EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 4, 2010, 641-652 ISSN 1307-5543 – www.ejpam.com

Some Sandwich Theorems for Certain Analytic Functions Defined by Convolution

M. K. Aouf* and A. O. Mostafa

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract. In this paper, we obtain some applications of first order differential subordination and superordination results for some analytic functions defined by convolution.

2000 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic functions, differential subordination, superordination, sandwich theorems, convolution.

1. Introduction

Let *S* denote the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
(1)

which are analytic and univalent in the open unit disk $U = \{z : z \in C, |z| < 1\}$. If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that $f(z) = g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence:

$$f(z) \prec g(z) \ (z \in U) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Let H(U) denote the class of analytic functions in U and let H[a, 1] denote the subclass of the functions $f \in H(U)$ of the form:

$$f(z) = a + a_1 z + a_2 z^2 + \dots \quad (a \in C).$$

http://www.ejpam.com

© 2010 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: mkaouf 1270yahoo.com (M. Aouf), adelaeg2540yahoo.com (A. Mostafa)

Supposing that h and g are two analytic functions in U, let

$$\varphi(r,s,t;z): C^3 \times U \to C.$$

If *h* and $\varphi(h(z), zh'(z), z^2h''(z); z)$ are univalent functions in U and if *h* satisfies the second-order superordination

$$g(z) \prec \varphi(h(z), zh'(z), z^2h''(z); z), \tag{2}$$

then g is a solution of the differential superordination (2). A function $g \in H(U)$ is called a subordinant of (2), if $q(z) \prec h(z)$ for all the functions h satisfying (2). A univalent subordinant \tilde{q} that satisfies $q(z) \prec \tilde{q}(z)$ for all of the subordinants q of (2), is said to be the best subordinant.

Recently, Miller and Mocanu [15] obtained sufficient conditions on the functions g, q and φ for which the following implication holds:

$$g(z) \prec \varphi(h(z), zh'(z), z^2h''(z); z) \Rightarrow q(z) \prec h(z).$$

Using the results of Miller and Mocanu [15], Bulboaca [4] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [5]. Ali et al. [1], have used the results of Bulboaca [4] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent normalized functions in U.

Very recently, Shanmugam et al. [23] obtained sufficient conditions for a normalized analytic function f to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z) \text{ and } q_1(z) \prec \frac{z^2 f'(z)}{[f(z)]^2} \prec q_2(z) ,$$

where q_1 and q_2 are given univalent functions in *U* with $q_1(0) = q_2(0) = 1$.

For functions f given by (1) and $g \in S$ given by $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$, the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
(3)

We observe that for different choices of the function g, the function (f * g)(z) reduces to several interesting operators. For example, if

$$g(z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \ (c \neq 0, -1, -2, ...; z \in U), \tag{4}$$

where

$$(d)_{k} = \begin{cases} 1 & (k = 0; d \in C^{*} = C \setminus \{0\}) \\ d(d+1)...(d+k-1) & (k \in N; d \in C), \end{cases}$$

we see that, (f * g)(z) = L(a, c)f(z) and L(a, c) is the Carlson-Shaffer operator [6]. If

$$g(z) = z + \sum_{k=2}^{\infty} \frac{(\alpha_1)_{k-1} \dots (\alpha_l)_{k-1}}{(\beta_1)_{k-1} \dots (\beta_s)_{k-1} (1)_{k-1}} z^k,$$
(5)

where, $\alpha_i > 0$ $(i = 1, 2, ...l); \beta_j > 0$ $(j = 1, 2, ...s), l \le s + 1, l, s \in N_0 = N \cup \{0\}$, where $N = \{1, 2, ...\}$, we see that, $(f * g)(z) = H_{l,s}(\alpha_1)f(z)$, where $H_{l,s}(\alpha_1)$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [9] (see also [10] and [11]). The operator $H_{l,s}(\alpha_1)$, contains in tern many interesting operators such as, Hohlov linear operator (see [12]), the Carlson-Shaffer linear operator (see [6] and [21]), the Ruscheweyh derivative operator (see [20]), the Bernardi-Libera-Livingston operator (see [13]) and Owa-Srivastava fractional derivative operator (see [18]).

