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Abstract. A model building strategy is proposed to improve the probabilistic match in record linkage

with focus on the loglinear mixture model of two components, each for the matched and unmatched

pairs respectively. In reality, comparison attributes (i.e., covariates) often interact with each other,

leading to more or less interactions in the loglinear models for both the matched and unmatched pairs.

However, the interactions patterns are often not the same for both components. Particularly, because

the number of matched pairs is usually very small compared with that of unmatched pairs in prac-

tice, the model for matched pairs can not be fitted with the same higher order interactions as that for

the unmatched pairs. The proposed strategy is data-driven, and attempts to avoid both underfitting

and overfitting due to subjective model specification for the data. Starting from the situation of no

interaction, we add interactions sequentially in two loglinear components using the forward selection

approach. Specifically, we define the alternatively climbing pathways through mixture families of two

components with higher order interactions. The mixture models expanded along a pathway are nested

successively. Thus, conventional tests used for comparison of nested models can be applied. Regard-

ing parameter estimation for the mixture, a simplified method (including the choice of initial values

of parameters) for the EM algorithm is developed, which facilitates the mixture model fitting using

existing packages and functions in sophisticated statistical software like R. Simulation studies have

then been conducted for various situations to assess the model selection approach, and comparisons

of the selected models with the naive model assuming field independence have been made. We have

applied this strategy to the record linkage case study in 2006 Annual Meeting of Statistical Society of

Canada (SSC) and identified interactions among certain comparison attributes for both matched and

unmatched pairs; these interactions are not always the same for both mixture components.
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1. Introduction

Information often comes from various sources regarding different aspects of objects, and

could be recorded at different time points. For example, the provincial resident registry infor-

mation is comprised of several data sources from different departments such as transportation,

health, license and registration. These data sets include specific personal information such as

name, date of birth and address. Typically, there is no unique ID assigned to individual ob-

jects among all data sources. However, for some reasons, like administration or detection

of particular interested individuals (say, terrorists), the need arises to link two or more data

sources together so that the records for the same individual object across different files can be

identified for further processing. This task also identifies duplicate records in one file where a

second virtual file is the copy of the original one.

The way to decide whether two records are the same or whether two records describe

the same object is called record linkage. Records in different data files consist of common

attributes (such as name, address and date of birth) and different attributes (such as weight

in one file and height in another file) for individual objects. Usually, the common attributes

are chosen to be identifiers for record matching. However, the different attributes in two files

may provide partial information for the matching if these attributes are highly associated. In

this study, we only consider the common attributes as the identifiers. Comparison vectors are

then obtained for each record pair by comparing the values of identifiers.

The status of a pair of records for comparison is either “matched” or “unmatched”. Ideally,

if the values of identifiers match exactly for a record pair, then the two records are from the

same object. However, in reality, there are many situations where the values of identifiers

may not be the same even if they are from the same object. For example, the surname of a

female may change when her marriage status changes. Hence, the method of exact match or

deterministic match may miss many matched records. On the other hand, exact match may

not always imply the same object. For instance, if the identifiers are just name and date of

birth, it could occur that two different persons have the same name and date of birth although

the chance is small. For this reason, probabilistic match is employed where the pair of records

is regarded as from the same object if the weight involving the matched and unmatched

probabilities is large enough.

Historically, Newcombe et al. (1959) studied probabilistic linkage on vital records; refer

to [13]. Fellegi and Sunter (1969) developed the formal mathematical framework for prob-

abilistic record linkage, and they also specified models in a hierarchical way according to a

possible error-making mechanism; see [6]. After that, many techniques and software have

been developed for record linkage. For example, blocking is used to reduce not only the size

of comparison pairs, but also the dependence effects (i.e., interaction between identifiers).

Nowadays record linkage methodology is used in many areas such as census, survey, admin-

istration and medical research; see [1, 3, 8, 12].

Regarding modelling, the approach applying a mixture of two components to the matched

and unmatched record pairs seems to be more convenient, because it does not require the de-

tails of the error-making mechanism. Jaro (1989) considered a mixture model for the simplest

contingency table derived from comparison vectors where fields are binary and independent,
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and used the EM algorithm for parameter estimation with application in a test census of

Tampa in 1985; see [7]. Winkler (1989) presented a loglinear model to adjust the lack of

independence; refer to [16]. More work on loglinear models can be found in [8, 9, 10], and

references therein.

We focus on mixture models. For a given record linkage task, many mixture models can

be specified. However, which model fits the observed comparison pairs better, and how can

underfitting or overfitting be avoided? These are questions for record linkage practitioners.

Our study is motivated by the record linkage case study in 2006 Annual Meeting of Statistical

Society of Canada (SSC 2006). We tried some free software for record linkage and found

that their models assume field independence without interactions. The possible reason for

this limitation could be the computational burden for arbitrary mixture models. However,

the lack of fit is obvious in this simple model if fields are dependent. On the other hand,

subjectively specifying models with higher order interactions may lead to overfitting for one

or both components. Both underfitting and overfitting will affect the calculation of matched

and unmatched probabilities, and thus affect the partition of record pairs. These problems

lead to the model selection in the mixture setting.

In our study, we propose a strategy for model selection in loglinear mixtures, where pa-

rameter estimates are obtained via a simplified method for the EM algorithm for the mixture

of two components. Such a simplified method can take advantage of existing packages and

functions in sophisticated statistical software like R, so computationally it is tractable. We

define the alternatively climbing pathways to indicate a sequence of nested models in the

mixture family. For comparison, we adopt the Pearson Chi-square test for nested models on

alternatively climbing pathways. The feature of this strategy is data-driven, and thus, the

model building avoids subjective specification. Simulation studies have been conducted to

verify the strategy, and to acquire experience of model building. We compare the results from

this strategy with those from the simplest model where all factors are binary and independent.

It shows that the data-driven strategy does give a refinement on modelling and lead to more

accurate estimation of probabilities compared with the simplest model.

