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Abstract. Let G = (V,E) be a given connected simple (p, q)-graph, and an arbitrary nonempty subset
M C V(G) of G and for each v € V(G), define NjM [u] ={veM :d(u,v) = j}. Clearly, then N;[u] =

N ].V(G) [u]. B.D. Acharya [2] defined the M-eccentricity of u as the largest integer for which NJM [u] #0

and the p x (dg + 1) nonnegative integer matrix D/ = (IN}'[v;]]), called the M-distance neighborhood
pattern (or, M-dnp) matrix of G. The matrix DZM is obtained from D]‘GJ by replacing each nonzero
entry by 1. Clearly, f,(uw) ={j: NJ.M [u] # 0}. Hence, in particular, if fy; : u — fy(w) is an injective
function, then the set M is a distance-pattern distinguishing set (or, a ‘DPD-set’ in short) of G and G is
a dpd-graph. If f;,(u) — {0} is independent of the choice of u in G then M is an open distance-pattern
uniform (or, ODPU) set of G. A study of these sets is expected to be useful in a number of areas
of practical importance such as facility location [5] and design of indices of “quantitative structure-
activity relationships” (QSAR) in chemistry [3, 10]. This paper is a study of M-dnp matrices of a

dpd-graph.
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1. Introduction

For all terminology which are not defined in this paper, we refer the reader to E Harary
[5]. Unless mentioned otherwise, all the graphs considered in this paper are finite, simple
and without self loops.

On 26th November 2006, B.D. Acharya [2] conveyed to the first author the following defini-
tions and problems for a detailed study.
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Definition 1 ([2, 9]). Let G = (V, E) be a given connected simple (p,q)-graph, M € V(G) and
for each u € V(G), let fi;(u) = {d(u,v) : v € M} be the distance-pattern of u with respect to
the marker set M. If f, is injective then the set M is a distance-pattern distinguishing set (or; a
“dpd-set” in short) of G and G is a dpd-graph. If f,;(u) — {0} is independent of the choice of u in
G then M is an open distance-pattern uniform (or; odpuw) set of G and G is called an odpu-graph.
The minimum cardinality of a dpd-set (odpu-set) in G, if it exists, is the dpd-number(odpu-
number) of G and it is denoted by o(G).

B.D. Acharya [2], raised the following problems during the conversation.
Problem 1. For what structural properties of the graph G, the function fy, is injective?
Problem 2. Characterize dpd-graphs having the given dpd-number.

Problem 3. Which graphs G have the property that every k-subset of V(G) is a dpd-set of G.
Solve this problem in particular when k = p(G)?

Problem 4. Which graphs G have exactly one p(G)-set?

Given a positive integer n, an n-distance coloring of a graph G is a coloring of the vertices
of G in such a way that no two vertices at distance n are colored by the same color; G is
n-distance colorable if it indeed admits such a coloring (e.g., see Sampathkumar, 1977 [13],
1988 [14]). Clearly, if G admits an n-distance coloring then 1 < n < diam(G).

Problem 5. For which values of n it is possible to extract a proper n-distance coloring of a given
graph G using a distance-pattern function as a listing of colors for the vertices?

Problem 6. Given any positive integer k, does there exist a graph G with p(G) = k?

Some of the above mentioned problems studied are reported in the Technical Report [9].
B.D. Acharya, while sharing his many incisive thoughts, during the discussion, in June 2008,
introduced a new approach namely, distance neighborhood pattern matrices (dnp-matrices),
to study dpd-graphs. In this paper we initiate a study of dnp-matrices of a graph.

For an arbitrarily fixed vertex u in G and for any nonnegative integer j, we let N;[u] =
{v € V(G) : d(u,v) = j}. Clearly, No[u] = {u}, V u € V(G) and N;[u] = V(G) — V(%6,)
whenever j exceeds the eccentricity e(u) of u in the component %, to which u belongs. Thus,
if G is connected then, N;[u] = @ if and only if j > e(u). If G is a connected graph then the
vectors u = (|No[u]l, Ny [u]l, INy[u]l, ..., |Ngq)[ull) associated with u € V(G) can be arranged
as a p X (dg + 1) nonnegative integer matrix D given by

1 Ny [vi]l INg[q]l ... |Na(v1)[V1]| 0 0 0
1 Ny [vo]l INy[o]l ... |N€(v2)|:VZ]| 0 0
1 |N1[vp]| |N2[vp]| |N8(vp)[vp]|

where d; denotes the diameter of G; we call D distance neighborhood pattern (or, dnp-)
matrix of G.
For a dnp-matrix the following observations are immediate.
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Observation 7. Since Ny[u] = {u} for all u € V(G), each entry in the first column of D is equal
to 1.

