EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Tensor Product Semi-Groups

Roshdi Khalil ${ }^{1, *}$, R. Al-Mirbati ${ }^{2}$, and D. Drissi ${ }^{3}$

${ }^{1}$ Department of Mathematics, University of Jordan, Amman-Jordan
${ }^{2}$ Gulf University for Science and Technology, Kuwait
${ }^{3}$ Department of Mathematics, Kuwait University, Kuwait

Abstract

Let X and Y be Banach spaces and $L(X, Y)$ be the space of all bounded linear operators from X to Y.If $X=Y$ we write $L(X)$ for $L(X, Y)$. Let $X \otimes Y$ be the tensor product of X and Y, and $X \stackrel{\alpha}{\otimes} Y$ be the completion of $X \otimes Y$ with respect to a uniform cross norm α. In this paper, we present an extension of the Hille-Yosida Theorem to tensor product semigroups.

2000 Mathematics Subject Classifications: Primary 47D03, Secondary 47D99
Key Words and Phrases: Semigroups of operators, Tensor product

1. Introduction

One parameter semigroups of operators have been a useful tool in the study of the socalled abstract Cauchy problem. Such a problem states as follows: Let A be a linear operator on a Banach space X, find a continuously differentiable function $T(., x)$ from $[0, \infty)$ into the domain of A such that T satisfies the differential equation $\frac{d}{d t} T(t, x)=A T(t, x),(t \geq 0)$, $T(0, x)=x$, for all $x \in \operatorname{Dom}(A)$. So much work has been done on one parameter semigroups of operators as well as its relation to the abstract Cauchy problem. For more on such topics we refer to $[3,4,9]$.

We begin recalling some standard definitions. Let X be a Banach space and $L(X)$ be the space of bounded linear operators on X. By a one parameter semigroup of operators on X we mean a map $T:[0, \infty) \rightarrow L(X)$ such that
(i) $T(0)=I$, the identity operator on X.
(ii) $T(s+t)=T(s) T(t)$ for all $s, t \geq 0$, the semigroup property.

[^0]The linear operator A whose domain $\mathfrak{D}(A)$ is given by

$$
\mathfrak{D}(A)=\left\{x \in X: \lim _{t \rightarrow 0^{+}} \frac{T(t) x-x}{t} \text { exists }\right\}
$$

such that

$$
A x=\lim _{t \rightarrow 0^{+}} \frac{T(t) x-x}{t}=\left.\frac{d^{+}}{d t}(T(t) x)\right|_{t=0} \text { for } x \in \mathfrak{D}(A)
$$

is called the infinitesimal generator of the semigroup $(T(t))_{t \geq 0}$. The generator A is always a closed, densely defined operator. It is well known that, when A is a densely defined linear operator with non empty resolvent set, then the abstract Cauchy problem has a unique solution, for all x in the domain of A, if and only if A generates a strongly continuous semigroup. (Pazy, [9, 10], Goldstein, [3]).

There are many important results on one parameter semigroups of operators. We mention two of such results:
I. Characterization of the infinitesimal generator of a semigroup.
II. "Hille-Yosida Theorem": The norm of the resolvent operator $R_{\lambda}(A)$ of the infinitesimal generator of a C_{0} semigroup tends to zero at infinity. More precisely, $\left\|R_{\lambda}(A)\right\| \leq \frac{M}{\lambda-\omega}$ for large λ, which is known as the Hille-Yosida Inequality.

In this paper, we introduce what we call a tensor product semigroup. We show that every tensor product semigroup is a two parameter semigroup. We study the relation between a tensor product semigroup and its components. As not every two parameter semigroup on $X \stackrel{\alpha}{\otimes} Y$ defines a T.P.S., we present a condition under which a two parameter semigroup be a T.P.S. We show that the operator $\overline{A_{1} \otimes I+I \otimes A_{2}}$, is the infinitesimal generator of a C_{0} T.P.S., where A_{1}, A_{2} generate the semigroup components of the T.P.S. . Equality of $\overline{A_{1} \otimes I+I \otimes A_{2}}$ and $\overline{A_{1} \otimes I}+\overline{I \otimes A_{2}}$ is proved as well.

Throughout this paper, $X \stackrel{\vee}{\otimes} Y(X \stackrel{\wedge}{\otimes} Y)$ denote the completion of the injective (the projective) tensor products of X and Y. If P and Q are elements in $L(X)$ and $L(Y)$ respectively, then $P \otimes Q$ denotes the tensor product operator on $X \otimes Y$. Further, we write $X \stackrel{\alpha}{\otimes} Y$ to denote either one of the tensor products (the projective or the injective). For more details on tensor product spaces and tensor product of operators, we refer the reader to [8].

2. Tensor Product Semigroups

Definition 1. Let X, Y be Banach spaces, and $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$ be one parameter families of operators in $L(X), L(Y)$ respectively. The family $(T(s) \otimes S(t))_{s, t \geq 0}$ is called a tensor product semigroup, (abbreviated T.P.S.) on the Banach space $X \stackrel{\alpha}{\otimes} Y$ if

1. $T(0) \otimes S(0)=I_{X \otimes Y}$,
2. $T\left(s_{1}+s_{2}\right) \otimes S\left(t_{1}+t_{2}\right)=\left(T\left(s_{1}\right) \otimes S\left(t_{1}\right)\right)\left(T\left(s_{2}\right) \otimes S\left(t_{2}\right)\right)$,

This is equivalent to

$$
T(0) \stackrel{\alpha}{\otimes} S(0)=I_{X \otimes Y}^{\alpha} \text { and } T\left(s_{1}+s_{2}\right) \stackrel{\alpha}{\otimes} S\left(t_{1}+t_{2}\right)=\left(T\left(s_{1}\right) \stackrel{\alpha}{\otimes} S\left(t_{1}\right)\right)\left(T\left(s_{2}\right) \stackrel{\alpha}{\otimes} S\left(t_{2}\right)\right) .
$$

Thus the family $(T(s) \stackrel{\alpha}{\otimes} S(t))_{s, t \geq 0}$ is a T.P.S. defined on the complete space $X \stackrel{\alpha}{\otimes} Y$. For short, we will write $(T(s) \otimes S(t))_{s, t \geq 0}$ for $(T(s) \stackrel{\alpha}{\otimes} S(t))_{s, t \geq 0}$, and I for each of $I_{X \otimes Y}$, and $I_{X \otimes Y}^{\alpha}$. It should be remarked that if we know $T(s) \otimes S(t)$ on $X \otimes Y$, then we know $T(s) \stackrel{\alpha}{\otimes} S(t)$ on $X \stackrel{\alpha}{\otimes} Y$.

One can define a T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$, to be uniformly continuous on $X \stackrel{\alpha}{\otimes} Y$ if $\operatorname{Lim}_{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)}\|T(s) \otimes S(t)-I \otimes I\|=0$, and to be strongly continuous on $X \stackrel{\alpha}{\otimes} Y\left(C_{0}\right)$ if

$$
\operatorname{Lim}_{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)}\|T(s) \stackrel{\alpha}{\otimes} S(t) z-z\|=0
$$

for all $z \in X \stackrel{\alpha}{\otimes} Y$.
One can easily see that the limit in (2) can be replaced by

$$
\operatorname{Lim}_{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)}\|(T(s) \otimes S(t))(x \otimes y)-x \otimes y\|=0
$$

for all $x \in X, y \in Y$. The proof is a consequence of the following
Lemma 1. Let X, Y be Banach spaces and α be a uniform crossnorm on $X \otimes Y$. If $\left\|\left(A_{i} \otimes B_{i}\right) z-(A \otimes B) z\right\| \rightarrow 0$ as $i \rightarrow \infty$, for all $z \in X \otimes Y$ and none of the sequences $\left(A_{i}\right),\left(B_{i}\right)$ has a subsequence that converges to zero pointwise, then $\left(A_{i} \otimes B_{i}\right)_{i}$ is uniformly bonded. Moreover, each of $\left(A_{i}\right)_{i},\left(B_{i}\right)_{i}$ is uniformly bounded.