This paper is organized as follows. We outline statistical modelling and a simplified

method for the EM algorithm in record linkage in Section 2. In Section 3, we propose the

data-driven strategy for modelling loglinear mixtures. Then we conduct simulation studies to

assess the proposed strategy in Section 4, and apply it to a case study in Section 5. Finally, we

make brief concluding remarks in Section 6.

2. Statistical framework and parameter estimation for record linkage

In this section, we first outline the statistical framework for the record linkage, where the

population of all pairs is the mixture of two components or subpopulations: matched pairs

and unmatched pairs. Then we give a simplified method for the EM algorithm for this specific

type of mixture models.
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2.1. Notation and framework

Consider two files where file A has a records and file B has b records. The total number

of possible record pairs for comparison is N = a× b. The records consist of attributes which

can be categorical variables such as name, address and date of birth, or numerical variables

such as age. Select n common attributes as the identifiers for comparing pairs of records from

both files A and B. Then the comparison for each record pair is made for all n identifiers

by matching rules defined according to the needs for these attributes. This will result in

a comparison vector of length n with each component being categorical. Each component

associated with an identifier (attribute) in the comparison vector is called a field. The field

values of comparison vector could be binary like 0 and 1, or any others defined by some

rules. For example, the simplest rule is agreement/disagreement on an attribute. Under

this simplest rule, if comparison attributes are name, address, gender and date of birth, an

observed comparison vector (0,1,1,0) means disagreement on name and date of birth, but

agreement on address and gender. Thus, we obtain N comparison vectors for all record pairs

denoted as follows:

γ j = (γ
j

1, . . . ,γ j
n), j = 1, . . . , N ,

where the subscript denotes the comparison field while the superscript indicates the compar-

ison pair.

Note that all comparison pairs include two types of pairs: matched and unmatched. There-

fore, we can view the entire population of all possible comparison pairs as a mixture of two

components or subpopulations: matched pairs and unmatched pairs. However, in this mix-

ture, the membership for each pair is missing or unknown.

Let M denote the matched subpopulation and U denote the unmatched subpopulation.

Each pair is either from M or U . Let

m j = P(γ j|M), u j = P(γ j |U), j = 1, . . . , N .

Define the matching weight as follows:

w j = log
P(γ j|M)

P(γ j|U)
= log P(γ j|M)− log P(γ j|U), j = 1, . . . , N ,

the logarithm of the likelihood ratio between the matched and unmatched. Probabilistic mod-

els are specified to obtain the associated probabilities.

Fellegi and Sunter (1969) set the fundamental probabilistic framework for record linkage;

see [6]. Assume that m j ,u j , w j are estimated from data. Without loss of generality, the

descending matching weight sequence is assumed to be

w1 ≥ . . . ≥ wk ≥ . . . ≥ wl ≥ . . . ≥ wN ,

and the corresponding matched and unmatched probability sequences are

m1, . . . , mk, | . . . , | ml , . . . , mN ,
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u1, . . . ,uk, | . . . , | ul , . . . ,uN ,

where k and l are the cutting points which partition all comparison pairs into three parts:

matched, uncertain and unmatched, as follows:

C1 : j = 1, . . . , k; matched,

C2 : j = k+ 1, . . . , l − 1; uncertain for clerical review,

C3 : j = l, . . . , N ; unmatched.

The cutting conditions are set as

k
∑

j=1

u j ≤ α1,

N
∑

j=l

m j ≤ α2, where α1 and α2 are prespecified.

A good tutorial was given by Fair and Whitridge (1997); see [5]. In addition, Winkler (2005)

gave an overview on record linkage; refer to [17].

In the literature, various models have been proposed for the mixture population from dif-

ferent angles. We have mentioned a few in Section 1. In this study, we focus on loglinear

mixture models. The advantage of using a parametric model is that we can ignore the un-

derlying error-making mechanism. Note that the mixture models for record linkage consist

of only two components. In next subsection, we will outline the general framework for this

particular type of mixture models and propose a simplified method for the EM algorithm as

well as the choice of initial parameter values for this method.

2.2. Mixture models and the simplified method of the EM algorithm for parame-

ter estimation

We consider parametric models for both the matched and unmatched subpopulations.

Assume that the model for M has pmf or pdf fM (γ;βm) while the model for U has pmf or pdf

fU(γ;βu). Here γ is the comparison vector, and βm and βu are parameter vectors associated

with the models for M and U respectively. Suppose the chance of a comparison pair from M

is π. Then the pmf or pdf for the j-th comparison pair is

fγ(γ
j;βm,βu,π) = π fM (γ

j;βm) + (1−π) fU(γ
j;βu). (1)

On the other hand, denote the membership for the j-th comparison pair as follows

g j =

(

1, if γ j is from the matched population M ,

0, if γ j is from the unmatched U ,
j = 1, . . . , N .

For the j-th pair, the complete data is X j = (γ
j , g j). Thus, the pmf or pdf for the complete

data of the j-th pair is

fX
�

(γ j , g j);βm,βu,π
�

=
�

π fM (γ
j;βm)
�g j
�

(1−π) fU(γ
j;βu)
�(1−g j)

. (2)
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Assume that the comparison pairs are independent. The logarithm of the joint pmf or pdf for

all complete data is

lC
�

(γ1, g1), . . . , (γN , gN );βm,βu,π
�

= log







N
∏

j=1

fX
�

(γ j, g j);βm,βu,π
�







=

N
∑

j=1

�

g j log fM (γ
j;βm) + (1− g j) log fU(γ

j;βu)

+g j logπ+ (1− g j) log(1−π)
�

. (3)

The conditional pmf for the membership g is then

fg|γ

�

g j | γ
j;βm,βu,π
�

=
fX
�

(γ j, g j);βm,βu,π
�

fγ(γ
j;βm,βu,π)

=
fX
�

(γ j , g j);βm,βu,π
�

π fM (γ
j;βm) + (1−π) fU(γ

j;βu)
. (4)

However, the membership g j is missing in the mixture population. Therefore, the mixture

can be regarded as a missing value problem and the EM algorithm can be utilized to estimate

the model parameters βm, βu and π. For references on the EM algorithm, see [4], [11] and

references therein.