Observation 8. Entries in the second column of D corresponds to the degree of the correspond-
ing vertices in G.

Observation 9. In each row of D, the entry zero will be after the nongzero entries.

Proposition 1. For each u € V(G) of a connected graph G, {N;[u] : N;[u] # 0, 0 < j < dg}
gives a partition of V(G).

Proof. If possible, let N;[u] (VNi[u] = v, for some u,v € V(G), which implies d(u,v) = j
and d(u,v) =k, and hence j = k. Therefore, N;[u] (N [u] = 0 for any (j, k) with j # k.
Now, clearly, ;.120 N]-[u] C V(G). Also, for any v € V(G), since G is connected, d(u,v) =k
for some k € {O 1 2 .,dg}. Thatis, v € N [u] for some k € {0,1,2,...,d;}, which implies
V(G) C U . Hence, U] o N;[u] =Vv(G).

Corollary 1. Each row of the dnp-matrix Dg of a graph G is the partition of the order of G.
Hence, sum of the entries in each row of the dnp-matrix D of a graph G is equal to the order of
G.

2. M-distance Neighborhood Pattern Matrix of a Graph

Given an arbitrary nonempty subset M € V(G) of G and for each u € V(G), define
NM[u] ={veM:duv)=j} clearly then NV(G)[ ] = N;j[u]. One can define the M-
eccentricity of u as the largest integer for which N JM [u] # 0 and the p x (dg + 1) nonnegative
integer matrix Dg = (|N]M [u]]) is called the M-distance neighborhood pattern (or M-dnp)
matrix of G. DZM is obtained from Dé./[ by replacing each nonzero entry by 1.

Acharya [2] defined dnp matrix of any graph and in particular, M-dnp matrix of a dpd-graph
as follows:

Definition 2. Let G = (V,E) be a given connected simple (p,q)-graph, 0 # M < V(G) and
u € V(G). Then, the M-distance-pattern of u is the set fy;(u) = {d(u,v) : v € M}. Clearly,
) =14j: NJM[u] # 0}. Hence, in particular, if f; : u — fy;(u) is an injective function then
the set M is a distance-pattern distinguishing set (or; a “dpd-set”in short) of G and if f3;(u)—{0}
is independent of the choice of u in G then M is an open distance-pattern uniform (or, odpu) set
of G. A graph G with a dpd-set(odpu-set) is called a dpd-(odpu-)graph.

Following are some interesting results on M-dnp matrix of a connected graph G.
Observation 10. Both DY and D" do not admit null rows.

Proposition 2. For each u; € V(G),

_ U; l;ful'EM
N(])V[[ui]_{w ifui¢M

Therefore, the entries in the first column of Dg and DZM will either be 0 or 1.
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Remark 1. It should note that Observation 9 is not true in the case of DM .
Corollary 2. The sum of the entries in the first column of DM and D*M is equal to |M|.
Lemma 1 is similar to Proposition 1.

Lemma 1. For each u € V(G), of a connected graph G, {NJM[u] :N]M[u] #0,0<j<dslisa
partition of M.

Proof Let N]M [u] \NM[u] = v, for some u € V(G), v € M. Then d(u,v) = j and
d(u,v) =k, and hence j = k. Therefore, NJM[u] ﬂN]iV[[u] =0 for j #k.
Now, Ujio N JM [u] € M is trivial. Also, for any vertex v € M, since G is connected d(u,v) =k
for some k € {0,1,2,...,d;}. Thatis, v € NM[u] for some k € {0,1,2,...,d;}. Hence,
Ve U NM [u], which 1mp11es M C U [ ]. Hence, U;.iio NJM [u] =

Corollary 3. Each row of Dg is a partition of |M|.

Corollary 4. Sum of the entries in each row of Dé./[ gives |[M| and sum of the entries in each row
of D is less than or equal to [M|.