Proof. For a fixed $0 \neq x_{0} \in X$ one can see that each vector in the space $\left[x_{0}\right] \otimes Y$ is of the form $x_{0} \otimes y$ for some $y \in Y$. Therefore, $\left[x_{0}\right] \otimes Y$ is a Banach space. Since $\left\|\left(A_{i} \otimes B_{i}\right) z-(A \otimes B) z\right\| \xrightarrow{i \rightarrow \infty} 0$ for every $z \in\left[x_{0}\right] \otimes Y$, then $\left(A_{i} \otimes B_{i}\right)$ is a pointwise bounded sequence of bounded operators on the Banach space $\left[x_{0}\right] \otimes Y$. Which implies by the Uniform Boundedness Principle that $\left(\left(A_{i} \otimes B_{i}\right)_{\left.\right|_{\left[x_{0}\right] \otimes Y}}\right)_{i}$ is uniformly bounded. That is

$$
\left\|\left(A_{i} \otimes B_{i}\right)_{\left.\left.\right|_{\left[x_{0}\right]}\right] \otimes Y}\right\| \leq c \text { for all } i \text {. But }
$$

$$
\begin{aligned}
\left\|\left(A_{i} \otimes B_{i}\right)_{\left.\right|_{\left[x_{0}\right] \otimes Y}}\right\| & =\sup _{\substack{y \in Y \\
\left\|x_{0} \otimes y\right\|=1}}\left\|\left(A_{i} \otimes B_{i}\right)\left(x_{0} \otimes y\right)\right\| \\
& =\sup _{\substack{y \in Y \\
\|y\|=\frac{1}{\left\|x_{0}\right\|}}}\left\|\left(A_{i} \otimes B_{i}\right)\left(x_{0} \otimes y\right)\right\|
\end{aligned}
$$

$$
=\sup _{\substack{y \in Y \\\|y\|=1}}\left\|A_{i} x_{0} \otimes B_{i} y\right\|=\sup _{\substack{y \in Y \\\|y\|=1}}\left\|A_{i} x_{0}\right\|\left\|B_{i} y\right\|
$$

Thus $\sup _{i}\left(\sup _{\substack{y \in Y \\\|y\|=1}}\left\|A_{i} x_{0}\right\|\left\|B_{i} y\right\|\right) \leq c$. In other words $\left\|A_{i} x_{0}\right\|\left\|B_{i} y\right\| \leq c$ for all i for all $y \in Y$.
Under the assumption that $A_{i} x_{0}$ does not converge to zero, we obtain that $\left(B_{i}\right)$ is uniformly bounded on Y. Repeating the same approach and choosing $0 \neq y_{0} \in Y$, one can show that $\left(A_{i}\right)$ is uniformly bounded on X. The lemma is then completely proved.

One can easily prove the following result.
Lemma 2. Let X, Y be Banach spaces and $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$, be one parameter families of operators in $L(X), L(Y)$ respectively. Then the following are equivalent:
a. $T(s)$ is a one parameter semigroup on X.
b. $\quad T(s) \otimes I$ is a one parameter semigroup on $X \stackrel{\alpha}{\otimes} Y$.
c. $I \otimes T(s)$ is a one parameter semigroup on $Y \stackrel{\alpha}{\otimes} X$.

The following Lemma is essential for Theorem 1. Its proof is different from the proof in [7].

Lemma 3. Let X, Y be Banach spaces, α any crossnorm on $X \otimes Y$. Let $a, c \in X, b, d \in Y$ be nonzero vectors. If $a \otimes b=c \otimes d$, then there exists a nonzero scalar β such $a=\beta c, b=\frac{1}{\beta} d$.

Proof. Let $x^{*} \in X^{*}$. Then $x^{*}(a) b=x^{*}(c) d$. In particular, this holds for an x^{*} satisfying that $x^{*}(c)=\|c\|$. That is, $\frac{x^{*}(a)}{\|c\|} b=d$. It is clear that $x^{*}(a)$ is not zero. Choose $\frac{x^{*}(a)}{\|c\|}=\beta$. Then $(a-\beta c) \otimes b=0$. Thus, $x^{*}(a-\beta c) b=0$ for all $x^{*} \in X^{*}$. Choosing $x^{*} \in X^{*}$, such that $x^{*}(a-\beta c)=\|a-\beta c\|$ completes the proof.

Theorem 1. Let X, Y be Banach spaces, $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$ one parameter families of operators in $L(X), L(Y)$ respectively. Then the family $T(s) \otimes S(t)$ is a T.PS. on $X \stackrel{\alpha}{\otimes} Y$ if and only if there is a unique $0 \neq \beta \in \mathfrak{R}$, and unique one parameter semigroups $(\widehat{T}(s))_{s \geq 0}(\widehat{S}(t))_{t \geq 0}$ on X, Y respectively, such that

$$
\beta T(s)=\widehat{T}(s) \text { and } \frac{1}{\beta} S(t)=\widehat{S}(t) \text { for all } s, t \geq 0 .
$$

Proof. If $\beta=1$ then $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$ define one parameter semigroups. Therefore, from Lemma 3, each of $T(s) \otimes I$ and $I \otimes S(t)$ is a one parameter semigroup on $X \stackrel{\alpha}{\otimes} Y$. Consequently,

$$
(T(s) \otimes I)(I \otimes S(t))=T(s) \otimes S(t)=(I \otimes S(t))(T(s) \otimes I)
$$

is a T.P.S. on $X \stackrel{\alpha}{\otimes} Y$.
If $\beta \neq 1$, then $T(s), S(t)$ are not semigroups of operators since $T(0)=\frac{1}{\beta} I \neq I$ even though, $T(s) \otimes S(t)$ is a T.R.S.

To show necessity, let $T(s) \otimes S(t)$ be a T.P.S. on $X \stackrel{\alpha}{\otimes} Y$. then $T(0) \otimes S(0)=I \otimes I$, and by Lemma 3, there exists $0 \neq \gamma \in \mathfrak{R}$ such that $T(0)=\gamma I$, and $S(0)=\frac{1}{\gamma} I$. Define the families $\widehat{T}(s)$ and $\widehat{S}(t)$ from $\mathfrak{R}^{+{ }^{2}}$ into $L(X \stackrel{\alpha}{\otimes} Y)$ so that $\widehat{T}(s)=\frac{1}{r} T(s)$ and $\widehat{S}(t)=\gamma S(t), s, t \geq 0$. Clearly, $\widehat{T}(s) \otimes \widehat{S}(t)$ is the T.P.S. $T(s) \otimes S(t)$. Moreover, $\widehat{T}(s), \widehat{S}(t)$ are one parameter semigroups on X, Y respectively. Indeed, $\widehat{T}(0)=\frac{1}{\gamma} T(0)=I$ and $\widehat{S}(0)=\gamma S(0)=I$. To show the semigroup property for $\widehat{T}(s)$, let $s_{1}, s_{2} \in \mathfrak{R}^{+^{2}}$ and let $x \in X$. Then for any $0 \neq y \in Y$ we have

$$
\begin{aligned}
& \left\|\widehat{T}\left(s_{1}+s_{2}\right) x-\widehat{T}\left(s_{1}\right) \widehat{T}\left(s_{2}\right) x\right\| \\
= & \frac{1}{\|y\|}\left\|\left(\widehat{T}\left(s_{1}+s_{2}\right) x-\widehat{T}\left(s_{1}\right) \widehat{T}\left(s_{2}\right) x\right) \otimes y\right\| \\
= & \frac{1}{\|y\|}\left\|\left(\left(\widehat{T}\left(s_{1}+s_{2}\right) \otimes I\right)-\left(\widehat{T}\left(s_{1}\right) \widehat{T}\left(s_{2}\right) \otimes I\right)\right)(x \otimes y)\right\| \\
= & \frac{1}{\|y\|}\left\|\left(\widehat{T}\left(s_{1}+s_{2}\right) \otimes \widehat{S}(0+0)\right)-\left(\widehat{T}\left(s_{1}\right) \widehat{T}\left(s_{2}\right) \otimes \widehat{S}(0) \widehat{S}(0)\right)(x \otimes y)\right\| \\
= & \frac{\left\|\left[\left(\widehat{T}\left(s_{1}+s_{2}\right) \otimes \widehat{S}(0+0)\right)-\left(\widehat{T}\left(s_{1}\right) \otimes \widehat{S}(0)\right)\left(\widehat{T}\left(s_{2}\right) \otimes \widehat{S}(0)\right)\right](x \otimes y)\right\|}{\|y\|} \\
= & \frac{1}{\|y\|}\left\|\left(\left(T\left(s_{1}+s_{2}\right) \otimes S(0+0)\right)-\left(T\left(s_{1}\right) \otimes S(0)\right)\left(T\left(s_{2}\right) \otimes S(0)\right)\right)(x \otimes y)\right\| .
\end{aligned}
$$

