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Abstract. Let G = (V, E) be a given connected simple (p,q)-graph, and an arbitrary nonempty subset

M ⊆ V (G) of G and for each v ∈ V (G), define N M
j
[u] = {v ∈ M : d(u, v) = j}. Clearly, then N j[u] =

N
V (G)

j
[u]. B.D. Acharya [2] defined the M-eccentricity of u as the largest integer for which N M

j
[u] 6= ;

and the p× (dG + 1) nonnegative integer matrix DM
G
= (|N M

j
[vi]|), called the M -distance neighborhood

pattern (or, M-dnp) matrix of G. The matrix D∗M
G

is obtained from DM
G

by replacing each nonzero

entry by 1. Clearly, fM (u) = { j : N M
j
[u] 6= ;}. Hence, in particular, if fM : u 7→ fM (u) is an injective

function, then the set M is a distance-pattern distinguishing set (or, a ‘DPD-set’ in short) of G and G is

a dpd-graph. If fM(u)− {0} is independent of the choice of u in G then M is an open distance-pattern

uniform (or, ODPU) set of G. A study of these sets is expected to be useful in a number of areas

of practical importance such as facility location [5] and design of indices of “quantitative structure-

activity relationships” (QSAR) in chemistry [3, 10]. This paper is a study of M -dnp matrices of a

dpd-graph.
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1. Introduction

For all terminology which are not defined in this paper, we refer the reader to F. Harary

[5]. Unless mentioned otherwise, all the graphs considered in this paper are finite, simple

and without self loops.

On 26th November 2006, B.D. Acharya [2] conveyed to the first author the following defini-

tions and problems for a detailed study.
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Definition 1 ([2, 9]). Let G = (V, E) be a given connected simple (p,q)-graph, M ⊆ V (G) and

for each u ∈ V (G), let fM (u) = {d(u, v) : v ∈ M} be the distance-pattern of u with respect to

the marker set M. If fM is injective then the set M is a distance-pattern distinguishing set (or, a

“dpd-set” in short) of G and G is a dpd-graph. If fM (u)−{0} is independent of the choice of u in

G then M is an open distance-pattern uniform (or, odpu) set of G and G is called an odpu-graph.

The minimum cardinality of a dpd-set (odpu-set) in G, if it exists, is the dpd-number(odpu-

number) of G and it is denoted by ̺(G).

B.D. Acharya [2], raised the following problems during the conversation.

Problem 1. For what structural properties of the graph G, the function fM is injective?

Problem 2. Characterize dpd-graphs having the given dpd-number.

Problem 3. Which graphs G have the property that every k-subset of V (G) is a dpd-set of G.

Solve this problem in particular when k = ̺(G)?

Problem 4. Which graphs G have exactly one ̺(G)-set?

Given a positive integer n, an n-distance coloring of a graph G is a coloring of the vertices

of G in such a way that no two vertices at distance n are colored by the same color; G is

n-distance colorable if it indeed admits such a coloring (e.g., see Sampathkumar, 1977 [13],

1988 [14]). Clearly, if G admits an n-distance coloring then 1≤ n≤ diam(G).

Problem 5. For which values of n it is possible to extract a proper n-distance coloring of a given

graph G using a distance-pattern function as a listing of colors for the vertices?

Problem 6. Given any positive integer k, does there exist a graph G with ̺(G) = k?

Some of the above mentioned problems studied are reported in the Technical Report [9].

B.D. Acharya, while sharing his many incisive thoughts, during the discussion, in June 2008,

introduced a new approach namely, distance neighborhood pattern matrices (dnp-matrices),

to study dpd-graphs. In this paper we initiate a study of dnp-matrices of a graph.

For an arbitrarily fixed vertex u in G and for any nonnegative integer j, we let N j[u] =

{v ∈ V (G) : d(u, v) = j}. Clearly, N0[u] = {u}, ∀ u ∈ V (G) and N j[u] = V (G) − V (Cu)

whenever j exceeds the eccentricity ǫ(u) of u in the component Cu to which u belongs. Thus,

if G is connected then, N j[u] = ; if and only if j > ǫ(u). If G is a connected graph then the

vectors u = (|N0[u]|, |N1[u]|, |N2[u]|, . . . , |Nǫ(u)[u]|) associated with u ∈ V (G) can be arranged

as a p× (dG + 1) nonnegative integer matrix DG given by














1 |N1[v1]| |N2[v1]| . . . |Nǫ(v1)
[v1]| 0 0 0

1 |N1[v2]| |N2[v2]| . . . . . . |Nǫ(v2)
[v2]| 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

1 |N1[vp]| |N2[vp]| . . . . . . . . . . . . |Nǫ(vp)
[vp]|















where dG denotes the diameter of G; we call DG distance neighborhood pattern (or, dnp-)

matrix of G.