Also, if

$$g(z) = z + \sum_{k=2}^{\infty} \left[\frac{1+l+\lambda(k-1)}{1+l} \right]^m z^k \ (\lambda \ge 0, l \ge 0, m \in N_0), \tag{6}$$

we see that $(f * g)(z) = I(m, \lambda, l)f(z)$, where $I(m, \lambda, l)$ is the generalized multiplier transformation which was introduced and studied by Cătaş et al. [7]. The operator $I(m, \lambda, l)$, contains as special cases, the multiplier transformation (see [8]), the generalized Salăgeăn operator introduced and studied by Al-Oboudi [2] which in tern contains as special case the Salăgeăn operator (see [22]).

In [16], Mostafa et al. obtained some interesting subordination results for the function $\left(\frac{(f * g)(z)}{z}\right)^{\alpha} (\alpha \in C^*).$

In this paper, we get some interesting subordination results for the function

$$\left(\frac{z}{(f*g)(z)}\right)^{\circ} (\delta \in C^*).$$

2. Definitions and Preliminaries

To prove our results we shall need the following definition and lemmas.

Definition 1 ([15]). Let Q be the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \{\zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1 ([14]). Let q be univalent in the unit disc U, and let θ and φ be analytic in a domain D containing q(U), with $\varphi(w) \neq 0$ when $w \in q(U)$. Set $\psi(z) = zq'(z)\varphi(q(z))$, $h(z) = \theta(q(z)) + \psi(z)$ and suppose that

(i) ψ is a starlike function in U,

(ii)
$$Re\frac{zh'(z)}{\psi(z)} > 0, z \in U.$$

If p is analytic in U with p(0) = q(0), $p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\varphi(p(z)) \prec \theta(q(z)) + zq'(z)\varphi(q(z)), \tag{7}$$

then $p(z) \prec q(z)$, and q is the best dominant of (7).

Lemma 2 ([23]). Let $\mu, \gamma \in C^*$, and let q be a convex function in U with

$$Re\left(1+\frac{zq''(z)}{q'(z)}+\frac{\mu}{\gamma}\right)>0$$
, $z\in U$.

If p is analytic in U and

$$\mu p(z) + \gamma z p'(z) \prec \mu q(z) + \gamma z q'(z), \tag{8}$$

then $p(z) \prec q(z)$, and q is the best dominant of (8).

Lemma 3 ([5]). Let q be convex univalent function in U and let θ and φ be analytic in a domain D containing q(U). Suppose that:

- (i) $Re\frac{\theta'(q(z))}{\varphi(q(z))} > 0, z \in U,$
- (ii) $h(z) = zq'(z)\varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap Q$ with $p(U) \subset D$, the function $\theta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\varphi(q(z)) \prec \theta(p(z)) + zp'(z)\varphi(p(z)), \tag{9}$$

then $q(z) \prec p(z)$, and q is the best subordinant of (9).

Lemma 4 ([19]). *The function* $q(z) = (1-z)^{-2ab}$ *is univalent in U if and only if* $|2ab - 1| \le 1$ *or* $|2ab + 1| \le 1$.

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that, $\delta, \eta \in C^*, z \in U$ and the power is the principal one.

Theorem 1. Let q be univalent in U and satisfies

$$Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{\delta}{\eta}\} > 0.$$
 (10)

If $f, g \in S$ with $(f * g)(z) \neq 0, z \in U^* = U \setminus \{0\}$ satisfy the subordination:

$$\chi_g(\eta, \delta, f) \prec q(z) + \frac{\eta}{\delta} z q'(z), \tag{11}$$

where $\chi_g(\eta, \delta, f)$ is given by

$$\chi_{g}(\eta, \delta, f) = (1+\eta) \left(\frac{z}{(f*g)(z)}\right)^{\delta} - \eta \frac{z \left((f*g)(z)\right)'}{(f*g)(z)} \left(\frac{z}{(f*g)(z)}\right)^{\delta},$$
(12)

then

$$\left(\frac{z}{(f*g)(z)}\right)^{\delta} \prec q(z) \tag{13}$$

and q is the best dominant.

