Upper and Lower $s-(\tau_1, \tau_2)p$-Continuous Multifunctions

Nongluk Viriyapong1, Supannee Sompong2, Chawalit Boonpok1,*

1 Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
2 Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

Abstract. Our main purpose is to introduce the concepts of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions. Furthermore, several characterizations of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions are investigated.

2020 Mathematics Subject Classifications: 54C08; 54C60; 54E55

Key Words and Phrases: $(\tau_1, \tau_2)p$-open set; upper $s-(\tau_1, \tau_2)p$-continuous multifunction; lower $s-(\tau_1, \tau_2)p$-continuous multifunction

1. Introduction

In 1965, Lee [27] studied the notion of semiconnected functions. Kohli [24] introduced the notion of s-continuous functions and investigated several characterizations of semilocally connected spaces in terms of s-continuous functions. The class of s-continuity is a generalization of continuity and semiconnectedness. Furthermore, Kohli [25] introduced the concepts of s-regular spaces and completely s-regular spaces and proved that s-regularity and complete s-regularity are preserved under certain s-continuous functions. Duangphui et al. [21] introduced and investigated the notion of almost $(\mu, \mu')(m,n)$-continuous functions. Thongmoon and Boonpok [35] introduced and studied the notion of strongly $\theta(\Lambda,p)$-continuous functions. Moreover, several characterizations of almost (Λ, p)-continuous functions, almost strongly $\theta(\Lambda,p)$-continuous functions, $\theta(\Lambda,p)$-continuous functions, weakly (Λ,b)-continuous functions, $\theta(\ast)$-precontinuous functions, s-continuous functions, θ-\mathcal{I}-continuous functions, almost (g,m)-continuous functions, (Λ, sp)-continuous functions, $\delta p(\Lambda, s)$-continuous functions, $(\Lambda, p(\ast))$-continuous functions, pairwise almost M-continuous functions, (τ_1, τ_2)-continuous functions, almost (τ_1, τ_2)-continuous functions and weakly (τ_1,τ_2)-continuous functions were presented in [33], [11], [31], [16], [10], [9], [5], [2], [37], [34], [8], [3], [17], [15] and [12], respectively.

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v17i3.5322

Email addresses: nongluk.h@msu.ac.th (N. Viriyapong), s.sompong@snru.ac.th (S. Sompong), chawalit.b@msu.ac.th (C. Boonpok)
In 1989, Lipski [28] extended the concept of s-continuous functions to the setting of multifunctions. Popa [29] introduced the concept of precontinuous multifunctions and showed that H-almost continuity and precontinuity are equivalent for multifunctions. Ewert and Lipski [22] introduced and investigated the concept of s-quasi-continuous multifunctions. Popa and Noiri [30] introduced and studied the notion of s-precontinuous multifunctions as a generalization of s-continuous multifunctions and precontinuous multifunctions. Laprom et al. [26] introduced and investigated the concept of $\beta(\tau_1, \tau_2)$-continuous multifunctions. In particular, some characterizations of (τ_1, τ_2)-continuous multifunctions, almost weakly \star-continuous multifunctions, weakly $\star\star$-continuous multifunctions, τ^*-continuous multifunctions, almost $\beta(\star)$-continuous multifunctions, almost weakly (τ_1, τ_2)-continuous multifunctions, weakly $\alpha$$\star$-continuous multifunctions, r^*-continuous multifunctions, and $(\tau_1, \tau_2)$$\alpha$-continuous multifunctions were established in [6], [18], [4], [14], [13], [7], [19], [23] and [36], respectively. Pue-on et al. [32] introduce and studied the concepts of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions. We also investigate several characterizations of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2). The closure of A and the interior of A with respect to τ_i are denoted by τ_i-$\text{Cl}(A)$ and τ_i-$\text{Int}(A)$, respectively, for $i = 1, 2$. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$-closed [20] if $A = \tau_1$-$\text{Cl}(\tau_2$-$\text{Cl}(A))$. The complement of a $\tau_1\tau_2$-closed set is called $\tau_1\tau_2$-open. The intersection of all $\tau_1\tau_2$-closed sets of X containing A is called the $\tau_1\tau_2$-closure [20] of A and is denoted by $\tau_1\tau_2$-$\text{Cl}(A)$. The union of all $\tau_1\tau_2$-open sets of X contained in A is called the $\tau_1\tau_2$-interior [20] of A and is denoted by $\tau_1\tau_2$-$\text{Int}(A)$.