For a dnp-matrix the following observations are immediate.



G. Augustine, A. Joseph, S. Jose / Eur. J. Pure Appl. Math, 3 (2010), 748-764 750

Observation 7. Since N0[u] = {u} for all u ∈ V (G), each entry in the first column of DG is equal

to 1.

Observation 8. Entries in the second column of DG corresponds to the degree of the correspond-

ing vertices in G.

Observation 9. In each row of DG, the entry zero will be after the nonzero entries.

Proposition 1. For each u ∈ V (G) of a connected graph G, {N j[u] : N j[u] 6= ;, 0 ≤ j ≤ dG}
gives a partition of V (G).

Proof. If possible, let N j[u]
⋂

Nk[u] = v, for some u, v ∈ V (G), which implies d(u, v) = j

and d(u, v) = k, and hence j = k. Therefore, N j[u]
⋂

Nk[u] = ; for any ( j, k) with j 6= k.

Now, clearly,
⋃dG

j=0
N j[u] ⊆ V (G). Also, for any v ∈ V (G), since G is connected, d(u, v) = k,

for some k ∈ {0,1,2, . . . , dG}. That is, v ∈ Nk[u] for some k ∈ {0,1,2, . . . , dG}, which implies

V (G) ⊆
⋃dG

j=0
N j[u]. Hence,
⋃dG

j=0
N j[u] = V (G).

Corollary 1. Each row of the dnp-matrix DG of a graph G is the partition of the order of G.

Hence, sum of the entries in each row of the dnp-matrix DG of a graph G is equal to the order of

G.

2. M-distance Neighborhood Pattern Matrix of a Graph

Given an arbitrary nonempty subset M ⊆ V (G) of G and for each u ∈ V (G), define

N M
j [u] = {v ∈ M : d(u, v) = j}; clearly then N

V (G)

j
[u] = N j[u]. One can define the M -

eccentricity of u as the largest integer for which N M
j
[u] 6= ; and the p× (dG + 1) nonnegative

integer matrix DM
G = (|N

M
j [u]|) is called the M -distance neighborhood pattern (or M -dnp)

matrix of G. D∗MG is obtained from DM
G by replacing each nonzero entry by 1.

Acharya [2] defined dnp matrix of any graph and in particular, M-dnp matrix of a dpd-graph

as follows:

Definition 2. Let G = (V, E) be a given connected simple (p,q)-graph, ; 6= M ⊆ V (G) and

u ∈ V (G). Then, the M-distance-pattern of u is the set fM (u) = {d(u, v) : v ∈ M}. Clearly,

fM (u) = { j : N M
j [u] 6= ;}. Hence, in particular, if fM : u 7→ fM (u) is an injective function then

the set M is a distance-pattern distinguishing set (or, a “dpd-set”in short) of G and if fM (u)−{0}
is independent of the choice of u in G then M is an open distance-pattern uniform (or, odpu) set

of G. A graph G with a dpd-set(odpu-set) is called a dpd-(odpu-)graph.

Following are some interesting results on M -dnp matrix of a connected graph G.

Observation 10. Both DM
G and D∗MG do not admit null rows.

Proposition 2. For each ui ∈ V (G),

N M
0 [ui] =

¨

ui if ui ∈ M

; if ui 6∈ M

Therefore, the entries in the first column of DM
G and D∗MG will either be 0 or 1.
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Remark 1. It should note that Observation 9 is not true in the case of DM
G .

Corollary 2. The sum of the entries in the first column of DM
G and D∗MG is equal to |M |.

Lemma 1 is similar to Proposition 1.

Lemma 1. For each u ∈ V (G), of a connected graph G, {N M
j
[u] : N M

j
[u] 6= ;, 0 ≤ j ≤ dG} is a

partition of M.