The EM algorithm is an iterative approach which alternates between two steps, an E-step

and an M-step. The E-step is conducted as follows. Conditional on values of β (k)m , β (k)u and

π(k), as well as the observed comparison vectors, the expectation of the logarithm of the joint

pmf or pdf for all complete data is

L = E
�

lC
�

(γ1, g1), . . . , (γN , gN );βm,βu,π
�

| γ1, . . . ,γN ;β (k)m ,β (k)u ,π(k)
�

=

N
∑

j=1

E
�

log
�

fX
�

(γ j, g j);βm,βu,π
��

| γ j;β (k)m ,β (k)u ,π(k)
�

=

N
∑

j=1

∫

log
�

fX
�

(γ j , g j);βm,βu,π
��

fg|γ

�

g j | γ
j;β (k)m ,β (k)u ,π(k)

�

d g j

=

N
∑

j=1

1
∑

g j=0

¦�

g j log fM (γ
j;βm) + (1− g j) log fU(γ

j;βu)

+g j logπ+ (1− g j) log(1−π)
�

× fg|γ

�

g j | γ
j;β (k)m ,β (k)u ,π(k)

�©

.

Let

g(k)m (γ
j) = fg|γ

�

1 | γ j;β (k)m ,β (k)u ,π(k)
�

=
π(k) fM (γ

j;β (k)m )

π(k) fM (γ
j;β (k)m ) + (1−π

(k)) fU(γ
j;β (k)u )

,
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g(k)u (γ
j) = fg|γ

�

0 | γ j;β (k)m ,β (k)u ,π(k)
�

=
(1−π(k)) fU(γ

j;β (k)u )

π(k) fM (γ
j;β (k)m ) + (1−π

(k)) fU(γ
j;β (k)u )

= 1− gm(γ
j).

Then, by algebra,

L =

N
∑

j=1

g(k)m (γ
j) log fM (γ

j;βm) +

N
∑

j=1

g(k)u (γ
j) log fU (γ

j;βu)

+

N
∑

j=1

�

g(k)m (γ
j) logπ+ g(k)u (γ

j) log(1−π)
�

= L1 + L2 + L3,

where

L1 =

N
∑

j=1

g(k)m (γ
j) log fM (γ

j;βm), L2 =

N
∑

j=1

g(k)u (γ
j) log fU (γ

j;βu),

and

L3 =

N
∑

j=1

�

g(k)m (γ
j) logπ+ g(k)u (γ

j) log(1−π)
�

.

This splits the conditional expectation L into three separate parts corresponding to the matched

pairs, the unmatched pairs and the mixing proportion π respectively.

The M-step maximizes the conditional expectation L, which is in turn equivalent to maxi-

mization of L1, L2 and L3 separately. Note that L1 and L2 are weighted log-likelihoods for the

matched and unmatched pairs respectively. Thus, for models which can be fitted by weighted

MLE using available software, their maximization can be readily obtained by that software.

The maximization of L3 is straightforward:

∂ L3

∂ π
=

N
∑

j=1

�

g(k)m (γ
j)

1

π
− g(k)u (γ

j)
1

1−π

�

= 0

yields

1

π

N
∑

j=1

g(k)m (γ
j) =

1

1−π

N
∑

j=1

g(k)u (γ
j).

Thus,

π=

∑N

j=1 g(k)m (γ
j)

∑N

j=1 g
(k)
m (γ

j) +
∑N

j=1 g
(k)
u (γ

j)
=

1

N

N
∑

j=1

g(k)m (γ
j).
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We obtain

π(k+1) =
1

N

N
∑

j=1

g(k)m (γ
j), β (k+1)

m = arg max L1, β (k+1)
u = arg max L2. (5)

This approach is regarded as a simplified method of the EM algorithm for the mixture situ-

ation. It can take advantage of existing packages or functions in statistical software without

developing particular code for maximization of the complicated model components, especially

with interactions. Note that Winkler (1988) investigated the EM algorithm for Fellegi-Sunter

model; see [15]. We are suggestting a computational method for fitting a mixture with two

components where each component is readily fitted by a model like GLM.

3. Model building strategy for loglinear mixtures of two components

We consider all fields of the comparison vector γ = (γ1, . . . ,γn) are categorical. For exam-

ple, γ1 could be binary taking value 0 or 1, meaning unmatching or matching respectively for

a pair of records in field 1. Then all of such observed comparison vectors form a multi-way

contingency table with n factors (each field corresponds to a factor). Thus, it is natural to

utilize the loglinear model for analyzing such a contingency table.

A loglinear model states that the logarithm of the expected number of a cell in the con-

tingency table can be expressed as the additive function of main effects and interactions of

factors. For instance, we consider a four factor I × J ×K× L contingency table. Two loglinear

models we will use in the remaining are

logµi jkl = λ+λ
(1)

i
+λ

(2)

j
+λ

(3)

k
+λ

(4)

l
, (6)

or

logµi jkl = λ+λ
(1)

i
+λ

(2)

j
+λ

(3)

k
+λ

(4)

l
+λ

(12)

i j
+λ

(13)

ik
+λ

(14)

il
+λ

(23)

jk
+λ

(24)

jl
+λ

(34)

kl
, (7)

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K , l = 1, . . . , L.