Lemma 1. [20] Let A and B be subsets of a bitopological space (X, τ_1, τ_2). For the $\tau_1\tau_2$-closure, the following properties hold:

1. $A \subseteq \tau_1\tau_2$-$\text{Cl}(A)$ and $\tau_1\tau_2$-$\text{Cl}(\tau_1\tau_2$-$\text{Cl}(A)) = \tau_1\tau_2$-$\text{Cl}(A)$.

2. If $A \subseteq B$, then $\tau_1\tau_2$-$\text{Cl}(A) \subseteq \tau_1\tau_2$-$\text{Cl}(B)$.

3. $\tau_1\tau_2$-$\text{Cl}(A)$ is $\tau_1\tau_2$-closed.

4. A is $\tau_1\tau_2$-closed if and only if $A = \tau_1\tau_2$-$\text{Cl}(A)$.

5. $\tau_1\tau_2$-$\text{Cl}(X - A) = X - \tau_1\tau_2$-$\text{Int}(A)$.

A bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$-connected [20] if X cannot be written as the union of two nonempty disjoint $\tau_1\tau_2$-open sets. A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$-open [36] (resp. $(\tau_1, \tau_2)s$-open [6], $(\tau_1, \tau_2)p$-open [6], $(\tau_1, \tau_2)\beta$-open [6], $\alpha(\tau_1, \tau_2)$-open [38]) if $A = \tau_1\tau_2$-$\text{Int}(\tau_1\tau_2$-$\text{Cl}(A))$ (resp. $A \subseteq$
In particular, Y, and we always assume that F following [1] we shall denote the upper and lower inverse of a set F of multifunctions. Moreover, some characterizations of upper and lower s-continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be upper $s-(\tau_1, \tau_2)p$-continuous if for $x \in X$ and each $\sigma_1\sigma_2$-open set V of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement, there exists a $(\tau_1, \tau_2)p$-open set U of X containing x such that $F(U) \subseteq V$.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is upper $s-(\tau_1, \tau_2)p$-continuous;

(2) $F^+(V)$ is $(\tau_1, \tau_2)p$-open in X for every $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement.

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2), the following properties hold:

(1) A is $(\tau_1, \tau_2)p$-closed if and only if $(\tau_1, \tau_2)-pCl(A) = A$;

(2) $(\tau_1, \tau_2)-pCl(A) = \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(A)) \cup A$;

(3) $(\tau_1, \tau_2)-pCl((\tau_1, \tau_2)pCl(A)) = (\tau_1, \tau_2)pCl(A)$.

By a multifunction $F : X \rightarrow Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \rightarrow Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{ x \in X \mid F(x) \subseteq B \}$ and $F^-(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}$.

In particular, $F^-(y) = \{ x \in X \mid y \in F(x) \}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions

In this section, we introduce the notions of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions. Moreover, some characterizations of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be upper $s-(\tau_1, \tau_2)p$-continuous if for $x \in X$ and each $\sigma_1\sigma_2$-open set V of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement, there exists a $(\tau_1, \tau_2)p$-open set U of X containing x such that $F(U) \subseteq V$.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is upper $s-(\tau_1, \tau_2)p$-continuous;

(2) $F^+(V)$ is $(\tau_1, \tau_2)p$-open in X for every $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement;
(3) $F^-(K)$ is $(\tau_1, \tau_2)p$-closed in X for every $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closed set K of Y;