Proof. Let N M
j
[u]
⋂

N M
k
[u] = v, for some u ∈ V (G), v ∈ M . Then d(u, v) = j and

d(u, v) = k, and hence j = k. Therefore, N M
j [u]
⋂

N M
k
[u] = ; for j 6= k.

Now,
⋃dG

j=0
N M

j [u] ⊆ M is trivial. Also, for any vertex v ∈ M , since G is connected d(u, v) = k,

for some k ∈ {0,1,2, . . . , dG}. That is, v ∈ N M
k
[u] for some k ∈ {0,1,2, . . . , dG}. Hence,

v ∈
⋃dG

j=0
N M

j [u], which implies M ⊆
⋃dG

j=0
N M

j [u]. Hence,
⋃dG

j=0
N M

j [u] = M .

Corollary 3. Each row of DM
G is a partition of |M |.

Corollary 4. Sum of the entries in each row of DM
G gives |M | and sum of the entries in each row

of D∗MG is less than or equal to |M |.

3. M-dnp Matrix of a dpd-graph

In this section we investigate some interesting results of DM
G (D

∗M
G ) of a dpd-graph. From

the definition of D∗MG , we have the following important observations.

Observation 11. In any graph G, a nonempty M ⊆ V (G) is a dpd-set if and only if no two rows

of D∗MG are identical.

Observation 12. If M is a dpd-set of a dpd-graph G, no row in D∗MG is a scalar multiple of any

other row.

Remark 2. For any ; 6= M ⊆ V (G), if the rows of D∗MG are linearly independent, M is a dpd-set.

However, the converse need not be true. For example, let G be a graph obtained by attaching two

vertices u1 and u2 to two adjacent vertices v4 and v5 respectively of the cycle C5 : v1v2v3v4v5.

Choose M = {v2, v3,u1}. Then,

D∗MG =























1 1 1 0

1 1 0 1

0 1 1 1

1 0 1 1

0 1 1 0

0 0 1 0

0 0 0 1























In D∗MG the third row is the sum of fifth and seventh rows.
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Lemma 2. Let G be a graph with dpd-set M. If there exists a row say, Rm, in D∗MG as the

sum of any other rows, say, R1,R2, . . . ,Rk then, each column sum of the sub matrix formed by

R1,R2, . . . ,Rk is either 0 or 1.

Proof. Let C j : j = 1,2, . . . , (dG + 1) be the j th column sum of the sub-matrix formed by

R1,R2, . . . ,Rk. Assume C j = c where c is a constant not equal to 0 or 1 for some j. Then the j th

entry in row Rm is, c 6= 0, 1, which is a contradiction to the fact that D∗MG is a (0,1)−matrix.

Proposition 3. Any dpd-graph G, with dpd-set M and the M-dnp matrix DM
G as an identity

matrix of order n is isomorphic to a path Pn on n vertices with dpd-set M as any of its pendent

vertices.

Proof. Let G be a graph with dpd-set M such that DM
G
∼= In, the identity matrix of order

n. From Corollary 4, sum of the entries in each row of DM
G = |M |. Hence |M | = 1, since,

DM
G
∼= In. Since |M | = 1, M = {x}, where x is any vertex in G. We claim that x is a pendent

vertex. If possible assume there exists at least two vertices v1, v2 ∈ V (G) adjacent to x . Then

the rows corresponding to v1 and v2 in DM
G will be

�

0 1 0 . . . 0 0

0 1 0 . . . 0 0

�

,

which is not possible since, DM
G
∼= In. Therefore, x is a pendent vertex.

Now we prove that G ∼= Pn, a path on n vertices. Since, DM
G
∼= In, O(G) = n and dG = n− 1.

Since dG = n− 1, G contains a path of length n− 1. Since O(G) = O(Pn) = n, number of

vertices of G and Pn are same. Now, if G � Pn, G contains at least one edge other than the

edges of Pn, which is not possible, since dG = n− 1. Hence, G ∼= Pn, the path on n vertices.

For the converse, consider the path Pn = v1v2 . . . vn with dpd-set M as any of its pendent

vertices. Then,

DM
G = In =











1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1











Proposition 4. Let G be a dpd-graph. Then the dnp-matrix DM
G of G is a diagonal matrix if and

only if all the diagonal entries in DM
G are unity. Also, DM

G can neither be upper triangular nor

lower triangular.