Therefore $\widehat{T}\left(s_{1}+s_{2}\right)=\widehat{T}\left(s_{1}\right) \widehat{T}\left(s_{2}\right)$. Similarly, $(\widehat{S}(t))_{t \geq 0}$ satisfies the semigroup property. Hence $\widehat{T}(s)$ and $\widehat{S}(t)$ are one parameter semigroups on X, Y respectively.

The proof of Theorem 1 shows that if $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$, are one parameter semigroups on X, Y respectively, then the family $(T(s) \otimes S(t))_{s, t \geq 0}$ is a T.P.S. on $X \stackrel{\alpha}{\otimes} Y$.

As for the continuity of tensor product semigroups it is not difficult to see
Lemma 4. Let X, Y be Banach spaces, $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$, one parameter families of operators in $L(X), L(Y)$ respectively. If $T(s) \otimes S(t)$ is a T.P.S. and $\widehat{T}(s), \widehat{S}(t)$ are as in Theorem 1, then the following are equivalent
a. $T(s) \otimes S(t)$ is uniformly (strongly) continuous.
b. $\widehat{T}(s) \otimes I$ and $I \otimes \widehat{S}(t)$ are uniformly (strongly) continuous.
c. $\widehat{T}(s)$ and $\widehat{S}(t)$ are uniformly (strongly) continuous.

Now, if $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$, are one parameter families of operators in $L(X), L(Y)$ respectively and $T(s) \otimes S(t)$ is a T.PS., then:

If $T(s) \otimes S(t)$ is uniformly (strongly) continuous, then the map
$F(s, t): \mathfrak{R}^{+^{2}}=[0, \infty) \times[0, \infty) \rightarrow L(X \stackrel{\alpha}{\otimes} Y)$ defined by $F(s, t) \rightarrow T(s) \otimes S(t)$ is continuous in the uniform (strong) operator topology. Further, $F(s, t)$ is uniformly (strongly) continuous if and only if it is separately uniformly (strongly) continuous.

The proof of the following proposition is straight forward, and will be omitted.
Proposition 1. Let $L(s, t)$ be a 2-parameter semigroup on the Banach space $X \stackrel{\alpha}{\otimes} Y$, such that

$$
\begin{aligned}
& L(s, 0)(x \otimes y)=(f(s) x) \otimes y \text { for all } x \in X, y \in Y \\
& L(0, t)(x \otimes y)=x \otimes(g(t) y) \text { for all } x \in X, y \in Y
\end{aligned}
$$

where f, g are any functions on X, Y respectively. Then

1. $(f(s))_{s \geq 0}$, and $(g(t))_{t \geq 0}$ are one parameter semigroups on X, Y respectively.
2. $L(s, t)$ is uniformly (strongly) continuous if and only if each of the one parameter semigroups $L(s, 0)$ and $L(0, t)$ is uniformly (strongly) continuous.

It follows from the definition of a two-parameter semigroup [7], we observe that a T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$ defines a two-parameter semigroup $(L(s, t))_{s, t \geq 0}=L(s, t)=T(s) \otimes S(t)$. Note that $L(s, t)=L(s, 0) L(0, t)$, where $L(s, 0)=T(s) \otimes S(0)=T(s) \otimes I$ and $L(0, t)=T(0) \otimes S(t)=I \otimes S(t)$.

3. The Infinitesimal Generator of a T.P.S.

Let $(T(s) \otimes S(t))_{s, t \geq 0}$ be a C_{0} T.P.S. on $X \stackrel{\alpha}{\otimes} Y$ and A_{1}, A_{2} be the infinitesimal generators of the one parameter C_{0} semigroups $(\widehat{T}(s))_{s \geq 0},(\widehat{S}(t))_{t \geq 0}$ on X, Y respectively, where $(\widehat{T}(s))_{s \geq 0},(\widehat{S}(t))_{t \geq 0}$ are as in Theorem 1.
Remark 1. Let us recall the followings.

1. Let X be a normed space and A be a linear operator, $A: \mathfrak{D}(T) \subseteq X \rightarrow X$. A subspace Z of the domain $\mathfrak{D}(A)$ is called a core for A if Z is dense in $\mathfrak{D}(A)$ for the graph norm $\|A\|_{A}:=\|x\|+\|A x\|$. [2]
2. A function $G: \mathfrak{R}^{+2} \rightarrow X \stackrel{\alpha}{\otimes} Y$, is said to be differentiable at $(0,0)$ if there exists a linear transformation $\mathfrak{L}: \mathfrak{R}^{+2} \rightarrow X \stackrel{\alpha}{\otimes} Y$ such that

$$
\lim _{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{\|G(s, t)-G(0,0)-\mathfrak{L}((s, t)-(0,0))\|}{\|(s, t)\|}=0 .
$$

In other words,

$$
G(s, t)-G(0,0)=\mathfrak{L}(s, t)+R(s, t),
$$

where

$$
\lim _{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{\|R(s, t)\|}{\|(s, t)\|}=0
$$

3. The transformation \mathfrak{L} above, if it exists, is unique, and it is called the derivative of G at $(0,0)$.
4. For a fixed $z \in X \stackrel{\alpha}{\otimes} Y$, if $G(s, t) z=(T(\cdot) \otimes S(\cdot \cdot)) z$, then (2) becomes

$$
(T(s) \stackrel{\alpha}{\otimes} S(t)) z-z=\mathfrak{L}(s, t) z+R(s, t) z,
$$

and (2) comes to

$$
\lim _{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{\|R(s, t) z\|}{\|(s, t)\|}=0
$$

for all z where (2) holds.
5. If it is shown that for any z satisfying (4), one has the same $\mathfrak{L}(\cdot, \cdot \cdot)$ in (4), then one can consider the derivative as the linear transformation from $\mathfrak{R}^{+{ }^{2}} \rightarrow \mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$, where $\mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$ is the space of linear (not necessarily bounded) operators on $X \stackrel{\alpha}{\otimes} Y$, in the following sense:
For all z such that (4) holds, there is a linear transformation $\widehat{\mathfrak{L}}: \mathfrak{R}^{+{ }^{2}} \rightarrow \mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$, where $(s, t) \mapsto \widehat{\mathfrak{L}}(s, t)$ such that $\widehat{\mathfrak{L}}(s, t) z=\mathfrak{L}(s, t) z$.
6. In case of item 5 holds, if moreover, \mathfrak{L} is of the form $\left(\mathfrak{L}_{1}, \mathfrak{L}_{2}\right)$ then for any $(s, t) \in \mathfrak{R}^{+2}$ the domain of $\widehat{\mathfrak{L}}(s, t)$ is $\mathfrak{D}\left(s \mathfrak{L}_{1}+t \mathfrak{L}_{2}\right)$, the domain of $s \mathfrak{L}_{1}+t \mathfrak{L}_{2}$ which is $\mathfrak{D}\left(\mathfrak{L}_{1}\right) \cap \mathfrak{D}\left(\mathfrak{L}_{2}\right)$.