(4) $\tau_1\tau_2-Cl(\tau_1\tau_2-Int(F^-(B))) \subseteq F^-(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;

(5) $(\tau_1, \tau_2)-pCl(F^-(B)) \subseteq F^-(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;

(6) $F^+(\sigma_1\sigma_2-Int(B)) \subseteq (\tau_1, \tau_2)-pInt(F^+(B))$ for every subset B of Y such that $Y - \sigma_1\sigma_2-Int(B)$ is $\sigma_1\sigma_2$-connected.

Proof. (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$-open set of Y having $\sigma_1\sigma_2$-connected complement and $x \in F^+(V)$. Then, there exists a $(\tau_1, \tau_2)p$-open set U of X containing x such that $F(U) \subseteq V$. Therefore, we have $x \in U \subseteq \tau_1\tau_2-Int(\tau_1\tau_2-Cl(F^+(V)))$. Thus,

$$F^+(V) \subseteq \tau_1\tau_2-Int(\tau_1\tau_2-Cl(F^+(V)))$$

and hence $F^+(V)$ is $(\tau_1, \tau_2)p$-open in X.

(2) \Rightarrow (3): The proof follows immediately from the fact that $F^+(Y - B) = X - F^-(B)$ for every subset B of Y.

(3) \Rightarrow (4): Let B be any subset of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure. Then, $F^-(\sigma_1\sigma_2-Cl(B))$ is a $(\tau_1, \tau_2)p$-closed set of X. By Lemma 2, we have

$$\tau_1\tau_2-Cl(\tau_1\tau_2-Int(F^-(B))) \subseteq \tau_1\tau_2-Cl(\tau_1\tau_2-Int(F^-(\sigma_1\sigma_2-Cl(B))))$$

$$\subseteq (\tau_1, \tau_2)-pCl(F^-(\sigma_1\sigma_2-Cl(B)))$$

$$= F^-(\sigma_1\sigma_2-Cl(B)).$$

(4) \Rightarrow (5): Let B be any subset of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure. It follows from Lemma 2 that

$$(\tau_1, \tau_2)-pCl(F^-(B)) = F^-(B) \cup \tau_1\tau_2-Cl(\tau_1\tau_2-Int(F^-(B)))$$

$$\subseteq F^-(\sigma_1\sigma_2-Cl(B)).$$

(5) \Rightarrow (6): Let B be any subset of Y such that $Y - \sigma_1\sigma_2-Int(B)$ is $\sigma_1\sigma_2$-connected. By (5),

$$X - (\tau_1, \tau_2)-Int(F^+(B)) = (\tau_1, \tau_2)-pCl(X - F^+(B))$$

$$= (\tau_1, \tau_2)-pCl(F^-(Y - B))$$

$$\subseteq F^-(\sigma_1\sigma_2-Cl(Y - B))$$

$$= F^-(Y - \sigma_1\sigma_2-Int(B))$$

$$= X - F^+(\sigma_1\sigma_2-Int(B)).$$
Thus, $F^+(\sigma_1\sigma_2{-}\text{Int}(B)) \subseteq (\tau_1, \tau_2){-}\text{pInt}(F^+(B))$.

(6) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1\sigma_2$-open set of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement. By (6), we have

$$F^+(V) = F^+(\sigma_1\sigma_2{-}\text{Int}(V)) \subseteq (\tau_1, \tau_2){-}\text{pInt}(F^+(V)).$$

Put $U = (\tau_1, \tau_2){-}\text{pInt}(F^+(V))$. Then, U is a (τ_1, τ_2)-open set of X containing x such that $F(U) \subseteq V$. This shows that F is upper $s(\tau_1, \tau_2)$-continuous.