3. M-dnp Matrix of a dpd-graph

In this section we investigate some interesting results of Dlg (DZM ) of a dpd-graph. From
the definition of DZM , we have the following important observations.

Observation 11. In any graph G, a nonempty M C V(G) is a dpd-set if and only if no two rows
of DF are identical.

Observation 12. If M is a dpd-set of a dpd-graph G, no row in DZM is a scalar multiple of any
other row.

Remark 2. For any @ # M C V(G), if the rows of DZM are linearly independent, M is a dpd-set.
However, the converse need not be true. For example, let G be a graph obtained by attaching two
vertices u; and u, to two adjacent vertices v, and vs respectively of the cycle Cs : v{VoV3V4Vs.
Choose M = {v,,v3,u;}. Then,

(1 1 1 0)
1101
0111
DM=| 1011
0110
0010
\ 0 0 0 1)

In DZM the third row is the sum of fifth and seventh rows.
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Lemma 2. Let G be a graph with dpd-set M. If there exists a row say, R,,, in DZM as the
sum of any other rows, say, Ri,R,,...,Ry then, each column sum of the sub matrix formed by
R{,R,,...,Ry is either O or 1.

Proof. Let C;: j=1,2,...,(dg + 1) be the j™" column sum of the sub-matrix formed by
Ry,Ry,...,Ry. Assume C; = c where c is a constant not equal to 0 or 1 for some j. Then the jth
entry in row R,, is, ¢ # 0, 1, which is a contradiction to the fact that DZM is a (0, 1)—matrix.

Proposition 3. Any dpd-graph G, with dpd-set M and the M-dnp matrix D]g[ as an identity
matrix of order n is isomorphic to a path P, on n vertices with dpd-set M as any of its pendent
vertices.

Proof. Let G be a graph with dpd-set M such that Dg = [,,, the identity matrix of order
n. From Corollary 4, sum of the entries in each row of Dg = |M|. Hence |M| = 1, since,
D]g[ =1,. Since |M| =1, M = {x}, where x is any vertex in G. We claim that x is a pendent
vertex. If possible assume there exists at least two vertices v, v, € V(G) adjacent to x. Then
the rows corresponding to v; and v, in Dg will be

010 ... 0O

010 ... 00)
which is not possible since, Dg = I,,. Therefore, x is a pendent vertex.
Now we prove that G = P,,, a path on n vertices. Since, Dg =I,0(G)=nandd; =n—1.
Since d; = n — 1, G contains a path of length n — 1. Since O(G) = O(P,) = n, number of
vertices of G and P, are same. Now, if G Z P,, G contains at least one edge other than the
edges of P,, which is not possible, since d; =n — 1. Hence, G = P,, the path on n vertices.

For the converse, consider the path P, = v;v,...v, with dpd-set M as any of its pendent
vertices. Then,

1 0 0 0
0 1 0 0
Do =h=| . .
0 0 0 1

Proposition 4. Let G be a dpd-graph. Then the dnp-matrix Dg of G is a diagonal matrix if and
only if all the diagonal entries in D]g[ are unity. Also, Dg can neither be upper triangular nor
lower triangular.

Proof. Let G be graph with dpd-set M and M-dnp matrix D, a diagonal matrix say, D. By
Proposition 2, entries in the first column of Dg are 0 or 1 and by Observation 10, D]g[ does
not admit null rows, hence, a;; = 1. Also, by Corollary 4, the sum of the entries in each row
of Dg = |M]|. Therefore, from first row of D, |[M| = 1 and hence a;; =1V i =2,3,...,n.
Hence D = I,,. Converse part follows from Proposition 3.

For the second part of the theorem, assume that G is a graph with dpd-set M and Dg as
an upper triangular matrix with atleast one nonzero entry above the main diagonal. From
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Proposition 2, the entries in the first column of Dg are either O or 1. Also, from Corollary 2
sum of the entries in the first column of Dg = |M|. Hence a;; = 1 and |M| = 1. From
Corollary 4, sum of the entries in each row of Dg = |M|. Hence, in each row, the nonzero
entry appears in exactly one place and is unity. Dé./[ being an upper triangular matrix, the
entry 1 cannot be below the main diagonal and Dg contains atleast one nonzero entry above
the main diagonal, which in turn implies, Dg contains identical rows, a contradiction.

By a similar argument, we can prove that D]g[ is not a lower triangular matrix.