Proof. Let G be graph with dpd-set M and M -dnp matrix DM
G , a diagonal matrix say, D. By

Proposition 2, entries in the first column of DM
G are 0 or 1 and by Observation 10, DM

G does

not admit null rows, hence, a11 = 1. Also, by Corollary 4, the sum of the entries in each row

of DM
G = |M |. Therefore, from first row of D, |M | = 1 and hence aii = 1 ∀ i = 2,3, . . . , n.

Hence D ∼= In. Converse part follows from Proposition 3.

For the second part of the theorem, assume that G is a graph with dpd-set M and DM
G as

an upper triangular matrix with atleast one nonzero entry above the main diagonal. From
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Proposition 2, the entries in the first column of DM
G are either 0 or 1. Also, from Corollary 2

sum of the entries in the first column of DM
G = |M |. Hence a11 = 1 and |M | = 1. From

Corollary 4, sum of the entries in each row of DM
G = |M |. Hence, in each row, the nonzero

entry appears in exactly one place and is unity. DM
G being an upper triangular matrix, the

entry 1 cannot be below the main diagonal and DM
G contains atleast one nonzero entry above

the main diagonal, which in turn implies, DM
G contains identical rows, a contradiction.

By a similar argument, we can prove that DM
G is not a lower triangular matrix.

4. Main Results

Theorem 13. For any graph G = (V, E), there exists no dpd-set M of cardinality 2.

Proof. Suppose there exists a dpd-graph G with a dpd-set M of cardinality 2. Let us choose

M = {x , y}, where x and y are arbitrary vertices in G. Then D∗MG contains 2× (dG + 1) sub-

matrix so that rows of the sub-matrix represent the M-distance neighborhood pattern(M-dnp)

of x and M-distance neighborhood pattern(M-dnp) of y in D∗MG . Hence, the entry 1 can be

only at the first and (d(x , y) + 1)th columns, and the rows will be of the following form

�

1 0 0 . . . 1 0 . . . 0

1 0 0 . . . 1 0 . . . 0

�

Hence, D∗MG contains identical rows and so M is not a dpd-set.

Theorem 14. For any (p,q)-graph G, V (G) is a dpd-set if and only if G is isomorphic to K1, the

trivial graph.

Proof. Assume that G is isomorphic to K1. Clearly, K1 has the dpd-set M = {v} where

V (K1) = {v}.
Converse follows from the fact when M = V (G), the rows in the dnp-matrix D∗MG correspond-

ing to the diametrically opposite vertices are identical. Hence, G can have exactly one row

and column (i.e., exactly one vertex) and hence is isomorphic to K1.

Theorem 15. The complete graph Kn possess a dpd-set if and only if n≤ 2.

Proof. Suppose G ∼= Kn has a dpd-set M with cardinality k. Then the first k rows of

DM
G represent the M-dnp of those vertices which belongs to M and the remaining n− k rows

represent the M-dnp of those vertices which are not in M .
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That is,

DM
G =



































1 k− 1

1 k− 1

· · · · · ·
· · · · · ·
1 k− 1

0 k

0 k

· · · · · ·
· · · · · ·
0 k



































Hence,

D∗MG =































1 1

1 1

· · · · · ·
· · · · · ·
1 1

0 1

· · · · · ·
· · · · · ·
0 1































Clearly, when n ≥ 3, D∗MG contains identical rows and hence M is not a dpd-set. Converse

follows from Theorem 14 and proposition 3.

Theorem 16. Complete bipartite graph Km,n possess a dpd-set M if and only if either m = n= 1

or m= 1, n= 2 .

Proof. Let G ∼= Km,n be a complete bipartite graph with partition of the vertex set as P1

and P2 with |P1| = m and |P2| = n. Assume Km,n possess a dpd-set M such that |M | = k. Let

M = {v1, v2, . . . , vk} where {v1, v2, . . . , vr} ∈ P1 and {vr+1, vr+2, . . . , vk} ∈ P2. Then the first k

rows of D∗MG represent the M-dnp of the vertices in M . In this k rows, the first r rows represent

the M-dnp of the vertices which are in P1 and the remaining k− r rows represent the M-dnp

of the vertices which are in P2. The remaining (m+ n)− k rows represent the M-dnp of the

vertices which are not in M . Now, in this (m+ n)− k rows, the first m− r rows represent the

M-dnp of the vertices in P1 and the remaining n−(k− r) rows represent the M-dnp of vertices

which are in P2.