Definition 2. A multifunction $F:\ (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $s(\tau_1, \tau_2)$-continuous if for each $x \in X$ and each $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement such that $F(x) \cap V \neq \emptyset$, there exists a (τ_1, τ_2)-open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$.

Theorem 2. For a multifunction $F:\ (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

1. F is lower $s(\tau_1, \tau_2)$-continuous;
2. $F^{-}(V)$ is (τ_1, τ_2)-open in X for every $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement;
3. $F^{+}(K)$ is (τ_1, τ_2)-closed in X for every $\sigma_1\sigma_2$-closed $\sigma_1\sigma_2$-connected set K of Y;
4. $\tau_1\tau_2{-}\text{Cl}(\tau_1\tau_2{-}\text{Int}(F^+(B))) \subseteq F^+(\sigma_1\sigma_2{-}\text{Cl}(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;
5. $(\tau_1, \tau_2){-}\text{pCl}(F^+(B)) \subseteq F^+(\sigma_1\sigma_2{-}\text{Cl}(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;
6. $F^{-}(\sigma_1\sigma_2{-}\text{Int}(B)) \subseteq (\tau_1, \tau_2){-}\text{pInt}(F^-(B))$ for every subset B of Y such that $Y - \sigma_1\sigma_2{-}\text{Int}(B)$ is $\sigma_1\sigma_2$-connected.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A function $f:\ (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $s(\tau_1, \tau_2)$-continuous if for each point $x \in X$ and each $\sigma_1\sigma_2$-open set V of Y containing $f(x)$ and having $\sigma_1\sigma_2$-connected complement, there exists a (τ_1, τ_2)-open set U of X containing x such that $f(U) \subseteq V$.

Corollary 1. For a function $f:\ (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

1. f is lower $s(\tau_1, \tau_2)$-continuous.
(2) $f^{-1}(V)$ is $(\tau_1, \tau_2)p$-open in X for every $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement;

(3) $f^{-1}(K)$ is $(\tau_1, \tau_2)p$-closed in X for every $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closed set K of Y;

(4) $\tau_1\tau_2$-$\text{Cl}(\tau_1\tau_2$-$\text{Int}(f^{-1}(B))) \subseteq f^{-1}(\sigma_1\sigma_2$-$\text{Cl}(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;

(5) (τ_1, τ_2)-$p\text{Cl}(f^{-1}(B)) \subseteq f^{-1}(\sigma_1\sigma_2$-$\text{Cl}(B))$ for every subset B of Y having the $\sigma_1\sigma_2$-connected $\sigma_1\sigma_2$-closure;

(6) $f^{-1}(\sigma_1\sigma_2$-$\text{Int}(B)) \subseteq (\tau_1, \tau_2)$-$p\text{Int}(f^{-1}(B))$ for every subset B of Y such that $Y - \sigma_1\sigma_2$-$\text{Int}(B)$ is $\sigma_1\sigma_2$-connected.

Corollary 2. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper s-$(\tau_1, \tau_2)p$-continuous if $F^{-1}(V)$ is $(\tau_1, \tau_2)p$-closed in X for every $\sigma_1\sigma_2$-connected set V of Y.

Proof. Let V be any $\sigma_1\sigma_2$-open set of Y having $\sigma_1\sigma_2$-connected complement. Then, $Y - V$ is $\sigma_1\sigma_2$-connected and $F^{-}(Y - V)$ is $(\tau_1, \tau_2)p$-closed in X. Thus, $F^{-}(V)$ is $(\tau_1, \tau_2)p$-open in X and by Theorem 1, F is upper s-$(\tau_1, \tau_2)p$-continuous.

Corollary 3. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower s-$(\tau_1, \tau_2)p$-continuous if $F^{+}(V)$ is $(\tau_1, \tau_2)p$-closed in X for every $\sigma_1\sigma_2$-connected set V of Y.

Proof. The proof is similar to that of Corollary 2.