Proof. Define a function p by

$$p(z) = \left(\frac{z}{(f * g)(z)}\right)^{\delta}.$$
(14)

Then the function p is analytic in U and p(0) = 1. Therefore, by differentiating (14) logarithmically with respect to z, we have

$$p(z) + \frac{\eta}{\delta} z p'(z) = (1+\eta) \left(\frac{z}{(f*g)(z)}\right)^{\delta} - \eta \frac{z \left((f*g)(z)\right)'}{(f*g)(z)} \left(\frac{z}{(f*g)(z)}\right)^{\delta}.$$
 (15)

Using (11) and (15), we have

$$p(z) + \frac{\eta}{\delta} z p'(z) \prec q(z) + \frac{\eta}{\delta} z q'(z).$$
(16)

Hence, the assertion (13) now follows by using Lemma 2 with $\gamma = \frac{\eta}{\delta}$ and $\mu = 1$.

Putting q(z) = (1 + Az)/(1 + Bz) $(-1 \le B < A \le 1)$ in Theorem 1, the condition (10) becomes

$$\operatorname{Re}\left\{\frac{1-Bz}{1+Bz}+\frac{\delta}{\eta}\right\} > 0, z \in U.$$
(17)

It is easy to check that the function $\phi(z) = \frac{1-\zeta}{1+\zeta}, |\zeta| < |B| \le 1$, is convex in *U*, and since $\phi(\overline{\zeta}) = \overline{\phi(\zeta)}$ for all $|\zeta| < |B|$, it follows that the image $\phi(U)$ is a convex domain symmetric with respect to the real axis, hence

$$\inf\left\{\operatorname{Re}\frac{1-Bz}{1+Bz}\right\} = \frac{1-|B|}{1+|B|} \ge 0.$$

Then, the inequality (17) is equivalent to

$$\operatorname{Re}\frac{\eta}{\delta} \ge \frac{|B| - 1}{1 + |B|},\tag{18}$$

hence, we have the following corollary.

645

Corollary 1. Let $-1 \le B < A \le 1$ and (18) holds. If $f(z) \in S$ with $(f * g)(z) \ne 0, z \in U^*$ and

$$\chi_g(\eta, \delta, f) \prec \frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)z}{(1+Bz)^2},$$

where $\chi_g(\eta, \delta, f)$ is given by (12), then

$$\left(\frac{z}{(f*g)(z)}\right)^{\delta} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Putting $g(z) = z(1-z)^{-1}$ and $g(z) = z(1-z)^{-2}$, respectively, in Theorem 1, we have the result obtained by Shanmugam et al. [24, Corollaries 3.2 and 3.3, respectively].

Taking g(z) of the form (5), and using the identity (see [9])

$$z\left(H_{l,s}(\alpha_1)f(z)\right)' = \alpha_1 H_{l,s}(\alpha_1 + 1)f(z) - (\alpha_1 - 1)H_{l,s}(\alpha_1)f(z),$$
(19)

then we have the following corollary.

Corollary 2. Let q be univalent in U and satisfies (10). If $f \in S$ with $H_{l,s}(\alpha_1)f(z) \neq 0, z \in U^*$, and satisfies the subordination

$$\chi_1(\alpha_1,\eta,\delta,f) \prec q(z) + \frac{\eta}{\delta} z q'(z),$$

where $\chi_1(\alpha_1, \eta, \delta, f)$ is given by

$$\chi_{1}(\alpha_{1},\eta,\delta,f) = (1+\alpha_{1}\eta) \left(\frac{z}{H_{l,s}(\alpha_{1})f(z)}\right)^{\delta} - \alpha_{1}\eta \frac{H_{l,s}(\alpha_{1}+1)f(z)}{H_{l,s}(\alpha_{1})f(z)} \left(\frac{z}{H_{l,s}(\alpha_{1})f(z)}\right)^{\delta}, (20)$$

then

$$\left(\frac{z}{H_{l,s}(\alpha_1)f(z)}\right)^{\delta} \prec q(z)$$

and q is the best dominant.

