$. And so by Remark 1 $\zeta(Y) \setminus \bigcup \{P_\psi : \psi \in \Psi_0\} = \zeta(Y - \bigcup \{\zeta^{-1}(P_\psi) : \psi \in \Psi_0\}) \in K$. □

If the co-domain of a b^*-open and onto map is cb^*_J-compact with respect to an ideal, then so is the domain. We show this idea in Theorem 5.

Theorem 5. Let (Y, ς, J) and (W, ξ, K) be ideal spaces, and $\zeta : Y \to W$ be a b^*_J-open and onto map with $\zeta(J) = K$. If W is cb^*_K-compact, then Y is cb^*_J-compact.

Proof. Let $\{P_\psi : \psi \in \Psi\}$ be a b^*_J-open covering of Y. Since ζ is a b^*_J-open and onto, $\{\zeta(P_\psi) : \psi \in \Psi\}$ is a b^*_K-open covering of W. By assumption, Ψ has a smaller finite subset, say Ψ_0, with $W - \bigcup \{\zeta(P_\psi) : \psi \in \Psi_0\} \in K$. Thus, $Y - \bigcup \{P_\psi : \psi \in \Psi_0\} = \zeta^{-1}(W - \bigcup \{\zeta(P_\psi) : \psi \in \Psi_0\}) \in J$. □

References