Case 1: r ≥ 2 and k− r ≥ 2
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Then,

D∗MG =























1 1 1

1 1 1

. . . . . . . . .

1 1 1

0 1 1

. . . . . . . . .

0 1 1























Since r ≥ 2 and k− r ≥ 2, D∗MG contains identical rows and hence, M is not a dpd-set.

Case 2: r = 1 and k− r ≥ 2

D∗MG =























1 1 0

1 1 1

. . . . . . . . .

1 1 1

0 1 1

. . . . . . . . .

0 1 1























Since, k− r ≥ 2, D∗MG contains identical rows and hence, M is not a dpd-set.

Case 3: r = 0 and k− r ≥ 2

D∗MG =































1 0 1

. . . . . . . . .

1 0 1

0 1 0

. . . . . . . . .

0 1 0

0 0 1

. . . . . . . . .

0 0 1































Since, k− r ≥ 2, D∗MG will have identical rows and hence, M is not a dpd-set.

Case 4: r = 1 and k− r = 1

In this case, k = |M |= 2. Therefore, by Theorem 13, M is not a dpd-set.

Case 5: r = 0 and k− r = 1

D∗MG =























1 0 0

0 1 0

. . . . . . . . .

0 1 0

0 0 1

. . . . . . . . .

0 0 1






















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Hence, from D∗MG it is clear that D∗MG contains nonidentical rows only if either m =

1, n= 1 or m= 1, n= 2.

Converse follows from proposition 3.

Corollary 5. The star graph K1,n admits a dpd-set M if and only if n≤ 2.

Theorem 17. For a dpd-graph G with a dpd-set M of |M | = 3, the vertices in M should be at

distinct distances from each other.

Proof. Let G be a dpd-graph with dpd-set M = {v1, v2, v3}.
Let us denote d(v1, v2) = k1, d(v2, v3) = k2 and d(v1, v3) = k3.

Case 1: d(v1, v2) = d(v2, v3) = d(v1, v3) = k

In this case D∗MG has a 3 × (dG + 1) sub-matrix where the rows represent the M-dnp

of the vertices v1, v2 and v3 respectively, with entries 1 only at the first and (k + 1)th

columns.






1 0 . . . 0 1 0 . . . 0

1 0 . . . 0 1 0 . . . 0

1 0 . . . 0 1 0 . . . 0







Therefore, D∗MG contains identical rows and hence, M is not a dpd-set.

Case 2: k1 = k2 6= k3

In this case, D∗MG has a 2× (dG + 1) sub-matrix where the rows represent the M-dnp of

the vertices v1 and v3 respectively with entries 1 only at the first, (k1+1)th and (k3+1)th

columns.
�

1 0 . . . 0 1 0 . . . 0 1 0 . . . 0

1 0 . . . 0 1 0 . . . 0 1 0 . . . 0

�

Hence, D∗MG has identical rows and M is not a dpd-set.

Case 3: k1 6= k2 6= k3

In this case, the first, second and the third rows represent the M-dnp of the vertices

v1, v2 and v3 respectively in D∗MG , with entries 1 only at the first, (k1 + 1)th, (k2 + 1)th

and the (k3 + 1)th columns.







1 0 . . . 0 1 0 . . . 0 0 0 . . . 0 1 0 . . . 0

1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 0 0 0 0

1 0 . . . 0 0 0 . . . 0 1 0 . . . 0 1 0 . . . 0







Hence, it is possible to form a dpd-set M with |M | = 3 in this case.

However, any subset M = {v1, v2, v3} ⊆ V (G), satisfying the condition stated in Theo-

rem 17, is not a sufficient condition for M to be a dpd-set. Consider C6 = (v1v2 . . . v6), with

M = {v1, v2, v4} which are at distinct distances, but clearly do not form a dpd-set.
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Theorem 18. A cycle G ∼= Cn of order n admits a dpd-set if and only if n≥ 7.