Letting *g* be of the form (6), and using the identity (see [7])

$$\lambda z \left(I^m(\lambda, l) f(z) \right)' = (l+1) I^{m+1}(\lambda, l) f(z) - (1+l-\lambda) I^m(\lambda, l) f(z) \left(\lambda > 0; l \ge 0; m \in N_0\right),$$

$$(21)$$

then we have the following corollary.

Corollary 3. Let q be univalent in U and satisfies (10), $\lambda > 0, l \ge 0$ and $m \in N_0$. If $f \in S$ with $I^m(\lambda, l)f(z) \ne 0, z \in U^*$, and satisfies the subordination

$$\chi_2(l,m,\lambda,\eta,\delta,f) \prec q(z) + \frac{\eta}{\delta} z q'(z),$$

where $\chi_2(l, m, \lambda, \eta, \delta, f)$ is given by

$$\chi_2(l,m,\lambda,\eta,\delta,f) = \left(1 + \frac{\eta(l+1)}{\lambda}\right) \left(\frac{z}{I^m(\lambda,l)f(z)}\right)^{\delta} - \frac{\eta(l+1)}{\lambda} \frac{I^{m+1}(\lambda,l)f(z)}{I^m(\lambda,l)f(z)} \left(\frac{z}{I^m(\lambda,l)f(z)}\right)^{\delta}, \quad (22)$$

then

$$\left(\frac{z}{I^m(\lambda,l)f(z)}\right)^{\delta} \prec q(z)$$

and q is the best dominant.

Theorem 2. Let $\gamma \in C^*$ and let q be univalent in U with $q(0) = 1, q(z) \neq 0, z \in U$ and satisfies the condition:

$$Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0, \ z \in U.$$
(23)

If $f, g \in S$ with $(f * g)(z) \neq 0, z \in U^*$ and satisfies the subordination:

$$1 + \gamma \delta \left(1 - \frac{z(f * g)'(z)}{(f * g)(z)} \right) \prec 1 + \gamma \frac{zq'(z)}{q(z)}.$$
(24)

then,

$$\left(\frac{z}{(f*g)(z)}\right)^{\delta} \prec q(z),$$

and q is the best dominant of (24).

Proof. Let a function p defined by (14), then the function p is analytic in U and p(0) = 1. Therefore, by differentiating (14) logarithmically with respect to z, we have

$$\frac{zp'(z)}{p(z)} = \delta\left(1 - \frac{z(f * g)'(z)}{(f * g)(z)}\right).$$

Using the above relation in (24), we have

$$1 + \gamma \frac{zp'(z)}{p(z)} \prec 1 + \gamma \frac{zq'(z)}{q(z)}.$$

Taking $\theta(w) = 1$ and $\varphi(w) = \gamma/w$, then φ and θ are analytic in C^* . Simple computations show that

$$\psi(z) = zq'(z)\varphi(q(z)) = \gamma \frac{zq'(z)}{q(z)},$$

$$h(z) = \theta(q(z)) + \psi(z) = 1 + \gamma \frac{zq'(z)}{q(z)},$$

and it is easily to see that the conditions of Lemma 1 are satisfied whenever (23) holds. Then, applying Lemma 1, the proof of Theorem 2 is completed.