For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, by $\text{Cl}_{\delta}F_{\delta} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ [20] we denote a multifunction defined as follows: $\text{Cl}_{\delta}F_{\delta}(x) = \sigma_1\sigma_2$-$\text{Cl}(F(x))$ for each $x \in X$.

Definition 4. [20] A subset A of a bitopological space (X, τ_1, τ_2) is said to be:

(1) $\tau_1\tau_2$-paracompact if every cover of A by $\tau_1\tau_2$-open sets of X is refined by a cover of A which consists of $\tau_1\tau_2$-open sets of X and is $\tau_1\tau_2$-locally finite in X;

(2) $\tau_1\tau_2$-regular if for each $x \in A$ and each $\tau_1\tau_2$-open set U of X containing x, there exists a $\tau_1\tau_2$-open set V of X such that $x \in V \subseteq \tau_1\tau_2$-$\text{Cl}(V) \subseteq U$.

Lemma 3. [20] If A is a $\tau_1\tau_2$-regular $\tau_1\tau_2$-paracompact set of a bitopological space (X, τ_1, τ_2) and U is a $\tau_1\tau_2$-open neighbourhood of A, then there exists a $\tau_1\tau_2$-open set V of X such that $A \subseteq V \subseteq \tau_1\tau_2$-$\text{Cl}(V) \subseteq U$.

Lemma 4. [20] If $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a multifunction such that $F(x)$ is $\tau_1\tau_2$-regular and $\tau_1\tau_2$-paracompact for each $x \in X$, then $\text{Cl}_{\delta}F^{+}_{\delta}(V) = F^{+}(V)$ for each $\sigma_1\sigma_2$-open set V of Y.
Theorem 3. Let $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a multifunction such that $F(x)$ is $\sigma_1\sigma_2$-paracompact and $\sigma_1\sigma_2$-regular for each $x \in X$. Then, the following properties are equivalent:

(1) F is upper $s-(\tau_1, \tau_2)p$-continuous;

(2) $Cl F_0$ is upper $s-(\tau_1, \tau_2)p$-continuous.

Proof. We put $G = Cl F_0$. Suppose that F is upper $s-(\tau_1, \tau_2)p$-continuous. Let $x \in X$ and V be any $\sigma_1\sigma_2$-open set of Y containing $G(x)$ and having $\sigma_1\sigma_2$-connected complement. By Lemma 4, we have $x \in G^+(V) = F^+(V)$ and hence there exists a $\tau_1\tau_2$-open set U of X containing x such that $F(U) \subseteq V$. Since $F(z)$ is $\sigma_1\sigma_2$-paracompact and $\sigma_1\sigma_2$-regular for each $z \in U$, by Lemma 3 there exists a $\tau_1\tau_2$-open set W of X such that $F(z) \subseteq W \subseteq \sigma_1\sigma_2-Cl(W) \subseteq V$; hence $G(z) \subseteq \sigma_1\sigma_2-Cl(W) \subseteq V$ for each $z \in U$. Thus, $G(U) \subseteq V$ and hence G is upper $s-(\tau_1, \tau_2)p$-continuous.

Conversely, suppose that G is upper $s-(\tau_1, \tau_2)p$-continuous. Let $x \in X$ and V be any $\sigma_1\sigma_2$-open set of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement. By Lemma 4, we have $x \in F^+(V) = G^+(V)$ and hence $G(x) \subseteq V$. There exists a $\tau_1\tau_2$-open set U of X containing x such that $G(U) \subseteq V$. Thus, $U \subseteq G^+(V) = F^+(V)$ and so $F(U) \subseteq V$. This shows that F is upper $s-(\tau_1, \tau_2)p$-continuous.

Lemma 5. [20] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, $Cl F_0^-(V) = F^-(V)$ for each $\sigma_1\sigma_2$-open set V of Y.

Theorem 4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) F is lower $s-(\tau_1, \tau_2)p$-continuous;

(2) $Cl F_0$ is lower $s-(\tau_1, \tau_2)p$-continuous.