Definition 2. Let $(T(s) \otimes S(t))_{s, t \geq 0}$ be a T.P.S. on $X \stackrel{\alpha}{\otimes} Y$. The infinitesimal generator A of $(T(s) \otimes S(t))_{s, t \geq 0}$ is defined as follows

$$
\begin{aligned}
\mathfrak{D}(A) & =\{z \in X \stackrel{\alpha}{\otimes} Y:(T(s) \stackrel{\alpha}{\otimes} S(t)) z \text { is differentiable at }(0,0)\}, \\
A z & =D(T(s) \stackrel{\alpha}{\otimes} S(t)) z_{(s, t)=(0,0)} \text { for } z \in \mathfrak{D}(A),
\end{aligned}
$$

where $\mathfrak{D}(A)$ is the domain of A, and $D(T(s) \stackrel{\alpha}{\otimes} S(t)) z_{(s, t)=(0,0)}$ is the derivative of $T(s) \stackrel{\alpha}{\otimes} S(t) z$ as a function of two variables at $(s, t)=(0,0)$.

Lemma 5. $\left(A_{1} \otimes I\right)(x \otimes y)=\frac{\partial}{\partial s}((T(s) \otimes S(t))(x \otimes y))_{\left.\right|_{(s, t)=(0,0)}}$, and $\left(I \otimes A_{2}\right)(x \otimes y)=$ $\frac{\partial}{\partial t}((T(s) \otimes S(t))(x \otimes y))_{\left.\right|_{(s, t)=(0,0)}}$ for all $x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$, where A_{1} and A_{2} are the infinitesimal generators of the coordinate semigroups respectively.

Proof. Let $x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$. Then

$$
\begin{aligned}
\frac{\partial}{\partial s}(T(s) \otimes S(t)(x \otimes y))_{((s, t)=(0,0)} & =\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{(T(h) \otimes S(0))(x \otimes y)-(T(0) \otimes S(0))(x \otimes y)}{h} \\
& =\operatorname{Lim}_{h \rightarrow 0^{+}}\left(\left(\frac{T(h)-I}{h} x\right) \otimes y\right) \\
& =\left[\operatorname{Lim}_{h \rightarrow 0^{+}}\left(\frac{T(h)-I}{h} x\right)\right] \otimes y=\left(A_{1} x\right) \otimes y .
\end{aligned}
$$

Similarly for $I \otimes A_{2}$.
Now, Let $(T(s) \stackrel{\alpha}{\otimes} I)_{s \geq 0},(T(s))_{s \geq 0}$ be one parameter C_{0} semigroups on the Banach spaces $X \stackrel{\alpha}{\otimes} Y, X$ with infinitesimal generators A, A_{1} respectively. Then, one can easily see:
a. $\mathfrak{D}\left(A_{1}\right) \otimes Y$ is a subspace of $\mathfrak{D}(A)$.
b. $\mathfrak{D}\left(A_{1}\right) \otimes Y$ is dense in $X \stackrel{\alpha}{\otimes} Y$.
c. $\mathfrak{D}\left(A_{1}\right) \otimes Y$ is invariant under $T(s) \stackrel{\alpha}{\otimes} I$.
d. $\mathfrak{D}\left(A_{1}\right) \otimes Y$ is a core for A.

Lemma 6. Suppose that $(T(s))_{s \geq 0},(S(t))_{t \geq 0}$ are one parameter C_{0} semigroups on the Banach spaces X, Y with infinitesimal generators A_{1}, A_{2} respectively. Then $\overline{A_{1} \otimes I}$ and $\overline{I \otimes A_{2}}$ are the infinitesimal generators of the one parameter C_{0} semigroups $(T(s) \stackrel{\alpha}{\otimes} I)_{s \geq 0},(I \stackrel{\alpha}{\otimes} S(t))_{t \geq 0}$ respectively on $X \stackrel{\alpha}{\otimes} Y$.

Proof. First let $z=x \otimes y$, for some $x \otimes y \in \mathfrak{D}\left(A_{1}\right) \otimes Y$. If A is the infinitesimal generator of $(T(s) \stackrel{\alpha}{\otimes} I)_{s \geq 0}$, then $A z=\left(A_{1} \otimes I\right) z$. This means that $A_{\left.\right|_{\mathfrak{D}\left(A_{1}\right) \otimes Y}}=A_{1} \otimes I$. In other words, A is an extension of $A_{1} \otimes I$ from the subspace $\mathfrak{D}\left(A_{1}\right) \otimes Y$ to the domain $\mathfrak{D}(A)$ of A. Being the infinitesimal generator of a one parameter C_{0} semigroup, A is closed [9]. Thus A is a closed extension of $A_{1} \otimes I$. But $A_{1} \otimes I$ is closable [6]. Since the closure of an operator is its smallest closed extension, then $A \supset \overline{A_{1} \otimes I} \supset A_{1} \otimes I$. On the other hand, by [6], $\overline{A_{1} \otimes I}$ is the maximal extension of $A_{1} \otimes I$. Therefore $A \subset \overline{A_{1} \otimes I}$. Hence $A=\overline{A_{1} \otimes I}$. Similarly, one can show that $\overline{I \otimes A_{2}}$ generates $(I \stackrel{\alpha}{\otimes} S(t))_{t \geq 0}$.

Theorem 2. The infinitesimal generator of a C_{0} T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$ is the linear transformation $\mathfrak{L}: \mathfrak{R}^{+^{2}} \rightarrow \mathscr{L}(X \stackrel{\alpha}{\otimes} Y),(a, b) \longmapsto\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)(a, b)\right)=\left(a \overline{A_{1} \otimes I}+b \overline{I \otimes A_{2}}\right)$, where A_{1}, A_{2} are the infinitesimal generators of the one parameter C_{0} semigroups $(\widehat{T}(s))_{s \geq 0^{\prime}}(\widehat{S}(t))_{t \geq 0}$ respectively.

Proof. First, we should notice that $\mathfrak{L}(a, b)(x \otimes y)=\left(a A_{1} \otimes I, b I \otimes A_{2}\right)(x \otimes y)$ for all $x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$. Now, Let $(T(s) \otimes S(t))_{s, t \geq 0}$ be a C_{0} T.P.S., A its infinitesimal generator and let $z \in \mathfrak{D}(A)$. That is, $z \in X \stackrel{\alpha}{\otimes} Y$ such that $(T(s) \stackrel{\alpha}{\otimes} S(t)) z$ is differentiable at $(0,0)$. Thus $D((T(s) \stackrel{\alpha}{\otimes} S(t)) z)_{\left.\right|_{(s, t)=(0,0)}}$ exists. In other words, there exist z_{1}, z_{2} in $X \stackrel{\alpha}{\otimes} Y$ such that $\lim _{(s, t) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{\left\|\{(T(s) \otimes S(t))-T(0) \otimes S(0)\} z-s z_{1}-t z_{2}\right\|}{\|(s, t)\|}=0$. In particular, choose (s, t) to be $(s, 0)$ where $s \rightarrow 0^{+}$. Then $\lim _{s \rightarrow 0^{+}} \frac{\left\|\{(T(s) \otimes S(0))-T(0) \otimes S(0)\} z-s z_{1}\right\|}{s}=0$. Therefore,

$$
\lim _{s \rightarrow 0^{+}} \frac{\left\|\{(\widehat{T}(s) \otimes I)-I \otimes I\} z-s z_{1}\right\|}{s}=\lim _{s \rightarrow 0^{+}}\left\|\frac{\{(\widehat{T}(s) \otimes I)-I \otimes I\}}{s} z-z_{1}\right\|=0
$$