4. Main Results

Theorem 13. For any graph G = (V, E), there exists no dpd-set M of cardinality 2.

Proof. Suppose there exists a dpd-graph G with a dpd-set M of cardinality 2. Let us choose
M = {x,y}, where x and y are arbitrary vertices in G. Then DzM contains 2 X (dg + 1) sub-
matrix so that rows of the sub-matrix represent the M-distance neighborhood pattern(M-dnp)
of x and M-distance neighborhood pattern(M-dnp) of y in DzM . Hence, the entry 1 can be
only at the first and (d(x, y)+ 1) columns, and the rows will be of the following form

100 ... 10 ... 0
1 00 ... 1 0 ... 0
Hence, DZM contains identical rows and so M is not a dpd-set.

Theorem 14. For any (p,q)-graph G, V(G) is a dpd-set if and only if G is isomorphic to K, the
trivial graph.

Proof. Assume that G is isomorphic to K;. Clearly, K; has the dpd-set M = {v} where
V(Ky) = v
Converse follows from the fact when M = V(G), the rows in the dnp-matrix DzM correspond-
ing to the diametrically opposite vertices are identical. Hence, G can have exactly one row
and column (i.e., exactly one vertex) and hence is isomorphic to Kj.

Theorem 15. The complete graph K,, possess a dpd-set if and only if n < 2.

Proof. Suppose G = K,, has a dpd-set M with cardinality k. Then the first k rows of
Dé./[ represent the M-dnp of those vertices which belongs to M and the remaining n — k rows
represent the M-dnp of those vertices which are not in M.
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That is,
(1 k—1)
1 k-1
De=1 0o «
0 k
L0 k)
Hence,
(1 1)
1 1
DM=| 1 1
0 1
L0 1)

Clearly, when n > 3, DZM contains identical rows and hence M is not a dpd-set. Converse
follows from Theorem 14 and proposition 3.

Theorem 16. Complete bipartite graph K,, , possess a dpd-set M if and only if either m=n=1
orm=1,n=2.

Proof. Let G = K, , be a complete bipartite graph with partition of the vertex set as P;
and P, with |P;| = m and |P,| = n. Assume K, , possess a dpd-set M such that [M| = k. Let
M = {v1,Vs,..., v} where {v{,v,,...,v,} € P; and {v,,1,V,49,...,Vi} € P,. Then the first k
rows of DZM represent the M-dnp of the vertices in M. In this k rows, the first r rows represent
the M-dnp of the vertices which are in P; and the remaining k — r rows represent the M-dnp
of the vertices which are in P,. The remaining (m + n) — k rows represent the M-dnp of the
vertices which are not in M. Now, in this (m + n) — k rows, the first m — r rows represent the
M-dnp of the vertices in P; and the remaining n — (k — r) rows represent the M-dnp of vertices
which are in P,.

Casel: r=>2andk—r=>2
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Then,
[ 1
1
u |
DM=1] 1
0

¥

1

1

J

Sincer >2and k—r > 2, DZM contains identical rows and hence, M is not a dpd-set.

Case2: r=1landk—r=>2

1

M _
DM=1| 1
0

¥

1

1

J

Since, k —r > 2, DZM contains identical rows and hence, M is not a dpd-set.

Case3: r=0andk—r=>2

0

M __
pM=| ...
0
0

¥

0

1

J

Since, k —r > 2, DZM will have identical rows and hence, M is not a dpd-set.

Case4: r=1andk—r=1

In this case, k = |[M| = 2. Therefore, by Theorem 13, M is not a dpd-set.

Case5: r=0andk—r=1

0
e
pM=| o

0

o
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Hence, from DzM it is clear that DzM contains nonidentical rows only if either m =
I,n=1lorm=1,n=2.

Converse follows from proposition 3.

Corollary 5. The star graph K; , admits a dpd-set M if and only if n < 2.

Theorem 17. For a dpd-graph G with a dpd-set M of |[M| = 3, the vertices in M should be at
distinct distances from each other.

Proof. Let G be a dpd-graph with dpd-set M = {v;,v,,vs}.
Let us denote d(vy,v,y) = kq, d(v,,v3) =k, and d(vy,v3) = ks.