Here µi jkl denotes the expected cell count, λ is the overall mean, λ
(1)

i
, λ
(2)

j
, λ
(3)

k
and λ

(4)

l

are the main effects of each factor at corresponding levels i, j, k and l, λ
(12)

i j
, λ
(13)

ik
, λ
(14)

il
,

λ
(23)

jk
, λ
(24)

jl
, λ
(34)

kl
are two-factor interactions at specified level pairs. Model (6) corresponds to

the situation of independence among factors, while model (7) corresponds to a situation of

dependence among factors. Note that model (6) is nested in model (7).

Apart from the above common ANOVA-like formulation, there is a generalized linear

model formulation, where the cell counts are assumed to be distributed in Poisson. For in-

stance, Model (6) and (7) have the following equivalent Poisson GLM formulations:

logµ = α+α1γ1+α2γ2 +α3γ3 +α4γ4, (8)

and

logµ = α+α1γ1 +α2γ2 +α3γ3 +α4γ4
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+α12γ1γ2 +α13γ1γ3 +α14γ1γ4 +α23γ2γ3 +α24γ2γ4 +α34γ3γ4. (9)

Here α’s are the intercept for the model and coefficients for variable γ’s and their interactions,

µ is the expected cell count associated with covariates γ= (γ1,γ2,γ3,γ4).

R has function loglm() for fitting loglinear models in the form of ANOVA-like specifica-

tion, and function glm() for fitting Poisson GLM models. Each has advantages and disadvan-

tages. We use both in our computation in case one encounters unexpected problems.

In record linkage, the matched and unmatched subpopulations could have their own

model specifications, thus, M and U are assumed to have different loglinear models respec-

tively. However, the membership is unknown. So the entire population of possible pairs is a

mixture of two loglinear models for M and U . The observed contingency table is a sample

from this mixture population.

Jaro (1989) considered the simplest case for the contingency table where all factors are

binary, and thus, the contingency table is 2× 2× · · · × 2, and the number of all cells of the

table is 2n; see [7]. He assumed field independence, and employed the EM algorithm for the

estimation of all probabilities related to fields and the mixing proportion. From the prospec-

tive of loglinear model formulation, the models for M and U in Jaro (1989) were loglinear

models without interactions. The field independence may not hold in reality. For instance,

strong dependencies were observed by Thibaudeau (1993) in census data; see [14]. Prior to

that report, Winkler (1989) extended the simplest case to a general one, where interactions

were taken into account in the models for M and U , specifically, two-class and three-class in-

teractions were considered, and models were assessed using goodness-of-fit tests (see [16]).

Larsen (1997) considered a loglinear model with main effects, all two-way interactions, all

three-way interactions and two five-way interactions in a trial census and post-enumeration

survey (see [9]).

Any of the specified loglinear mixture models can be estimated using the simplified method

for the EM algorithm in Section 2. For a real case, the specification can be given from back-

ground information or subjective opinion. Thus, different opinions or understanding about

the real case can result in different model specifications.

However, among those subjectively specified models, which one fits the observed con-

tingency table better, or captures the data feature better? How can we avoid overfitting or

underfitting? These questions lead to the model selection for loglinear mixture models in

record linkage. Usually, a better model will give a better estimation of cell probabilities for

matched and unmatched pairs, which in turn increases the accuracy of record pair partition.

When we search among a series of models, a method of statistical testing is required

for model comparison at each step, and a strategy is needed in the iterative selection process.

Suppose the loglinear mixture modelM (0) is nested in another loglinear mixture modelM (1),

namelyM (0) ⊂ M (1). We adopt a general method to compare these two loglinear mixture

models, i.e., testing

H0 : M (0) =M (1) versus H1 : M (0) ⊂M (1).

If H0 is not rejected, we do not need to improveM (0) by considering the larger modelM (1).

Otherwise, model refinement is necessary. For this testing, the Pearson Chi-squared statistic is
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employed as follows

χ2
�

M (0)|M (1)
�

=
∑

(µ̂1i − µ̂0i)
2/µ̂0i , (10)

where µ̂1i and µ̂0i are fitted values of individual cell expectations forM (0) andM (1) respec-

tively. Because one model is nested in the other, the asymptotic distribution of χ2
�

M (0)|M (1)
�

under H0 is χ2(d f ), where the degrees of freedom d f is the difference of parameter numbers

betweenM (0) andM (1). For a reference, see [2], P. 364.

The loglinear models for components U and M in the mixture we consider for record

linkage may or may not include higher order interactions among fields. We denoteMi j for a

loglinear mixture model where i indicates that the loglinear model for U has up to the (i+1)-

th order interactions (i.e., (i+1)-factor-interactions) and j indicates that the loglinear model

for M has up to the ( j+1)-th order interactions (i.e., ( j+1)-factor-interactions), i, j ≥ 0. For

instance,M00 means that the models for both M and U in the mixture have no interactions,

i.e., Model (6).M10 means that the model for U has two-factor interactions, while the model

for M has no interactions. M02 means that the model for U has no interactions, while the

model for M has two-factor and three-factor interactions. The nested situation of two loglin-

ear mixture models is totally determined by the nested situations of their both components.

Therefore, we can build nested loglinear mixture models by building nested loglinear models

for either U or M , or both U and M . That is,

Mi j ⊂Mi′ j′ if i ≤ i′ and j ≤ j′.

For instance,M00 ⊂M01 ⊂M11 andM00 ⊂M10 ⊂M11, butM01 andM10 are not nested in

each other. See the illustration in (11) where mixture models of two components are arranged

in a matrix format.

...
...

...
...