Proof. Let Cn = (v1v2 . . . vnv1) be a cycle on n vertices.

Case 1: n, an even integer and n≥ 8

Let M = {v1, v2, v4}. Then,

D∗MG =

























































1 1 0 1 0 0 . . . 0 0 0 0 0 0

1 1 1 0 0 0 . . . 0 0 0 0 0 0

0 1 1 0 0 0 . . . 0 0 0 0 0 0

1 0 1 1 0 0 . . . 0 0 0 0 0 0

0 1 0 1 1 0 . . . 0 0 0 0 0 0

0 0 1 0 1 1 . . . 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 1 0 1 1 0

0 0 0 0 0 0 . . . 0 0 1 0 1 1

0 0 0 0 0 0 . . . 0 0 0 1 1 1

0 0 0 0 0 0 . . . 0 0 0 1 1 0

0 0 0 0 0 0 . . . 0 0 1 1 0 1

0 0 0 0 0 0 . . . 0 1 1 0 1 0

0 0 0 0 0 0 . . . 1 1 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 1 0 1 0 . . . 0 0 0 0 0 0

























































,

where the rows of D∗MG represent the M -dnp of the vertices v1, v2, . . . , vn taken in order.

Now, we can partition D∗MG in to two sub-matrices say, A and B where A is a n

2
× ( n

2
+ 1)

sub-matrix of the form



























1 1 0 1 0 0 . . . 0 0 0 0 0

1 1 1 0 0 0 . . . 0 0 0 0 0

0 1 1 0 0 0 . . . 0 0 0 0 0

1 0 1 1 0 0 . . . 0 0 0 0 0

0 1 0 1 1 0 . . . 0 0 0 0 0

0 0 1 0 1 1 . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 1 0 1 1 0



























,

If we denote the columns of A as (c1, c2, . . . , cdG+1), then B is such that, the columns of

B are (cdG+1, . . . , c2, c1). Looking at the rows of A and B, it is clear that the rows of D∗MG

are not identical, and hence, {v1, v2, v4} form a dpd-set.

Case 2: n, an odd integer and n≥ 7
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Let M = {v1, v2, v4}. Then,

D∗MG =

























































1 1 0 1 0 0 . . . 0 0 0 0 0 0

1 1 1 0 0 0 . . . 0 0 0 0 0 0

0 1 1 0 0 0 . . . 0 0 0 0 0 0

1 0 1 1 0 0 . . . 0 0 0 0 0 0

0 1 0 1 1 0 . . . 0 0 0 0 0 0

0 0 1 0 1 1 . . . 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 0 1 0 1 1

0 0 0 0 0 0 . . . 0 0 0 1 0 1

0 0 0 0 0 0 . . . 0 0 0 0 1 1

0 0 0 0 0 0 . . . 0 0 0 1 1 1

0 0 0 0 0 0 . . . 0 0 1 1 0 1

0 0 0 0 0 0 . . . 0 1 1 0 1 0

0 0 0 0 0 0 . . . 1 1 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 1 0 1 0 . . . 0 0 0 0 0 0

























































where rows of D∗MG represent the M-dnp of the vertices v1, v2, . . . , vn taken in order. In

this case, D∗MG can have three sub-matrices A, B, C as its partition as described below.

Choose the sub-matrix Að n

2
ñ× (dG + 1) as



























1 1 0 1 0 0 . . . 0 0 0 0 0

1 1 1 0 0 0 . . . 0 0 0 0 0

0 1 1 0 0 0 . . . 0 0 0 0 0

1 0 1 1 0 0 . . . 0 0 0 0 0

0 1 0 1 1 0 . . . 0 0 0 0 0

0 0 1 0 1 1 . . . 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 1 0 1 1



























We choose B as 3× (dG + 1) sub-matrix of D∗MG , which is of the form







0 0 0 0 0 0 . . . 0 0 0 1 0 1

0 0 0 0 0 0 . . . 0 0 0 0 1 1

0 0 0 0 0 0 . . . 0 0 0 1 1 1







Also, choose C as ((n− 3)− ð n

2
ñ)× (dG + 1) sub-matrix of D∗MG , which is of the form,















0 0 0 0 0 0 . . . 0 0 1 1 0 1

0 0 0 0 0 0 . . . 0 1 1 0 1 0

0 0 0 0 0 0 . . . 1 1 0 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1 1 0 1 0 . . . 0 0 0 0 0 0














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None of the rows of the sub-matrices of A, B and C are identical and hence the rows of

D∗MG are not identical. Therefore, for any cycle Cn, n≥ 7 there exist a dpd-set.