Case 1: d(vq,vy) =d(vy,v3) =d(vq,v3) =k
In this case DZM has a 3 x (d; + 1) sub-matrix where the rows represent the M-dnp
of the vertices v;, v, and v, respectively, with entries 1 only at the first and (k 4+ 1)t

columns.
1 0 ... 0010 0
1 0 ... 01 O 0
10 010 0

Therefore, DZM contains identical rows and hence, M is not a dpd-set.

Case 2: k; =ky # ks
In this case, DZM has a 2 x (dg; + 1) sub-matrix where the rows represent the M-dnp of
the vertices v; and v; respectively with entries 1 only at the first, (k; +1)" and (k3 +1)™"

columns.
10.. 010 ... 010..0
10.. 010 ...010..0
Hence, DzM has identical rows and M is not a dpd-set.

Case 3: ky # ky # ks
In this case, the first, second and the third rows represent the M-dnp of the vertices
vy, V5 and vy respectively in DZM , with entries 1 only at the first, (k; + 1), (ko + 1)
and the (k3 4+ 1) columns.

1 0 010 0 0O 010 ... 0
1 0 010 010 0 00 O O
1 0 0 0O 010 010 ... 0

Hence, it is possible to form a dpd-set M with |[M| = 3 in this case.

However, any subset M = {v;,vy,v3} € V(G), satisfying the condition stated in Theo-
rem 17, is not a sufficient condition for M to be a dpd-set. Consider Cg = (v;V;...Vg), with
M = {v1,vq, 4} which are at distinct distances, but clearly do not form a dpd-set.
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Theorem 18. A cycle G = C,, of order n admits a dpd-set if and only if n > 7.

Proof. Let C,, = (v;V5...v,v1) be a cycle on n vertices.

Case 1: n, an even integer and n > 8
Let M = {v;, V5, v4}. Then,

/1 1 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0o 1 1 0 0 0 O 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
o 1 0 1 1 0 0 0 0 0 0 0
o 0 1 0 1 1 0 0 0 0 0 0

Lw_| 0 0 0 0 0 o0 0o 1 0 1 1 0

¢ =] 0o 0o 0 0 0 O o 0o 1 0 1 1 |
0 0 0 0 0 0 o 0 0 1 1 1
O 0 0 0 0 0 0 0 0 1 1 0
0O 0 0 0 0 O o0 1 1 0 1
0O 0 0 0 0 0 0o 1 1 0 1 0
0O 0 0 0 0 O 1 1.0 1 0 0
\ o 1 1 0 1 0 .. 0 0 0 0 0 o)

where the rows of DZM represent the M-dnp of the vertices v, Vv,,...,V, taken in order.
Now, we can partition DZM in to two sub-matrices say, A and B where A is a % X (% +1)
sub-matrix of the form

(1 1 0 1 0 O 0 0 0 0 0 )
1 1. 1 0 0 O 0 0 0 0 O
0 1 1 0 0 O 0 0 0 0 O
1 0 1 1 0 O 0 0 0 0 O
0 1 0 1 1 o0 0 0 0 0 0 |’
0o 0o 1 o0 1 1 0 0 0 0 O

\ o0 0 0 0 0 0 .. 1 0 1 1 0 )

If we denote the columns of A as (cq,¢5,...,¢q G+1)’ then B is such that, the columns of
B are (cq 41,---»C2,C1)- Looking at the rows of A and B, it is clear that the rows of DZM
are not identical, and hence, {v;,v,,v,} form a dpd-set.

Case 2: n, an odd integer and n > 7
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Let M = {v;,V,,v4}. Then,

(1
1
0
1
0
0
0
DM = 0
0
0
0
0
0

-

O O R R R

Cooocooco:

1

H O R~ RO

cCooocococo:

1

OrRr B0 OO+

Ocoococoocoo:

0

_ = O O OO

Ocoococoocoo:

1

_ O O O O O

0

coocoococoo:

S O OO OO

~oOO0OO0O0OO0O:

0

o eNeNeNoNe)

~mROoOOOOO -

0

e eoNeNeNoNe)

0

Or—-»—\OOO»—\E

e eoNeNeNoNe)

0

»—\O»—\r—-Or—lOE

S O O O OO

O, OR PR, OR:

0

S O O O OO

OO M H 1 1

0

)

758

where rows of DZM represent the M-dnp of the vertices v;,v,,...,V, taken in order. In
this case, DZM can have three sub-matrices A, B, C as its partition as described below.
Choose the sub-matrix A"%"‘ X (dg+1)as