Proof. By using Lemma 5 this can be shown similarly to that of Theorem 3.

The $(\tau_1, \tau_2)p$-frontier of a subset A of a bitopological space (X, τ_1, τ_2), denoted by $(\tau_1, \tau_2)-pfr(A)$, is defined by

$$(\tau_1, \tau_2)-pfr(A) = (\tau_1, \tau_2)-pCl(A) \cap (\tau_1, \tau_2)-pCl(X - A)$$

$$= (\tau_1, \tau_2)-pCl(A) - (\tau_1, \tau_2)-pInt(A).$$

Theorem 5. The set of all points x of X at which a multifunction

$$F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$$

is not upper $s-(\tau_1, \tau_2)p$-continuous is identical with the union of the $(\tau_1, \tau_2)p$-frontier of the upper inverse images of the $\sigma_1\sigma_2$-closures of $\sigma_1\sigma_2$-open sets containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement.
Proof. Suppose that F is not upper $s-(\tau_1, \tau_2)p$-continuous at $x \in X$. Then, there exists a $\sigma_1\sigma_2$-open set V of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement such that $U \cap (X - F^+(V)) \neq \emptyset$ for every $(\tau_1, \tau_2)p$-open set U of X containing x. Therefore, we have $x \in (\tau_1, \tau_2)pCl(X - F^+(V))$. On the other hand, we have

$$x \in F^+(V) \subseteq (\tau_1, \tau_2)pCl(F^+(V))$$

and hence $x \in (\tau_1, \tau_2)pfr(F^+(V))$.

Conversely, suppose that V is a $\sigma_1\sigma_2$-open set of Y containing $F(x)$ and having $\sigma_1\sigma_2$-connected complement such that $x \in (\tau_1, \tau_2)pfr(F^+(V))$. If F is upper $s-(\tau_1, \tau_2)p$-continuous at $x \in X$, there exists a $(\tau_1, \tau_2)p$-open set U of X containing x such that $U \subseteq F^+(V)$; hence $x \in (\tau_1, \tau_2)pInt(F^+(V))$. This is a contradiction and so F is not upper $s-(\tau_1, \tau_2)p$-continuous at x.

Theorem 6. The set of all points x of X at which a multifunction

$$F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$$

is not lower $s-(\tau_1, \tau_2)p$-continuous is identical with the union of the $(\tau_1, \tau_2)p$-frontier of the lower inverse images of the $\sigma_1\sigma_2$-closures of $\sigma_1\sigma_2$-open sets meeting $F(x)$ and having $\sigma_1\sigma_2$-connected complement.

Proof. The proof is similar to that of Theorem 5.

4. Conclusion

This paper deals with the notions of upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions. Furthermore, some characterizations and several properties concerning upper and lower $s-(\tau_1, \tau_2)p$-continuous multifunctions are established. In the upcoming work, we plan to apply the concepts initiated in this paper to study a new generalization of upper (lower) $s-(\tau_1, \tau_2)p$-continuous multifunctions, namely upper (lower) almost $s-(\tau_1, \tau_2)p$-continuous multifunctions. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called upper (lower) almost $s-(\tau_1, \tau_2)p$-continuous multifunctions if for each $x \in X$ and each $\sigma_1\sigma_2$-open set V of Y having $\sigma_1\sigma_2$-connected complement such that $x \in F^+(V)$ ($x \in F^-(V)$), there exists a $(\tau_1, \tau_2)p$-open set U of X containing x such that $U \subseteq F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))$ ($U \subseteq F^-(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V)))$). The class of upper (lower) $s-(\tau_1, \tau_2)p$-continuous multifunctions included in the class of upper (lower) almost $s-(\tau_1, \tau_2)p$-continuous multifunctions.

Acknowledgements

This research project was financially supported by Mahasarakham University.
References