Putting q(z) = (1 + Az)/(1 + Bz) $(-1 \le B < A \le 1)$ in Theorem 2, it is easy to check that the condition (23) holds whenever $-1 \le B < A \le 1$, hence we obtain:

Corollary 4. Let $-1 \le B < A \le 1$ Let $f, g \in S$ with $(f * g)(z) \ne 0, z \in U^*$, suppose that

$$1+\gamma\delta\left(1-\frac{z(f\ast g)'(z)}{(f\ast g)(z)}\right)\prec 1+\frac{\gamma(A-B)z}{(1+Az)(1+Bz)}.$$

Then,

$$\left(\frac{z}{(f*g)(z)}\right)^{\delta} \prec \frac{1+Az}{1+Bz},$$

and (1 + Az)/(1 + Bz) is the best dominant.

Taking $\gamma = \frac{-1}{ab}$ $(a, b \in C^*), \delta = a$ and $q(z) = (1 - z)^{-2ab}$ in Theorem 2, then combining this together with Lemma 4, we obtain the following corollary.

Corollary 5. Let $a, b \in C^*$ such that $|2ab - 1| \le 1$ or $|2ab + 1| \le 1$. Let $f \in S$ and suppose that $\frac{(f*g)(z)}{z} \ne 0$ for all $z \in U^*$. If

$$1 + \frac{1}{b} \left(\frac{z(f * g)'(z)}{(f * g)(z)} - 1 \right) \prec \frac{1 + z}{1 - z},$$

then

$$\left(\frac{z}{(f*g)(z)}\right)^a \prec (1-z)^{-2ab},$$

and $(1-z)^{-2ab}$ is the best dominant.

Remark 1. (i) Taking $g(z) = \frac{z}{1-z}$ in Corollary 5, we obtain the result due to Obradović et al. [17, Theorem 1];

- (ii) Taking $g(z) = \frac{z}{1-z}$ and a = 1 in Corollary 5, we obtain the recent result of Srivastava and Lashin [25, Theorem 3];
- (iii) Taking $g(z) = \frac{z}{1-z}$, $\gamma = \frac{e^{i\lambda}}{ab\cos\lambda}$ $(a, b \in C^*; |\lambda| < \frac{\pi}{2})$, $\alpha = a$ and $q(z) = (1-z)^{-2ab\cos\lambda e^{-i\lambda}}$ in Corollary 5, we obtain the result due to Aouf et al. [3, Theorem 1].

Theorem 3. Let q be convex univalent in U, $\delta, \eta \in C^*$ and satisfies

$$Re\{\frac{\delta}{\eta}\} > 0. \tag{25}$$

Let $f,g \in S$, $(f * g)(z) \neq 0$, $z \in U^*$, suppose that $\left(\frac{z}{(f * g)(z)}\right)^{\delta} \cap H[q(0), 1] \in Q$ and that $\chi_g(\alpha, \eta; f)$ is univalent in U, where $\chi_g(\delta, \eta; f)$ is given by (12). Then

$$q(z) + \frac{\eta}{\delta} z q'(z) \prec \chi_g(\delta, \eta; f)(z),$$
(26)

implies

$$q(z) \prec \left(\frac{z}{(f * g)(z)}\right)^{\delta},$$

and q is the best subordinant of (26).

Proof. Define a function p defined by (14). Then simple computations show that

$$p(z) + \frac{\eta}{\delta} z p'(z) = \chi_g(\delta, \eta, f).$$

Putting $\theta(w) = w$ and $\varphi(w) = \eta/\delta$, then θ and φ are analytic in *C*, and

$$\operatorname{Re}\frac{\theta'(q(z))}{\varphi(q(z))} = \operatorname{Re}\frac{\delta}{\eta}q'(z) > 0 \ (z \in U).$$

Since q is a convex function, it follows that $h(z) = zq'(z)\varphi(q(z)) = \frac{\eta zq'(z)}{\delta}$ is starlike in U. Then by applying Lemma 3, the proof is completed.