M30 M31 M32 → M33 · · ·
↑ ⇑

M20 M21 → M22 ⇒ M23 · · ·
↑ ⇑

M10 → M11 ⇒ M12 M13 · · ·
↑ ⇑
M00 ⇒ M01 M02 M03 · · ·

(11)

We make comparison for models on the nested pathways. However, there are many nested

paths in the family of loglinear mixtures of two components. For example, fromM00 toM11,

there are two nested pathways: M00 ⊂ M10 ⊂ M11 and M00 ⊂ M01 ⊂ M11. In general,

from one diagonal modelMii to the next diagonal model M(i+1)(i+1), there are two nested

pathways similar to this illustrated example. Refer to (11). This pair of nested pathways is

called alternatively climbing pathways (denoted by “→” and “⇒” respectively). We propose

the following forward selection strategy along the alternatively climbing pathways:

• Step 1: Start from the loglinear mixture modelM00 (the one on the bottom left corner

in (11)), where the loglinear models for both U and M have only main factor effects

with no interactions.
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• Step 2: Proceed on the pathwayM00 ⊂M10 ⊂M11, and compare two adjacent models

successively using a prespecified significance level α. This pathway considers the model

with higher order interactions for U first.

– If the series testing stops atM00, then go to step 3.

– If the series testing stops atM10, then the final model isM10.

– If the series testing stops atM11, then go to step 4.

• Step 3: Proceed on the alternative pathway M00 ⊂ M01 ⊂ M11, and compare two

adjacent models successively using the significance level α. This pathway considers the

model with higher order interactions for M first.

– If the series testing stops atM00, then the final model isM00.

– If the series testing stops atM01, then the final model isM01.

– If the series testing stops atM11, then go to step 4.

• Step 4: Treat M11 like M00, and repeat steps 1 to 3 along the alternatively climbing

pathways fromM11 toM22, i.e., start a second round of search from the next diagonal

entry.

• Step 5: Continue the iteration until the series testing stops.

The above search on alternatively climbing pathways guarantees the nesting between two

loglinear mixture models under comparison. We place priority on the pathway where the

model for U is added higher order interactions (the route denoted by “→”) first, because in

record linkage, the unmatched pairs are the majority. If this fails, then we consider the other

pathway where the model for M is added higher order interactions (the route denoted by

“⇒”).

Note that for step 1, if the contingency table degenerates to the case where all factors are

binary, the computation will become the Jaro’s method. The simplest loglinear mixture model

M00 captures the main effects explained by factors alone. Note that the attributes chosen by

investigators are typically important variables in record matching according to background

knowledge. Thus, their main effects practically exist. On the other hand, we may not know

the joint effects of attributes in advance. Thus, it is safe and convenient to start from the

simplest mixture modelM00.

However, if the joint effects have been known to be strong by the background knowledge,

we can start from a particular mixture model which may not be a diagonal entry in (11). A

modification of the model search is then that we proceed with the testings on an upward or a

rightward pathway to the model in the closest diagonal entry, then continue the search using

the above strategy. Note that the backward selection could be feasible. However, it starts from

the most complicated model with all possible interactions, and thus, the computational cost

is typically large.

In record linkage, the number of matched pairs is extremely small relative to the number

of unmatched pairs. So usually the model for M has lower order interactions than that for

U . That is why we consider to enlarge the component for U first. The restriction of searching
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along the alternatively climbing pathways prevents over-extension of model for either compo-

nent U or M . This conservative procedure is based on the reasoning that interactions among

attributes usually affect both subpopulations U and M . Thus, we do not wish the model for

U has higher order interactions while the model for M does not. If this reasoning is not ap-

propriate, the restriction can be relaxed, say we can further extend the model for U when a

final model is M(i+1)i . However, our simulation studies show that it is hard to capture higher

order interactions from data even if they are truly generated from a model with higher order

interactions. Therefore, from the practical viewpoint, we suggest not to seek very higher order

interactions in record linkage.

The final model obtained from the proposed strategy will include all interactions of the

same order, say all three-factor-interactions or third order interactions. It may not be neces-

sary to do so because some of them could be very weak. Thus, we can apply testing in (10)

again to prune unnecessary interactions for either U or M in the final mixture model.

The choice of initial values of parameters for the EM algorithm is important for the final

solution. If the contingency table is the one with binary factors, then we can use the Jaro’s

method to determine the initial values. Note that the maximum number of matched pairs is

min(a, b). In a general case, we propose the following data-driven method named as the J

method for the choice of initial values regarding parameters π, βu and βm:

• the initial value for the mixing proportion is chosen asπ(0) =min(a, b)/ab = 1/max(a, b),

the upper bound of the mixing proportion. This can be modified as π(0)/10, π(0)/5 or

π(0)/2 depending on the blocking situation.

• β (0)u , the vector of initial values in the loglinear model for U , is obtained from fitting

that model to a modified table which has more unmatched pairs and fewer matched

pairs. The cell values of this table are the original cell counts divided by min(a, b) (thus

may not be integers).

• β (0)m , the vector of initial values in the loglinear model for M , is obtained from fitting

that model to another modified table which is created by picking counts for cells with

higher matching chance, and assigning zeroes for others cells.

Intuitively, if the table is derived from more unmatched pairs or from more matched pairs,

then the fitted model is closer to the true model for U or for M respectively. It works quite

well in the simulation studies. Note that fitting a loglinear model to a non-integer-valued

table is the same as fitting to an integer-valued table in R.

4. Simulation Studies

Simulation studies are necessary for verifying the proposed data-driven strategy of model

building. From simulation, we can obtain experience on model fitting and building in various

settings such as file sizes, mixing proportions and interactions patterns. Besides, we can also

identify potential drawbacks for necessary adjustment.

We consider the comparison vector consisting of four fields, γ = (γ1,γ2,γ3,γ4), which is

fairly moderate in reality. Each field is binary, where 0 means the field unmatched while 1
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indicates the field matched. Thus, the total number of cells is 24 = 16. Table 1 labels all of

these sixteen cells in the way of a 24 factorial design matrix for later reference. Commonly,Table 1: Cell labels for the 2× 2× 2× 2 ontingeny table.
Cell Comparison vector Cell Comparison vector

1 (0,0,0,0) 9 (0,0,0,1)

2 (1,0,0,0) 10 (1,0,0,1)

3 (0,1,0,0) 11 (0,1,0,1)

4 (1,1,0,0) 12 (1,1,0,1)

5 (0,0,1,0) 13 (0,0,1,1)

6 (1,0,1,0) 14 (1,0,1,1)

7 (0,1,1,0) 15 (0,1,1,1)

8 (1,1,1,0) 16 (1,1,1,1)

a cell with more 1’s has larger matching chance for record pairs with comparison vectors in

that cell. Thus, cells corresponding to comparison vectors being (1,1,1,1), (1,1,0,1) and

(1,1,1,0) have more matching possibilities than cells corresponding to (0,0,0,0), (0,0,1,0)

and (0,0,0,1).