From Lemma $6, z_{1}=\left(\overline{A_{1} \otimes I}\right) z$, where A_{1} generates the C_{0} semigroup $(\widehat{T}(s))_{s \geq 0}$. Similarly, one can show that $z_{2}=\left(\overline{I \otimes A_{2}}\right) z$. Since z was arbitrarily chosen in $\mathfrak{D}(A)$, this shows that $\mathfrak{D}(A)$ is a subspace of $X \stackrel{\alpha}{\otimes} Y$. Further, $\mathfrak{D}(A) \subseteq \mathfrak{D}\left(\overline{A_{1} \otimes I}\right) \cap \mathfrak{D}\left(\overline{I \otimes A_{2}}\right)$. Now let $z \in \mathfrak{D}\left(\overline{A_{1} \otimes I}\right) \cap \mathfrak{D}\left(\overline{I \otimes A_{2}}\right)$ and $s, t>0$. Set

$$
J(s, t)=(T(s) \otimes S(t))-(T(0) \otimes S(0))-\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{s}{t} .
$$

Then

$$
\begin{aligned}
& \|J(s, t) z\|=\left\|\begin{array}{c}
(T(s) \stackrel{\alpha}{\otimes} S(t))(z)-(z) \\
-\left(s \overline{A_{1} \otimes I}\right)(z)-\left(t \overline{I \otimes A_{2}}\right)(z)
\end{array}\right\| \\
& \leq\left\|\begin{array}{c}
(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)(I \stackrel{\alpha}{\otimes} \widehat{S}(t))(z) \\
-(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)(z)-\left(t \overline{I \otimes A_{2}}\right)(z)
\end{array}\right\| \\
& +\left\|(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)(z)-(z)-\left(s \overline{A_{1} \otimes I}\right)(z)\right\| \\
& \leq t\left\|\begin{array}{c}
\left\|(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)\left(\frac{\left(I{ }^{\alpha} \widehat{\otimes}(t)\right)(z)-\left(\begin{array}{c}
\alpha \\
\otimes \\
\otimes
\end{array}\right)(z)}{t}\right)\right\| \\
-\left(\overline{I \otimes A_{2}}\right)(z)
\end{array}\right\| \\
& +s\left\|\left(\frac{\widehat{T}(s) \stackrel{\alpha}{\otimes} I-I \stackrel{\alpha}{\otimes} I}{s}\right)(z)-\left(\overline{A_{1} \otimes I}\right)(z)\right\| .
\end{aligned}
$$

Divide both sides by $\|(s, t)\|=\sqrt{s^{2}+t^{2}}$ to get

$$
\frac{\|J(s, t) z\|}{\|(s, t)\|} \leq \psi_{s, t}\left\|(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)\left[\left\{\frac{1}{t}(I \stackrel{\alpha}{\otimes} \widehat{S}(t)-(I \stackrel{\alpha}{\otimes} I))-\left(\overline{I \otimes A_{2}}\right)\right\}(z)\right]\right\|
$$

$$
+\phi_{s, t}\left\|\left\{\frac{1}{s}(\widehat{T}(s) \stackrel{\alpha}{\otimes} I-I \stackrel{\alpha}{\otimes} I)-\left(\overline{A_{1} \otimes I}\right)\right\}(z)\right\|,
$$

where $\psi_{s, t}=\frac{t}{\sqrt{s^{2}+t^{2}}}, \phi_{s, t}=\frac{s}{\sqrt{s^{2}+t^{2}}}$. But $\psi_{s, t} \leq 1, \phi_{s, t} \leq 1$ for all $s, t>0$. Therefore,

$$
\begin{aligned}
\frac{\|J(s, t) z\|}{\|(s, t)\|} \leq & \left\|(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)\left[\left\{\frac{1}{t}(I \stackrel{\alpha}{\otimes} \widehat{S}(t)-(I \stackrel{\alpha}{\otimes} I))-\left(\overline{I \otimes A_{2}}\right)\right\}(z)\right]\right\| \\
& +\left\|\left\{\frac{1}{s}(\widehat{T}(s) \stackrel{\alpha}{\otimes} I-I \stackrel{\alpha}{\otimes} I)-\left(\overline{A_{1} \otimes I}\right)\right\}(z)\right\|,
\end{aligned}
$$

As $(s, t) \rightarrow\left(0^{+}, 0^{+}\right)$, the second norm in the right hand side converges to zero, whereas the first norm converges to zero by Lemma 6, the strong continuity of $(\widehat{T}(s) \stackrel{\alpha}{\otimes} I)_{s \geq 0}$, and the uniform boundedness principle. Therefore, $\frac{\|J(s, t) z\|}{\|(s, t)\|} \rightarrow 0$ as $(s, t) \rightarrow\left(0^{+}, 0^{+}\right)$. Now, define $\mathfrak{L}: \mathfrak{R}^{+{ }^{2}} \rightarrow \mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$ by $(\mathfrak{L}(s, t)) z=\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{s}{t}\right) z$ for every $z \in \mathfrak{D}\left(\left(\overline{A_{1} \otimes I}\right)\binom{s}{t}\right) \cap$ $\mathfrak{D}\left(\left(\overline{I \otimes A_{2}}\right)\binom{s}{t}\right)=\mathfrak{D}\left(\left(\overline{A_{1} \otimes I}\right)\right) \cap \mathfrak{D}\left(\left(\overline{I \otimes A_{2}}\right)\right)$. Then
$D(T(s) \otimes S(t))_{(s, t)=(0,0)}^{\mid}=\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$, as a linear transformation from $\mathfrak{R}^{+^{2}}$ to $\mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$ is the derivative of the C_{0} T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$ at $(0,0)$. Hence the linear transformation $\mathfrak{L}=\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$ is the infinitesimal generator of the C_{0} T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$.

Remark 2. One can show that for any nonzero $(a, b) \in \mathfrak{R}^{+{ }^{2}}, \mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(A_{2}\right)$ is a core for $\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}$.

1. In general, if A, B are closable, or even, closed linear operators on the Banach space X, then $A+B$ need not be closed. But, Theorem 1.1 in [5] ensures that $a A_{1} \otimes I+b, I \otimes A_{2}, a, b \neq 0$ is closable. Moreover, its closure is $a \overline{A_{1} \otimes I}+b \overline{I \otimes A_{2}}$.
2. Since the restriction of $\mathfrak{L}(a, b)$ to $X \otimes Y$ is defined by

$$
\mathfrak{L}(a, b)(x \otimes y)=\left(a A_{1} \otimes I+b I \otimes A_{2}\right)(x \otimes y)=\left(A_{1} \otimes I+I \otimes A_{2}\right)\binom{a}{b}(x \otimes y),
$$

for all $x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$, and since $X \otimes Y$ is dense in $X \stackrel{\alpha}{\otimes} Y$, it is enough to study $T(s) \otimes S(t)$ instead of its extension $T(s) \stackrel{\alpha}{\otimes} S(t)$, and $\left(A_{1} \otimes I+I \otimes A_{2}\right)\binom{a}{b}$ instead of its closure $\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}$.
From now on, the infinitesimal generator of $(T(s) \otimes S(t))_{s, t \geq 0}$ will be denoted by $\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$.

Lemma 7. If $(T(s) \otimes I)_{s \geq 0}$ is a C_{0} semigroup on $X \stackrel{\alpha}{\otimes} Y$ with infinitesimal generator $\overline{A_{1} \otimes I}$ where A_{1} is a linear operator on X, then $(T(s))_{s \geq 0}$ is a C_{0} semigroup on X with infinitesimal generator A_{1}.

The proof follows from general functional analysis arguments and will be omitted.
Lemma 8. If $(T(s) \otimes S(t))_{s, t \geq 0}$ is a C_{0} T.P.S. on $X \stackrel{\alpha}{\otimes} Y$, then for every $(a, b) \in \mathfrak{R}^{+{ }^{2}}$, the family $(T(a s) \otimes S(b s))_{s \geq 0}$ is a one parameter C_{0} semigroup on the Banach space $X \stackrel{\alpha}{\otimes} Y$.