Letting *g* be of the form (5) in Theorem 3 and using the identity (19), we get the following result obtained the following result:

Corollary 6. Let q be convex in U, and suppose that $\delta, \eta \in C^*$ satisfies the condition (25). For all functions $f \in S$ with $H_{l,s}(\alpha_1)f(z) \neq 0$, $z \in U^*$, suppose that $\left(\frac{z}{H_{l,s}(\alpha_1)f(z)}\right)^{\alpha} \in H[q(0), 1] \cap Q$, and that $\chi_1(\alpha_1; \delta, \eta; f)$ is univalent in U, where $\chi_1(\alpha_1; \delta, \eta; f)$ is given by (20).

Then,

$$q(z) + \frac{\eta}{\delta} z q'(z) \prec \chi_1(\alpha_1; \delta, \eta; f)(z),$$
(27)

implies

$$q(z) \prec \left(\frac{z}{H_{l,s}(\alpha_1)f(z)}\right)^{\delta},$$

and q is the best subordinant of (27).

Letting *g* be of the form (6) in Theorem 3 and using the identity (21), we have:

Corollary 7. Let q be convex in U, and suppose that $\alpha, \eta \in C^*$ satisfies the condition (25). For all functions $f \in \mathcal{S}$ with $I(m, \lambda, l)f(z) \neq 0$, $z \in U^*$ ($\lambda > 0$, $l \ge 0$, $m \in N_0$), suppose that $\left(\frac{z}{I(m, \lambda, l)f(z)}\right)^{\delta} \in H[q(0), 1] \cap Q$, and that $\chi_2(m, \lambda, l; \delta, \eta; f)$ is univalent in U, where $\chi_2(m, \lambda, l; \delta, \eta; f)$ is given by (22).

Then,

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \chi_2(m, \lambda, l; \alpha, \eta; f)(z),$$
(28)

implies

$$q(z) \prec \left(\frac{z}{I(m,\lambda,l)f(z)}\right)^{\alpha},$$

and q is the best subordinant of (28).

Combining Theorem 1 and Theorem 3, we deduce the following sandwich theorem:

Theorem 4. Let q_1 and q_2 be convex functions in U. Suppose that $\delta, \eta \in C^*$ satisfies (25) and q_2 satisfies (10). Let $f, g \in S$, with $(f * g)(z) \neq 0$, $z \in U^*$, suppose that $\left(\frac{z}{(f * g)(z)}\right)^{\delta} \in H[q(0), 1] \cap Q$, and that $\chi_g(\delta, \eta; f)$ is univalent in U, where $\chi_g(\delta, \eta; f)$ is given by (12). Then,

$$q_1(z) + \frac{\eta}{\delta} z q_1'(z) \prec \chi_g(\delta, \eta; f)(z) \prec q_2(z) + \frac{\eta}{\delta} z q_2'(z),$$
⁽²⁹⁾

implies

$$q_1(z) \prec \left(\frac{z}{(f * g)(z)}\right)^{\delta} \prec q_2(z),$$

and q_1 and q_2 are respectively, the best subordinant and the best dominant.

Combining Corollary 2 and Corollary 6, we get the sandwich result:

Corollary 8. Let q_1 and q_2 be convex functions in U. Suppose that $\delta, \eta \in C^*$ satisfies (25) and q_2 satisfies (10). Let $f \in S$, with $H_{l,s}(\alpha_1)f(z) \neq 0$, $z \in U^*$, suppose that $\left(\frac{z}{H_{l,s}(\alpha_1)f(z)}\right)^{\delta} \in H[q(0), 1] \cap Q$, and that $\chi_1(\alpha_1; \delta, \eta; f)$ is univalent in U, where $\chi_1(\alpha_1; \delta, \eta; f)$ is given by (20). Then,

$$q_1(z) + \frac{\eta}{\delta} z q_1'(z) \prec \chi_1(\alpha_1; \delta, \eta; f) \prec q_2(z) + \frac{\eta}{\delta} z q_2'(z),$$

implies

$$q_1(z) \prec \left(\frac{z}{H_{l,s}(\alpha_1)f(z)}\right)^{\delta} \prec q_2(z),$$

and q_1 and q_2 are respectively, the best subordinant and the best dominant.