This is the type of contingency table considered in Jaro (1989); see [7]. For this situa-

tion, a byproduct is that we can compare the estimated 16 cell probabilities from the model

selected via the data-driven strategy with those from the simplest starting model M00. For

each individual simulation, we set the lengths of two data sets as a and b, as well as the true

matched pairs Nm (thus, leading to the mixing proportion π). For the sake of simplicity, we

do not consider the blocking technique, thus, there are N = ab record pairs. Six settings are

then chosen for the simulation (see Table 2). The combination of lengths a and b covers threeTable 2: Lengths of two data sets and true mathes in six setting ases.
Setting 1 2 3 4 5 6

a 200 200 400 400 1,000 1,000

b 1,000 1,000 400 400 2,000 2,000

N = ab 200,000 200,000 160,000 160,000 2,000,000 2,000,000

Nm 20 150 40 200 50 600

situations:

• one is small, and one is large;

• both are of equal lengths;

• both are large, but of different lengths.
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Two situations regarding the mixing proportion are considered: one with a small mixing

proportion corresponding to fewer matched pairs, and one with a fairly large proportion cor-

responding to more matched pairs. Regarding the loglinear mixture model, we choose two

types of loglinear models for both U and M as follows.

(1) Models with no interactions for both U and M , i.e., ModelM00. Specifications of main

effects are in Table 3.Table 3: Spei�ations of main e�ets of models with no interations.
Component λ λ

(1)
0 λ

(1)
1 λ

(2)
0 λ

(2)
1 λ

(3)
0 λ

(3)
1 λ

(4)
0 λ

(4)
1

U 0.5 2.30 -2.30 1.59 -1.59 1.74 -1.74 2.09 -2.09

M 0.3 -1.10 1.10 -0.87 0.87 -0.69 0.69 -1.10 1.10

(2) Models with two-factor interactions for both U and M , i.e., ModelM11. Specifications

of main effects and interactions are in Table 4. Note that

λ
(i)
1 = −λ

(i)
0 , λ

(i j)

01 = λ
(i j)

01 = −λ
(i j)

00 , λ
(i j)

11 = λ
(i j)

00 , i, j = 1,2,3,4.

Thus, effects and interactions at other levels can be readily derived from the one at level

0.Table 4: Spei�ations of main e�ets and interations of models with interations at level 0.
Component λ λ

(1)
0 λ

(2)
0 λ

(3)
0 λ

(4)
0 λ

(12)
00 λ

(13)
00 λ

(14)
00 λ

(23)
00 λ

(24)
00 λ

(34)
00

U 0.5 2.3 0.6 1.00 3.0 1.04 0.40 1.13 0.65 0.20 1.40

M 0.3 -1.2 -0.9 -0.66 -0.5 0.44 -0.64 -0.16 -1.08 1.08 0.32

With two different mixture models assigned for each of the six cases of data settings, we

have investigated 12 simulation cases in total. Since the mixture model is for comparison

vectors, we do not need to generate two original record files in each simulation case. Actually,

what we need to generate are (N − Nm) comparison vectors from the loglinear model for U

and Nm comparison vectors from the loglinear model for M in each simulation case. These

comparison vectors yield the 2 × 2 × 2 × 2 tables of 16 cells (see Table 1). Therefore, we

finally need the contingency tables for U and M respectively. Note that conditional on the

total count, the joint counts of all cells follow a multinomial distribution. Suppose Yi and µi

are the observed count and expected count in cell i respectively. Let N0 be the total count.

Then, conditional on
∑16

i=1 Yi = N0,

(Y1, Y2, . . . , Y16)∼Multinomial(N0; p1, p2, . . . , p16), (12)
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where pi = µi

�

16
∑

j=1

µ j, the probability that an observed vector occurs in cell i, i = 1,2, . . . , 16.

For a reference, see [2], P. 317-318. In general, we can simulate a contingency table according

to (12) for a specified total count. This is the method we use to simulate data sets for six

settings with mixture modelM11. However, if fields are independent, we can generate four

independent binary columns of length being the specified total count N0. Each column is a

series of N0 Bernoulli trials with success probability which can be readily computed according

to (12). Information of a and b will be used in the choice of initial values in the simplified

method for the EM algorithm.

We apply the proposed building strategy to select a loglinear mixture model for each sim-

ulation case. The significance level is set as α = 5%. The following lists the model building

processes and the finally selected models for all the 12 simulation cases. Due to space limita-

tion, we omit the details of the estimated models.

• For the true loglinear mixture model beingM00 (refer to Table 3), settings 1, 2, 3, 5 and

6 lead toM00 while setting 4 yieldsM00 →M10. Thus, from the viewpoint of model

fitting, setting 4 is a little bit overfitted with false interactions for U .

• For the true loglinear mixture model beingM11 (refer to Table 4), settings 1, 2, 4 and

6 proceed asM00→M10→M11 while settings 3 and 5 result inM00→M10. Hence,

settings 3 and 5 are a little bit underfitted without capturing the two-factor interactions

for M .