Proof. Let $Q(h)=T(a h) \otimes S(b h)$. Then $Q(0)=I$, where I is the identity on $X \otimes Y$, and

$$
\begin{aligned}
Q\left(h_{1}+h_{2}\right) & =\left(T\left(a h_{1}\right) \otimes S\left(b h_{1}\right)\right)\left(T\left(a h_{2}\right) \otimes S\left(b h_{2}\right)\right) \\
& =Q\left(h_{1}\right) Q\left(h_{2}\right) .
\end{aligned}
$$

Put $b h=t, a h=s$. Since

$$
h \rightarrow 0^{+} \text {if and only if } s=a h \rightarrow 0^{+} \text {if and only if } t=b h \rightarrow 0^{+},
$$

then the function $Q(h)=T(s) \otimes S(t)$ converges to I as $h \rightarrow 0^{+}$in the strong operator topology.
Lemma 9. Let $0 \neq(a, b) \in \mathfrak{R}^{+^{2}}$. Then the infinitesimal generator of the one parameter C_{0} semigroup $(T(a s) \otimes S(b s))_{s \geq o}$ is the linear operator

$$
a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}} .
$$

Proof. The generator of the one parameter semigroup $(T(a s) \otimes S(b s))_{s \geq o}$ is given by

$$
\begin{aligned}
\frac{d^{+}}{d s}(T(a s) \otimes S(b s))_{\left.\right|_{s=0}} & =\frac{d^{+}}{d s}(T(a s) \otimes I)(I \otimes S(b s))_{\left.\right|_{s=0}} \\
& =\frac{d^{+}}{d s}(\widehat{T}(a s) \otimes I)(I \otimes \widehat{S}(b s))_{\left.\right|_{s=0}} .
\end{aligned}
$$

Being the derivative of a function of one variable at $s=0$, the derivative is

$$
\begin{align*}
& \left(\frac{d^{+}}{d s}(\widehat{T}(a s) \otimes I)_{\left.\right|_{s=0}}\right)(I \otimes \widehat{S}(0))+(\widehat{T}(0) \otimes I)\left(\frac{d^{+}}{d s}(I \otimes \widehat{S}(b s))_{\left.\right|_{s=0}}\right) \\
= & a\left(\frac{d^{+}}{d(a s)}(\widehat{T}(a s) \otimes I)_{\left.\right|_{s=0}}\right)(I \otimes I)+(I \otimes I) b\left(\frac{d^{+}}{d(a s)}(I \otimes \widehat{S}(b s))_{\left.\right|_{s=0}}\right) \tag{1}
\end{align*}
$$

and this is just $a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}$.
Corollary 1. The linear operator $a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}$ is closed and densely defined.
Corollary 2. For every $0 \neq(a, b) \in \mathfrak{R}^{+^{2}}$ the linear operator $a A_{1} \otimes I+b, I \otimes A_{2}$ is closable, densely defined and its closure is $a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}$.

Proof. Being closable is proved in [6]. Since

$$
\begin{aligned}
\mathfrak{D}\left(a A_{1} \otimes I+b, I \otimes A_{2}\right) & =\left(\mathfrak{D}\left(A_{1}\right) \otimes Y\right) \cap\left(X \otimes \mathfrak{D}\left(, A_{2}\right)\right) \\
& =\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(, A_{2}\right),
\end{aligned}
$$

and since A_{1}, A_{2} are densely defined in X, Y respectively, one can show that the subspace $\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(, A_{2}\right)$ is dense in $X \otimes Y$, which is in turn dense in $X \stackrel{\alpha}{\otimes} Y$. Thus $a A_{1} \otimes I+b, I \otimes A_{2}$ is densely defined on $X \stackrel{\alpha}{\otimes} Y$. So

$$
\left(a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}\right)(x \otimes y)=\left(a A_{1} \otimes I+b, I \otimes A_{2}\right)(x \otimes y),
$$

for all $x \otimes y \in \mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(, A_{2}\right)$. That is

$$
\left(a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}\right)_{\mid(X \otimes Y) \cap \otimes\left(a A_{1} \otimes I+b, I \otimes A_{2}\right)}=a A_{1} \otimes I+b, I \otimes A_{2} .
$$

Therefore, $B=a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}$ is an extension of $A=a A_{1} \otimes I+b, I \otimes A_{2}$ from the subspace $\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(, A_{2}\right)$ to $\mathfrak{D}(B)$. From Corollary $1, B$ is a closed extension of A. Since A is closable, and the closure is the smallest closed extension, $\bar{A} \subset B$. On the other hand, A is closable, and the closure of a closable operator is its maximal extension. Thus $B \subset \bar{A}$. Hence $\bar{A}=B$ completes the proof of the corollary.

Corollary 3. Let $(T(s) \otimes S(t))_{s, t \geq 0}$ be a C_{0} T.P.S. on $X \stackrel{\alpha}{\otimes} Y$, with infinitesimal generator $\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$ and $0 \neq(a, b) \in \mathfrak{R}^{+{ }^{2}}$. Then the infinitesimal generator of the one parameter C_{0} semigroup $(T(a s) \otimes S(b s))_{s \geq 0}$ is the linear operator $a \overline{A_{1} \otimes I}+b, \overline{I \otimes A_{2}}=\overline{a\left(A_{1} \otimes I\right)+b\left(I \otimes A_{2}\right)}$.

As a consequence of Corollary 3, we obtain Nagel's result [1, Proposition, Sec. 3.7].
Corollary 4. The infinitesimal generator of the one parameter C_{0} T.P.S. $(T(t) \otimes S(t))_{t \geq 0}$, is $\overline{\left(A_{1} \otimes I\right)+\left(I \otimes A_{2}\right)}$ defined on the core $\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(A_{2}\right)$ of the generator.

Proof. From Corollary 3 the operator

$$
a \overline{a\left(A_{1} \otimes I\right)}+b, \overline{\left(I \otimes A_{2}\right)}=\overline{a\left(A_{1} \otimes I\right)+b\left(I \otimes A_{2}\right)}
$$

generates $(T(a t) \otimes S(b t))_{t \geq 0}$. As a particular case take $(a, b)=(1,1)$. Then

$$
\overline{\left(A_{1} \otimes I\right)+\left(I \otimes A_{2}\right)}
$$

is the infinitesimal generator of the one parameter C_{0} semigroup $(T(t) \otimes S(t))_{t \geq 0}$. But $\left(A_{1} \otimes I\right)+\left(I \otimes A_{2}\right)$ is defined on $\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(A_{2}\right)$, which is a core for the infinitesimal generator $\overline{\left(A_{1} \otimes I\right)+\left(I \otimes A_{2}\right)}$

Definition 3. Let $(T(s))_{s \geq 0}$ and $(S(t))_{t \geq 0}$ be one parameter C_{0} semigroups on the Banach spaces X and Y respectively. For $u=(a, b) \in \mathfrak{R}^{+^{2}}$, the almost directional derivative $\mathfrak{a} . D_{u}$ of $T(s) \otimes S(t)$ at $(0,0)$ is defined by

$$
\mathfrak{D}\left(\mathfrak{a} \cdot D_{u}(T(s) \stackrel{\alpha}{\otimes} S(t))_{\left.\right|_{(s, t)=(0,0)}}\right)=\left\{z \in X \stackrel{\alpha}{\otimes} Y: \lim _{h \rightarrow 0^{+}} \frac{T(a h) \stackrel{\alpha}{\otimes} S(b h) z-z}{h} \text { exists }\right\}
$$

and

$$
\left(\mathfrak{a} \cdot D_{u}(T(s) \stackrel{\alpha}{\otimes} S(t)) \underset{(s, t)=(0,0)}{\mid}\right) z=\lim _{h \rightarrow 0^{+}} \frac{(T(a h) \stackrel{\alpha}{\otimes} S(, b h)) z-z}{h}
$$