Now to complete the proof of the theorem it is enough to prove that Cn is not a dpd-

graph for n≤ 6.

Case 3: n= 3.

Since C3 is a complete graph by Theorem 15, C3 is not a dpd-graph.

Case 4: n= 4 or n = 5.

Subcase 1: |M | = 1.

Let M = {v}; v ∈ V (G). Then the rows represent the M-dnp of the adjacent vertices

of v gives a 2× (dG + 1) sub-matrix of D∗MG of the form

�

1 1 0 0 . . . 0

1 1 0 0 . . . 0

�

in which the rows are identical. Hence, M is not a dpd-set.

Subcase 2: |M | = 2.

By Theorem 13, there exist no dpd-set M of cardinality 2.

Subcase 3: |M | = 3

For C4 and C5 we cannot find a dpd-set M with |M | = 3, in which the vertices of

M are at distinct distances from each other. Hence, by Theorem 17 there exist no

dpd-set M with |M | = 3 for C4 and C5.

Subcase 4: |M | = 4.

By Theorem 14, C4 doesn’t have a dpd-set M with |M | = 4 and for C5, M with any

four vertices of C5 gives D∗MG as:

D∗MG =















1 1 1

1 1 1

1 1 1

1 1 1

0 1 1















in which the rows are identical. Hence, M is not a dpd-set.

Subcase 5: |M | = 5.

By Theorem 14, C5 cannot have a dpd-set M with |M | = 5.

Thus C4 and C5 are not dpd-graphs.

Case 5: n= 6.

As in Case 4, M with |M | = 1 and |M | = 2 are not possible.
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Let |M | = 3. Then, any dpd-set M satisfies Theorem 17, has D∗MG as:

D∗MG =



















1 1 0 1

1 1 1 0

0 1 1 0

1 0 1 1

0 1 1 1

0 1 1 0



















in which third and sixth rows are identical. Hence, M with |M | = 3, is not a dpd-set for

C6.

Let C6 has a dpd-set M with |M | = 4.

Subcase 1: Let M = {v1, v2, v3, v4}

D∗MG =



















1 1 1 1

1 1 1 0

1 1 1 0

1 1 1 1

0 1 1 1

0 1 1 1



















in which there are identical rows and hence, M is not a dpd-set.

Subcase 2: M = {v1, v3, v4, v5}

D∗MG =



















1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

1 1 1 0

0 1 1 1



















in which there are identical rows and hence, M is not a dpd-set.

Subcase 3: M = {v1, v3, v4, v6}

D∗MG =



















1 1 1 1

0 1 1 0

1 1 1 1

1 1 1 1

0 1 1 0

1 1 1 1



















in which there are identical rows and hence, M is not a dpd-set. By symmetry,

similar argument follows for the other choices of four vertices in M and hence, C6

doesn’t have a dpd-set with |M | = 4.
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Now, let C6 has a dpd-set M of |M | = 5. Then,

D∗MG =



















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1



















in which there are identical rows and hence, M is not a dpd-set. Thus, for C6, a dpd-set

M with |M | = 5 is not possible.

By Theorem 14, C6 cannot possess a dpd-set M with |M | = 6. Thus C6 is not a dpd-graph.

Theorem 19. The set of all vertices in a diametrical path of a graph G cannot form a dpd-set.

Proof. Let Pn = v1, v2, . . . , vn be an arbitrary diametrical path of G, where M = {v1, v2, . . . , vn}
be a dpd-set of G. Then, the rows representing the M-dnp of the antipodal vertices v1 and vn

in D∗MG forms a 2× (dG + 1) sub matrix as

�

1 1 . . . 1 1

1 1 . . . 1 1

�

Hence, M is not a dpd-set.

Theorem 20. For all non-trivial dpd-graphs G, the number of nonzero entries in the first column

of DM
G is less than the number of rows. In particular, all the nonzero entries in the first column of

DM
G are unity.