Regarding the true mixture model being M00, five out of six simulation cases yield the se-

lected models consistent with the true one, however, one case results in overfitting. Further

investigation shows that the p-values in testing H0 : M00 =M10 for the setting a = 400 and

b = 400 are 0.047 (< 0.05) when Nm = 40 (setting 3) and 0.105 (> 0.05) when Nm = 200

(setting 4). Note that setting 4 has the highest proportion of matched pairs, with half of

records in each file corresponding to the same objects. This highly matching feature might

cause model inflation for component U when fields are actually independent. As to the true

mixture model beingM11, four out of six cases lead to models consistent with the true ones,

but two cases fail to capture the two-factor interactions in the loglinear model for M , leading

to underfitting for the mixture. Note that both overfitting and underfitting happen when the

number of matched pairs Nm is small. Hence, empirically, it may be more difficult to find

higher order interactions for the M component than for the U component in the mixture. Cu-

riously, we have not observed any overfitting when the true mixture model isM11 in a larger

scale investigation. These observed phenomena indicate that the proposed model building

strategy may not capture the true underlying mixture model perfectly. Sometimes it yields a

slight overfitting or underfitting for one of the mixture components.

Since in some cases the selected models deviate from the true models, a natural question is

how the corresponding cell probabilities deviate from the truth. This is because the ultimate

concern in record linkage is the probabilities from U and M for all record pairs, as well as

their matching weights. Thus, it is necessary to investigate the cell probability differences.

In addition, we can compare the selected model with the fitted starting modelM00 from the
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viewpoint of cell probabilities. This is to see whether or not our proposed data-driven strategy

can beat or at least is equivalent to the subjective specification with naive field independence

used in some record linkage software. We show the details in Table 5 for setting 5 when the

true mixture model is M11. In this simulation case, the selected model by the data-driven

strategy is underfitting in the M component, not perfectly consistent with the true underlying

model. In Table 5,

• PD(S, T |U) and PD(S, T |M) denote differeences in cell probabilities between the se-

lected model by the data-driven strategy and the true model for component U and M

respectively,

• PD(I , T |U) and PD(I , T |M) denote differeences in cell probabilities between the sim-

plest starting modelM00 and the true model for component U and M respectively.Table 5: Comparisons of ell probabilities between two �tted models and the true model, M11, for setting5.
Cell PD(S, T |U) PD(I , T |U) PD(S, T |M) PD(I , T |M)

1 -2.710e-05 2.130e-04 -2.233e-04 4.487e-02

2 -2.547e-07 -3.767e-06 -5.058e-03 6.675e-03

3 2.973e-05 -8.666e-05 -5.604e-04 4.272e-01

4 2.606e-06 -2.535e-05 -7.308e-02 3.753e-02

5 2.865e-06 -1.356e-06 -1.375e-02 9.176e-03

6 5.579e-08 -2.366e-07 -2.407e-02 1.810e-02

7 -4.573e-06 -8.575e-05 -4.588e-04 2.170e-01

8 4.212e-07 -1.728e-06 -4.552e-03 5.192e-02

9 -2.060e-06 -3.412e-06 -5.084e-05 5.027e-03

10 -5.656e-08 -5.617e-08 -6.071e-04 7.143e-04

11 -5.870e-08 -1.122e-07 -9.592e-03 3.858e-02

12 -5.544e-08 -5.543e-08 1.877e-01 -6.532e-01

13 -2.490e-07 -2.843e-06 -1.126e-02 -8.674e-03

14 -7.634e-08 -7.634e-08 -1.039e-02 -9.719e-03

15 -1.884e-07 -5.871e-07 -2.825e-02 -3.754e-03

16 -1.007e-06 -1.007e-06 -5.842e-03 -1.452e-01

The smaller the absolute value in the table, the closer the corresponding cell probability is

to the truth. Table 5 shows that compared with the simplest starting modelM00, the model

selected by the data-driven strategy has smaller absolute values of probability differences in

almost all cells for the estimated U component, and in the majority of cells for the estimated

M component, thus, leading to a better overall performance in this particular simulation case.

This means that the selected model is closer to the true underlying model than the fittedM00.

Similar patterns have been found in other simulation cases when the true model is M11.

Therefore, the proposed strategy does have improvement in the model building compared
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with the naive specification of field independence (i.e., starting model M00). Due to space

limitation, we summarize only the cell probability differences between the selected and the

true models, as well as those between the fittedM00 and the true model in Table 6 for U and

M respectively, using the following measures for two general loglinear mixture models:

D(M (0),M (1) | U) =
∑

i∈all cells

|p(0)
i
(U)− p

(1)

i
(U)|,

D(M (0),M (1) | M) =
∑

i∈all cells

|p(0)
i
(M)− p

(1)

i
(M)|.

Here p
( j)

i
is the probability of cell i in modelM ( j). In addition, we also compare the estimated

mixing proportion π̂(S) from the data-driven strategy and π̂(I) from the field independence

specification with the true π: π̂(S)−π and π̂(I)−π.Table 6: Overall �tting omparisons between two �tted models and the true model.
Simulation Case D(S, T |U) D(I , T |U) D(S, T |M) D(I , T |M) π̂(S)−π π̂(I)−π

Setting 1,M00 1.668e-03 1.668e-03 1.967e-01 1.967e-01 -7.0e-06 -7.0e-06

Setting 2,M00 1.947e-03 1.947e-03 2.200e-01 2.200e-01 4.3e-05 4.3e-05

Setting 3,M00 2.059e-03 2.059e-03 3.287e-01 3.287e-01 -2.4e-05 -2.4e-05

Setting 4,M00 2.066e-03 1.487e-03 1.124e-01 1.009e-01 5.7e-06 -4.0e-06

Setting 5,M00 6.018e-04 6.018e-04 2.037e-01 2.037e-01 2.2e-04 2.2e-04

Setting 6,M00 5.984e-04 5.984e-04 1.293e-01 1.293e-01 1.2e-05 1.2e-05

Setting 1,M11 3.794e-04 2.400e-04 4.097e-01 1.482e-00 -1.5e-05 2.1e-04

Setting 2,M11 6.460e-04 7.581e-04 4.143e-01 5.985e-01 -3.0e-04 1.1e-04

Setting 3,M11 4.167e-04 7.049e-04 3.239e-01 1.103e-00 -4.5e-05 1.7e-04

Setting 4,M11 4.722e-04 4.678e-04 2.751e-01 3.372e-01 1.4e-04 4.6e-05

Setting 5,M11 7.136e-05 4.260e-04 3.755e-01 1.677e-00 -9.8e-07 2.6e-04

Setting 6,M11 2.453e-04 2.525e-04 4.145e-01 7.516e-01 -7.1e-05 1.1e-04

Table 6 shows that when the underlying true mixture model isM00, the data-driven strat-

egy yields the same results as the Jaro’s method if the selected model is consistent withM00.