It follows from the definition that the almost directional derivative $\mathfrak{a} \cdot D_{u}(T(s) \stackrel{\alpha}{\otimes} S(t))_{\left.\right|_{(s, t)=(0,0)}}$ is the infinitesimal generator of the one parameter C_{0} semigroup $(T(a t) \otimes S(, b t))_{t \geq 0}$. Further, for $u=(a, b) \in \mathfrak{R}^{+^{2}}, \mathfrak{a} \cdot D_{u}(T(s) \stackrel{\alpha}{\otimes} S(t)) \underset{(s, t)=(0,0)}{\mid}=\left(a \overline{A_{1} \otimes I}+b \overline{I \otimes A_{2}}\right)=\overline{a\left(A_{1} \otimes I\right)+b\left(I \otimes A_{2}\right)}$. Also, since $\nabla(T(s) \otimes S(t))=\frac{\partial}{\partial s} T(s) \otimes S(t) i+\frac{\partial}{\partial t} T(s) \otimes S(t) j$, then for $u=(a, b) \in \mathfrak{R}^{+^{2}}$

$$
\mathfrak{a} \cdot D_{u}(T(s) \stackrel{\alpha}{\otimes} S(t)) \underset{(s, t)=(0,0)}{\mid}=\nabla T(s) \otimes S(t) \underset{(s, t)=(0,0)}{\mid} . u .
$$

Theorem 3. Let $(T(t))_{t \geq 0}$ and $(S(t))_{t \geq 0}$ be one parameter C_{0} semigroups on Banach spaces X and Y with infinitesimal generators A_{1} and A_{2} respectively. Then

$$
\begin{equation*}
D(T(s) \otimes S(t))\binom{a}{b}(x \otimes y)=\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}(T(s) \otimes S(t))(x \otimes y) \tag{2}
\end{equation*}
$$

for all $(a, b) \in \mathfrak{R}^{+{ }^{2}}$, all $x \in \mathfrak{D}\left(A_{1}\right)$ and $y \in \mathfrak{D}\left(A_{2}\right)$.
Proof. Let $(a, b) \in \mathfrak{R}^{+^{2}}, x \in \mathfrak{D}\left(A_{1}\right)$, and $y \in \mathfrak{D}\left(A_{2}\right)$. Then $D(T(s) \otimes S(t))$ as a function of two variables is given by

$$
\begin{aligned}
& (D(T(s) \otimes S(t)))\binom{a}{b}(x \otimes y) \\
= & \left(\frac{\partial}{\partial s}(T(s) \otimes S(t)), \frac{\partial}{\partial t}(T(s) \otimes S(t))\right)\binom{a}{b}(x \otimes y) \\
= & \left(a \frac{\partial}{\partial s}(T(s) \otimes S(t))+b \frac{\partial}{\partial t}(T(s) \otimes S(t))\right)(x \otimes y) \\
= & \left(a \frac{d(T(s) \otimes I)}{d s}(I \otimes S(t))+b \frac{d(I \otimes S(t))}{d t}(T(s) \otimes I)\right)(x \otimes y) .
\end{aligned}
$$

Then, by Lemma 2-c, Theorem 2 and Lemma 6 we have

$$
\begin{aligned}
& (D(T(s) \otimes S(t)))\binom{a}{b}(x \otimes y) \\
= & a\left[\left(\overline{A_{1} \otimes I}\right)(T(s) \otimes I)\right](x \otimes S(t) y) \\
& +b\left[\left(\overline{I \otimes A_{2}}\right)(I \otimes S(t))\right](T(s) x \otimes y) \\
= & a\left(A_{1} \otimes I\right)(T(s) x \otimes S(t) y)+b\left(, I \otimes A_{2}\right)(T(s) x \otimes S(t) y) \\
= & \left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}(T(s) \otimes S(t))(x \otimes y) .
\end{aligned}
$$

which is (2).
As in the classical case, one can show the existence of constants $\omega \geq 0$ and $M \geq 1$ such that $\|T(s) \stackrel{\alpha}{\otimes} S(t)\| \leq M e^{\omega(t+s)}$ for $s, t \geq 0$.

4. The Hille-YosidaTheorem for T.P.S'.

Definition 4. Let X and Y be Banach spaces and A be a linear transformation that maps $\mathfrak{R}^{+{ }^{2}}$ into $\mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$ given by $A=\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$, where $A_{1},, A_{2}$ are linear operators on X and Y respectively, satisfying:
a. For any $(a, b) \in \mathfrak{R}^{+^{2}}$

$$
A\binom{a}{b}(x \otimes y)=\left(a A_{1} \otimes I,+b I \otimes A_{2}\right)(x \otimes y)
$$

$$
x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right) .
$$

b. A is the infinitesimal generator of a C_{0} T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$.

Then we call the linear transformation $B=\left(A_{1} \otimes I, I \otimes A_{2}\right)$ the pseudo-infinitesimal generator of $(T(s) \otimes S(t))_{s, t \geq 0}$.

We should remark that uniqueness of the closure of a linear operator, and uniqueness of the infinitesimal generator of a T.PS. imply that the pseudo-infinitesimal generator of a T.P.S. is unique.

Now, we are ready to prove one of the main results of this section (A Hille-Yosida Theorem for T.P.S.').
Theorem 4. Let X, Y be Banach spaces. A linear transformation A from $\mathfrak{R}^{+}{ }^{2}$ into $\mathscr{L}(X \stackrel{\alpha}{\otimes} Y)$ is the pseudo-infinitesimal generator of a C_{0} T.P.S. $(T(s) \otimes S(t))_{s, t \geq 0}$ on $X \stackrel{\alpha}{\otimes} Y$ satisfying $\|T(s) \otimes S(t)\| \leq M e^{\omega(s+t)}$, for all $s, t \geq 0$, for some constants $M \geq 1, \omega \geq 0$, if and only if the followings hold
(i) $\left(A\binom{0}{1}\right)(x \otimes y)=\left(A_{1} x\right) \otimes y$, and $\left(A\binom{1}{0}\right)(x \otimes y)=x \otimes\left(A_{2} y\right), x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$ for some linear operators A_{1}, A_{2} (not necessarily bounded) on X, Y respectively.
(ii) A_{1}, A_{2} in part (i) are closed and densely defined on X, Y respectively.
(iii) $\rho\left(A_{i}\right)$ contains $(\omega, \infty), i=1,2$, and for every $\lambda>\omega$

$$
\left\|\left[R_{\lambda}\left(A_{i}\right)\right]^{n}\right\| \leq \frac{M_{i}}{(\lambda-\omega)^{n}}, n=1,2,3, \ldots, \text { for some } M_{i} \geq 1, i=1,2 .
$$

Proof. Let the conditions (i), (ii) and (iii) hold. From (ii), (iii) and Theorem 1.7 in [1] A_{1}, A_{2} are the infinitesimal generators of one parameter C_{0} semigroups say $(T(s))_{s \geq 0}$, $(S(t))_{t \geq 0}$ on X, Y respectively, satisfying

$$
\|T(s)\| \leq M_{1} e^{\omega s} \text { for all } s \geq 0 \text {, and }\|S(t)\| \leq M_{2} e^{\omega t} \text { for all } t \geq 0 .
$$

By Theorem $1(T(s) \otimes S(t))_{s, t \geq 0}$ is a C_{0} T.P.S. on $X \stackrel{\alpha}{\otimes} Y$ satisfying

$$
\|T(s) \otimes S(t)\| \leq\|T(s)\|\|S(t)\|
$$

$$
\begin{aligned}
& \leq M_{1} M_{2} e^{\omega(s+t)} \\
& =M e^{\omega(s+t)}, \text { for all } s, t \geq 0 .
\end{aligned}
$$

By Theorem 2, the transformation $\left(A_{1} \otimes I, I \otimes A_{2}\right)$ is the pseudo-infinitesimal generator of $T(s) \otimes S(t)$. Let $(a, b) \in \mathfrak{R}^{+^{2}}, x \in \mathfrak{D}\left(A_{1}\right), y \in \mathfrak{D}\left(A_{2}\right)$. Then

$$
\left(\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}\right)(x \otimes y)=\left(a A_{1} \otimes I+b I \otimes A_{2}\right)(x \otimes y),
$$

which is by (i),

$$
\left(a A\binom{0}{1}+b A\binom{1}{0}\right)(x \otimes y)=\left(A\binom{a}{b}\right)(x \otimes y) .
$$

Therefore $A\binom{a}{b}$ coincides with $\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}$ on $\mathfrak{D}\left(A_{1}\right) \otimes \mathfrak{D}\left(A_{2}\right)$ for every $(a, b) \in \mathfrak{R}^{+^{2}}$, thus their closures coincide.