(

OO Rr ORrR -

¥

O R O - M1 =

0

— OR R RO

0

O R =, OO M

0

_ = O O OO

0

_ O OO OO

0

O O O O OO

0

O O O O OO

1

O O O O OO

0

[eNeNeloNoNe

1

We choose B as 3 x (dg + 1) sub-matrix of DZM , Which is of the form

o O O

o O O

o O O

oS O O

oS O O

o O O

o O O

o O O

o O O

[ R

™)

=

[eNeNeNoNoNe

Also, choose C as ((n—3) — r%—') x (dg + 1) sub-matrix of D™ which is of the form,

o O O

o

[«

o

o

o

o

—_

—_

—

S O =
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None of the rows of the sub-matrices of A,B and C are identical and hence the rows of
DZM are not identical. Therefore, for any cycle C,,n > 7 there exist a dpd-set.

Now to complete the proof of the theorem it is enough to prove that C, is not a dpd-
graph for n <6.

Case 3: n=3.
Since C5 is a complete graph by Theorem 15, C5 is not a dpd-graph.

Case4: n=4orn=>5.

Subcase 1:

Subcase 2:

Subcase 3:

Subcase 4:

Subcase 5:

M| =1.
Let M = {v}; v € V(G). Then the rows represent the M-dnp of the adjacent vertices
of v gives a 2 x (ds; + 1) sub-matrix of DZM of the form

1100 ... 0
1100 ... 0

in which the rows are identical. Hence, M is not a dpd-set.

|M| = 2.

By Theorem 13, there exist no dpd-set M of cardinality 2.

IM[=3

For C4 and Cs we cannot find a dpd-set M with |[M| = 3, in which the vertices of
M are at distinct distances from each other. Hence, by Theorem 17 there exist no
dpd-set M with [M| = 3 for C, and Cs.

M| = 4.

By Theorem 14, C4 doesn’t have a dpd-set M with |M| = 4 and for Cs, M with any
four vertices of Cs gives DZM as:

D*M —

O R P R
e
e

in which the rows are identical. Hence, M is not a dpd-set.

M| =5.
By Theorem 14, Cs5 cannot have a dpd-set M with |[M|=5.
Thus C, and Cs are not dpd-graphs.

Case 5: n=6.
As in Case 4, M with |M| =1 and |M| = 2 are not possible.
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Let |[M| = 3. Then, any dpd-set M satisfies Theorem 17, has DZM as:

D*M —

—_ == == O
O = OO

Q
OO r O -
—_ = O = =

in which third and sixth rows are identical. Hence, M with |[M| = 3, is not a dpd-set for
Ce.
Let Cg has a dpd-set M with |M| = 4.

Subcase 1: Let M = {vq, vy, V3, V4}

1 1 11
1 1 10
1 110

*M __
bg" = 1 1 11
01 11
0111

in which there are identical rows and hence, M is not a dpd-set.

Subcase 2: M = {v{,V3, V4, V5}

D*M —

_ = O
[EE G
— O R R -
_ O R O R -

o

in which there are identical rows and hence, M is not a dpd-set.

Subcase 3: M = {vy,V3, V4, Vs}

1 1 11
0110
1 1 11

*M __
bg™ = 1 1 11
0110
1 1 11

in which there are identical rows and hence, M is not a dpd-set. By symmetry,
similar argument follows for the other choices of four vertices in M and hence, Cg
doesn’t have a dpd-set with |M| = 4.
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Now, let Cg has a dpd-set M of |[M| = 5. Then,

*M __
D;" =

O =
R G O I
R
T

in which there are identical rows and hence, M is not a dpd-set. Thus, for Cg, a dpd-set
M with |[M| =5 is not possible.

By Theorem 14, Cg cannot possess a dpd-set M with |[M| = 6. Thus Cg is not a dpd-graph.

Theorem 19. The set of all vertices in a diametrical path of a graph G cannot form a dpd-set.

Proof. Let P, = vy, V,,...,V, be an arbitrary diametrical path of G, where M = {v;,v,,...,v,}
be a dpd-set of G. Then, the rows representing the M-dnp of the antipodal vertices v; and v,
in DZM forms a 2 x (dg + 1) sub matrix as

11
11

Theorem 20. For all non-trivial dpd-graphs G, the number of nongero entries in the first column
of D]g[ is less than the number of rows. In particular, all the nongzero entries in the first column of
DY are unity.