Combining Corollary 3 and Corollary 7, we get the sandwich result:

Corollary 9. Let q_1 and q_2 be convex functions in U. Suppose that $\delta, \eta \in C^*$ satisfies (25) and q_2 satisfies (10). Let $f \in \mathscr{S}$, with $I(m, \lambda, l)f(z) \neq 0$, $z \in U^*$, suppose that $\left(\frac{z}{I(m, \lambda, l)f(z)}\right)^{\delta} \in H[q(0), 1] \cap Q$, and that $\chi_2(m, \lambda, l; \alpha, \eta; f)$ is univalent in U, where $\chi_2(m, \lambda, l; \alpha, \eta; f)$ is given by (22). Then,

$$q_1(z) + \frac{\eta}{\delta} z q_1'(z) \prec \chi_2(m,\lambda,l;\alpha,\eta;f)(z) \prec q_2(z) + \frac{\eta}{\delta} z q_2'(z),$$

implies

$$q_1(z) \prec \left(\frac{z}{I(m,\lambda,l)f(z)}\right)^{\delta} \prec q_2(z),$$

and q_1 and q_2 are respectively, the best subordinant and the best dominant.

Remark 2. Taking g in the form (4) in Theorems 1, 3 and 4, respectively, we obtain the results obtained by Shanmugam et al. [24, Theorems, 3.1, 4.1 and 5.1, respectively].

Specializing the parameters α_j (j = 1, 2, ..., s + 1), β_j (j = 1, 2, ..., s), λ, l and m, in Corollaries 8 and 9, we obtain the sandwich results for the corresponding operators.

References

- [1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci. 15, no. 1, 87-94. 2004.
- [2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27, 1429-1436. 2004.
- [3] M. K. Aouf, F. M. Al-Oboudi and M. M. Haidan, On some results for λ -spirallike and λ -Robertson functions of complex order, Publ. Institute Math. Belgrade, 77, no. 91, 93-98. 2005.
- [4] T. Bulboacă, A class of superordination-preserving integral operators, Indag. Math. (N. S.). 13, no. 3, 301-311. 2002.
- [5] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math. 35, no. 2, 287-292. 2002.
- [6] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15, 737-745. 1984.
- [7] A. Cătaş, G. I. Oros and G. Oros, Differential subordinations associated with multiplier transformations, Abstract Appl. Anal., 2008, ID 845724, 1-11. 2008.
- [8] N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40, no. 3, 399-410. 2003.
- [9] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103, 1-13. 1999.
- [10] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5, 115-125. 2002.
- [11] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14, 7-18. 2003.
- [12] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysŝh. Učebn. Zaved. Mat., 10, 83-89 (in Russian). 1978.
- [13] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16, 755-658. 1965.
- [14] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28, no. 2, 157-171. 1981.
- [15] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48, no. 10, 815-826. 2003.

- [16] A. O. Mostafa, T. Bulboaca and M. K. Aouf, Sandawich theorems for some analytic functions defined by convolution, Europ. J. Pure Appl. Math., 3, no.1, 1-12. 2010.
- [17] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Institute Math. Belgrade, 46 (60), 79-85. 1989.
- [18] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39, 1057-1077. 1987.
- [19] W. C. Royster, On the univalence of a certain integral, Michigan Math. J., 12, 385-387. 1965.
- [20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Sco., 49, 109-115. 1975.
- [21] H. Saitoh, A linear operator and its applications of fiest order differential subordinations, Math. Japon. 44, 31-38. 1996.
- [22] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, 362 - 372. 1983
- [23] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr. Math. Anal. Appl., 3, no. 1, Art. 8, 1-11. 2006.
- [24] T. N. Shanmugam, S. Srikandan, B. A. Frasin and S. Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean Math. Soc., 45, no. 3, 611-620. 2008.
- [25] H. M. Srivastava and A. Y. Lashin, Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure Appl.Math., 6 (2), Art. 41, 1-7. 2005.