But the transformation mapping $(a, b) \in \mathfrak{R}^{+2}$ into $\overline{A\binom{a}{b}}=\overline{\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}}$ is the infinitesimal generator of $(T(s) \otimes S(t))_{s, t \geq 0}$ (See Theorem 2, and Corollary 2). In other words, $A\binom{a}{b}$ is the pseudo-infinitesimal generator of $(T(s) \otimes S(t))$.

Conversely, let A be as in the statement. Since $T(s) \otimes S(t)$ is a C_{0} T.P.S., then by Theorem 1 there exist unique $\beta \neq 0$, and unique one parameter C_{0} semigroups $(\widehat{T}(s))_{s \geq 0},(\widehat{S}(t))_{t \geq 0}$ on X, Y respectively, such that (1) holds. Let A_{1}, A_{2} be their generators. Then by Theorem $\overline{2}$, A_{1}, A_{2} satisfy (i) and (ii). By Theorem 2 and Corollary 2, the transformation

$$
(a, b) \mapsto \overline{\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}}=\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}
$$

is the infinitesimal generator of $\widehat{T}(s) \otimes \widehat{S}(t)$. But $\widehat{T}(s) \otimes \widehat{S}(t)=T(s) \otimes S(t)$. Thus $\left(A_{1} \otimes I, I \otimes A_{2}\right)$ is the pseudo-infinitesimal generator of $T(s) \otimes S(t)$.

Uniqueness of the pseudo-infinitesimal generator, implies that the linear transformation $\left(A_{1} \otimes I, I \otimes A_{2}\right)=A$. That is $A\binom{a}{b}=\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}$ for all (a, b) in $\mathfrak{R}^{+^{2}}$. In particular, for $(a, b)=(0,1)$, and $(a, b)=(1,0)$. Hence (i) is fulfilled.

Theorem 5. Let X, Y be Banach spaces, and $(T(s) \otimes S(t))_{s, t \geq 0}$ be a C_{0} T.P.S. on the Banach space $X \stackrel{\alpha}{\otimes} Y$ with infinitesimal generator $A=\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)$. If $\lambda \in \rho\left(\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}\right)$, where $(a, b) \in \mathfrak{R}^{+^{2}}$, and $\lambda>(a+b) \max _{i=1,2}\left(\omega\left(A_{i}\right)\right)$, where $0<\omega\left(A_{i}\right) \in \rho\left(A_{i}\right)$, for $i=1$, 2, then

$$
\begin{equation*}
\left(R_{\lambda}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)\right)(x \otimes y)=\int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t \tag{3}
\end{equation*}
$$

Proof. Let $x \in X, y \in Y,(a, b) \in \mathfrak{R}^{+}$, and λ be as given. Define

$$
R(\lambda)(x \otimes y)=\int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t
$$

Since the map $t \rightarrow(T(a t) \otimes S(b t))(x \otimes y)$ is continuous and $\lambda>(a+b) \max _{i=1,2}\left(\omega\left(A_{i}\right)\right)$, the integral exists as an improper Riemann integral and defines a bounded linear operator on $X \otimes Y$. Further, for $h>0$

$$
\begin{aligned}
& \frac{T(a h) \otimes S(b h)-I \otimes I}{h} R(\lambda)(x \otimes y) \\
& =\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t}[(T(a(t+h) \otimes S(b(t+h))(x \otimes y)-(T(a t) \otimes S(b t))(x \otimes y)] d t \\
& =\frac{1}{h}\left(\begin{array}{c}
\left.\int_{h}^{\infty} e^{-\lambda(t-h)}(T(a t) \otimes S(b t))(x \otimes y) d t\right) \\
\left.-\int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y,) d t\right) \\
= \\
=\frac{e^{\lambda h}}{h} \int_{h}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t-\frac{1}{h} \int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y,) d t \\
=
\end{array} \int_{0}^{\lambda h}-1 e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t-\frac{e^{\lambda h}}{h} \int_{0}^{h} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t .\right.
\end{aligned}
$$

Taking the limit of both sides as $h \rightarrow 0^{+}$yields

$$
\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)(R(\lambda)(x \otimes y))=\lambda R(\lambda)(x \otimes y)-(x \otimes y)
$$

This implies that

$$
R(\lambda)(x \otimes y) \in \mathfrak{D}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right) \text { for all } x \otimes y \in X \otimes Y,
$$

and

$$
\left(\lambda I \otimes I-\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right) R(\lambda)=I \otimes I \text { on } X \otimes Y
$$

Now, for $x \otimes y \in \mathfrak{D}\left(\left(A_{1} \otimes I, I \otimes A_{2}\right)\binom{a}{b}\right) \subseteq \mathfrak{D}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)$ we have

$$
\begin{aligned}
& R(\lambda)\left[\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)(x \otimes y)\right] \\
= & \int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))\left[\left(\left(\overline{A_{1} \otimes I,} \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)(x \otimes y,)\right] d t \\
= & \int_{0}^{\infty} e^{-\lambda t}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)[(T(a t) \otimes S(b t))(x \otimes y)] d t,
\end{aligned}
$$

by Theorem 3. Since $\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}$ is closed by Corollary 2, it follows that the right-hand side of (3) is

$$
\begin{aligned}
& \left(\left(\overline{A_{1} \otimes I},, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right) \int_{0}^{\infty} e^{-\lambda t}(T(a t) \otimes S(b t))(x \otimes y) d t \\
= & \left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}(R(\lambda)(x \otimes y)) .
\end{aligned}
$$

Hence,

$$
R(\lambda)\left(\lambda I-\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)\right)(x \otimes y)=(x \otimes y)
$$

for all $x \otimes y \in \mathfrak{D}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right) \cap(X \otimes Y)$. Since by Corollary 1 the domain $\mathfrak{D}\left(\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)$ is dense in $X \stackrel{\alpha}{\otimes} Y$, then

$$
R(\lambda)\left(\lambda I-\left(\overline{A_{1} \otimes I}, \overline{I \otimes A_{2}}\right)\binom{a}{b}\right)=I
$$

where I is the identity map on $X \stackrel{\alpha}{\otimes} Y$.

References

[1] W. Arendt, Grabosch, A. Greiner, G., Groh, U., Lotz, H. P., Moustakas, U., Nagel, R., Neubrander, F., and Schlotterbeck, U. One Parameter Semigroups of Positive Operators (edited by R. Nagel). Lecture Notes in Mathematics, 1184. Springer-Verlag. 1986.
[2] K.J. Engel, and R. Nagel. One Parameter Semigroups for Linear Evolution Equations. New York: Springer-Verlag. 2000.
[3] J. Goldstein. Semigroups of Linear Operators and Applications. New York: Oxford University Press. 1985.
[4] E. Hille, and R. S. Phillips. Functional Analysis and Semigroups. Rhode Island: Amer. Math. Soc. Colloq. Publi. 31, Providence. 1957.
[5] T. Ichinose. On the spectra of tensor products of linear operators in Banach spaces. J. Reine Angew. Math., (244): 119-153.1970.
[6] T. Ichinose. Operators on tensor product of Banach spaces. Transactions of The American Mathematical Socociety, 1(70): 197-219. 1972.
[7] R. Khalil, and S. Al-Sharif. Two parameter semigroups. Journal of Applied Mathematics and Computation, (156): 403-414. 2004.
[8] W. A. Light, and E. W. Cheney. Approximation theory in tensor product spaces, Lecture notes in maths., 1169. Springer-Verlag . 1985.
[9] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations, Lecture notes, University of Maryland. 1974.
[10] A.Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag. 1983.

[^0]: *Corresponding author.
 Email address: roshdi@ju.edu.jo (R. Khalil)