Hence, M is not a dpd-set.

Proof. By Proposition 2, all the nonzero entries in the first column are unity. If possible,
let the number of entries in the first column of Dg is equal to the number of rows. Since, all
the nonzero entries in the first column are unity, |NéV[ (u;)] =1 Vu; € V(G), which implies,
Né”(ui) ={u;} Vu; € V(G). Hence, u; € M Vu; € V(G). Therefore, by Theorem 14, G ® K;.

Corollary 6. Let G be a nontrivial graph with dpd-set M and M-dnp matrix Dlg asannxn
square matrix. Then, the number of nongero entries in the first column = n — 1.

Theorem 21. Let G be a graph with a dpd-set M. Then, the M-dnp matrix Dg is a square
matrix of order n if and only if G & P,, path on n vertices.

Proof. Assume that the M-dnp matrix Dg of dpd-graph G is a square matrix of order n.
Then O(G) = n and d; = n—1. Since d; = n— 1, G contains a path P of length n — 1.
Since O(G) = O(P) = n, the number of vertices of G and P are same. Therefore, if G % P,
G contains at least one edge connecting the nonadjacent vertices of P, which is not possible
since, in this case d; < n — 1, a contradiction. Hence, G & P,,.

Conversely, let G be a path on n vertices with dpd-set M and M-dnp matrix D]g[ . Then,
Dé./[ is a square matrix of order n, since the number of vertices of Gisnanddg;=n—1.
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Corollary 7. Let G be a graph with dpd-set M and the M-dnp matrix D]g[ as an invertible matrix.
Then G & P,, a path on n vertices.

Theorem 22. Let G be a graph with dpd-set M and the M-dnp matrix Dé./[ is such that the rows
of D]g[ are the elements of a basis of the Euclidean space R". Then G & P,, a path on n vertices.

Proof. Since the rows of Dlg are the elements of a basis of R", Dlg is a square matrix of
order n. Therefore, G & P,, a path on n vertices.

Remark 3. In Proposition 3, we proved that if the rows of DZM are the elements of the standard
basis of the Euclidean space R", then G is a path P, on n vertices with the dpd-set M as one of its
pendent vertices.

Remark 4. The converse of Theorem 22 and Corollary 7 need not be true. Consider the path
Py = vivyvs...v5. Let M = {vq,V5,V3,V4,Vs5,v7}. Then, M is a dpd-set. Now D]g[ is a square
matrix, but the rows of Dé./[ are not linearly independent. Therefore, the rows cannot form the
basis elements of R”. Also note that D]g[ is not invertible.

Remark 5. All invertible matrices need not be a M-dnp matrix Dlg of a graph G. For example

1 2 3
A= 3 2 1
0 01

is invertible but not a M-dnp, since the row sums are not equal.

From above discussion, it is interesting to investigate those M —dnp matrices Dé./[ that are
invertible. Also, distinguishing those invertible matrices which are M-dnp matrix of a graph
is an open problem.

Problem 23. Characterize those invertible matrices, which are the M-dnp of some graph G.

5. Conclusion and Scope

As well known, apart from theoretical interest in the study of the distance matrix, such
as the realization of a given matrix as the distance matrix of a graph [12], it has found
applications in many practically interesting areas such as Quantitative Structure-Activity Re-
lation (QSAR) in discrete mathematical chemistry [3] and studies on the effect of indirect
qualitative relationships between individuals in a social network [7, 11]. Also, the M-Weiner
index Wy;(G) may be defined as the sum of the entries in the upper triangular half of the
M-distance matrix Dg ; by a partial Weiner index W/(G), we mean the M-Weiner index of G
for some nonempty proper subset M of V(G) and the well known Weiner index W(G) [11] is
then seen as the M-Weiner index with M = V(G).

An interesting question for chemists would be the following.



REFERENCES 763

Problem 24. Consider any structure-activity relationship % of a molecular graph that has been
identified to be well correlated with the Weiner index. Is it possible to achieve such a correlation
using M-Weiner index for as low cardinality (dpd-)sets M as possible? [Choice of marker sets
M in the molecular graph might be very crucial and hence might involve deeper insights into the
molecular characteristics. |
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