Proof. By Proposition 2, all the nonzero entries in the first column are unity. If possible,

let the number of entries in the first column of DM
G is equal to the number of rows. Since, all

the nonzero entries in the first column are unity, |N M
0 (ui)| = 1 ∀ui ∈ V (G), which implies,

N M
0 (ui) = {ui} ∀ui ∈ V (G). Hence, ui ∈ M ∀ui ∈ V (G). Therefore, by Theorem 14, G ≅ K1.

Corollary 6. Let G be a nontrivial graph with dpd-set M and M-dnp matrix DM
G as an n× n

square matrix. Then, the number of nonzero entries in the first column ≦ n− 1.

Theorem 21. Let G be a graph with a dpd-set M. Then, the M-dnp matrix DM
G is a square

matrix of order n if and only if G ≅ Pn, path on n vertices.

Proof. Assume that the M -dnp matrix DM
G of dpd-graph G is a square matrix of order n.

Then O(G) = n and dG = n − 1. Since dG = n − 1, G contains a path P of length n − 1.

Since O(G) = O(P) = n, the number of vertices of G and P are same. Therefore, if G � P,

G contains at least one edge connecting the nonadjacent vertices of P, which is not possible

since, in this case dG < n− 1, a contradiction. Hence, G ≅ Pn.

Conversely, let G be a path on n vertices with dpd-set M and M -dnp matrix DM
G . Then,

DM
G is a square matrix of order n, since the number of vertices of G is n and dG = n− 1 .
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Corollary 7. Let G be a graph with dpd-set M and the M-dnp matrix DM
G as an invertible matrix.

Then G ≅ Pn, a path on n vertices.

Theorem 22. Let G be a graph with dpd-set M and the M-dnp matrix DM
G is such that the rows

of DM
G are the elements of a basis of the Euclidean space Rn. Then G ≅ Pn, a path on n vertices.

Proof. Since the rows of DM
G are the elements of a basis of Rn, DM

G is a square matrix of

order n. Therefore, G ≅ Pn, a path on n vertices.

Remark 3. In Proposition 3, we proved that if the rows of D∗MG are the elements of the standard

basis of the Euclidean space Rn, then G is a path Pn on n vertices with the dpd-set M as one of its

pendent vertices.

Remark 4. The converse of Theorem 22 and Corollary 7 need not be true. Consider the path

P7 = v1v2v3 . . . v7. Let M = {v1, v2, v3, v4, v5, v7}. Then, M is a dpd-set. Now DM
G is a square

matrix, but the rows of DM
G are not linearly independent. Therefore, the rows cannot form the

basis elements of R7. Also note that DM
G is not invertible.

Remark 5. All invertible matrices need not be a M-dnp matrix DM
G of a graph G. For example

A=







1 2 3

3 2 1

0 0 1







is invertible but not a M-dnp, since the row sums are not equal.

From above discussion, it is interesting to investigate those M−dnp matrices DM
G that are

invertible. Also, distinguishing those invertible matrices which are M -dnp matrix of a graph

is an open problem.

Problem 23. Characterize those invertible matrices, which are the M-dnp of some graph G.

5. Conclusion and Scope

As well known, apart from theoretical interest in the study of the distance matrix, such

as the realization of a given matrix as the distance matrix of a graph [12], it has found

applications in many practically interesting areas such as Quantitative Structure-Activity Re-

lation (QSAR) in discrete mathematical chemistry [3] and studies on the effect of indirect

qualitative relationships between individuals in a social network [7, 11]. Also, the M-Weiner

index WM (G) may be defined as the sum of the entries in the upper triangular half of the

M -distance matrix DM
G ; by a partial Weiner index W ′(G), we mean the M -Weiner index of G

for some nonempty proper subset M of V (G) and the well known Weiner index W (G) [11] is

then seen as the M -Weiner index with M = V (G).

An interesting question for chemists would be the following.
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Problem 24. Consider any structure-activity relationship R of a molecular graph that has been

identified to be well correlated with the Weiner index. Is it possible to achieve such a correlation

using M-Weiner index for as low cardinality (dpd-)sets M as possible? [Choice of marker sets

M in the molecular graph might be very crucial and hence might involve deeper insights into the

molecular characteristics.]
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