This means that the simplified method for the EM algorithm is equivalent to the Jaro’s method

when the field independence exists, and is thus an alternative approach. However, the advan-

tage of this approach is that it can handle general contingency tables with factor levels more

than two.

Regarding the performance of two fitted models in Table 6, when the field independence

holds, the selected models by the data-driven strategy are almost the same as the fittedM00

except one overfitting case. However, they perform better than the fitted M00 when field

independence is violated.

As to detecting interactions from the table data, our experience shows that it is not easy to

capture the higher order interactions accurately. For this reason, we do not investigate further
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the individual interactions in a given loglinear model in the proposed model building strategy,

and it is also the partial reason why models are enlarged with a group of interactions in the

building strategy in (11). Even more, for a data set simulated from a known loglinear model

with three-factor interactions, the fitted model does not include these three-factor interactions

although we increase the total count as many as possible in R. Therefore, in practice, it is

likely to stop at a model with lower order interactions such as two-factor interactions, and

this selected model may be a good approximation to the true model under the given sample

size.

5. Application to a case study

We apply the proposed model building strategy to the record linkage case study at SSC

2006 (www.ss.a/douments/ase_studies/2006/reord_index_e.html).

The objective of the case study is to maintain a registry. Four completely synthetic data

files named as “register”, “births”, “drivers” and “deaths” were constructed to simulate the

registry for a sample of residents of the province of Prince Edward Island (PEI), Canada.

The “register” file represents the population of PEI, containing a unique id, name, date of

birth, and address information for residents. This is the file that we are working to maintain.

The “births” file records new entrants into the population. They are persons who enter the

population of interest, for example by moving into an area of interest, or attaining a certain

age. The data file on births contains both present and previous address information as well as

complete name and date of birth information. The “drivers” file provides moving information

for registry. People living in Canada may take out their first license, get a new license (out

of province) or update their present license (within a province). This file has information

on name, address and date of birth. The “deaths” file contains name, address, date of birth

and date of death. Note that data sources are updated independently. The main file is the

“register” file which needs to be updated according to the other three files. In summary, the

specific tasks include

(1) add new entrant records to “register” file from “births” file,

(2) update moving records to “register” file from “drivers” file,

(3) remove death records from “register” file according to “deaths” file.

To achieve these goals, we first need to identify common individuals in two compared files.

Thus, record linkage is employed in these tasks.

Basically, the records in these files contain common personal information such as name

(first, middle and last), date of birth (day, month and year), gender, address, and so on. We

adopt the gender as the blocking factor to reduce both the number of record pairs and the

number of factors in the fitted models. Table 7 summarizes the total pairs in each of three

tasks after the gender blocking.

After a preliminary data analysis, we choose first name, middle name, last name and

date of birth (day/month/year) as identifiers for the tasks of adding new entrant records

and removing death records. For updating moving records, we only adopt first name, middle
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File 1 File 2 Gender Pair number Total Pair

Male 2000× 102= 204,000register births
Female 2000× 72= 144,000

348,000

Male 2000× 470= 940,000register drivers
Female 2000× 514= 1,028,000

1968,000

Male 2000× 69= 138,000register deaths
Female 2000× 96= 192,000

330,000

name, last name and postal code as identifiers, because the date of birth seems wrong by visual

check. Furthermore, we exclude the records with missing values or error values on identifiers

and gender in each file. These excluded records will be manually reviewed. The simple

matching of “agreement” or “disagreement” is chosen as the comparison rule. Therefore, for

the comparison vector γ = (γ1,γ2,γ3,γ4), all four fields are binary, indicating match or non-

match on identifiers. Each of the record pairs in Table 7 yields an observed comparison vector.

Three contingency tables are then created for the comparison vectors, one for each task.

Next we apply the data-driven strategy to the three obtained contingency tables. The

significance level is set as 5%. The selected models (in Poisson GLM formulation) are listed

below.

(1) For adding new entrant records from the “births” file, γ1, γ2, γ3 and γ4 mean match or

non-match on first name, middle name, last name and date of birth respectively. The

fitted model isM10 with an estimated mixing proportion π̂ = 4.885e− 4, where the U

component is

α = 12.704, α1 = −6.586, α2 = −3.046, α3 = −5.998, α4 = −10.219,

α12 = 4.245, α13 = 1.819, α14 = −13.911, α23 = 1.804, α24 = 0.561,

α34 = −14.031,

and the M component is

α= −77.456, α1 = 27.503, α2 = 27.805, α3 = 0.332, α4 = 26.410.

(2) For updating moving records from the “drivers” file, γ1, γ2, γ3 and γ4 mean match or

non-match on first name, middle name, last name and postal code respectively. The

fitted model isM11 with an estimated mixing proportion π̂ = 4.032e− 4, where the U

component is

α= 14.439, α1 = −6.432, α2 = −3.128, α3 = −5.849, α4 = −8.882,

α12 = 4.205, α13 = 1.427, α14 = 1.569, α23 = 1.879, α24 = 0.427, α34 = 1.807,

and the M component is

α= −21.502, α1 = −20.617, α2 = −5.895, α3 = 0.557, α4 = 0.249,
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α12 = 27.088, α13 = 45.199, α14 = −27.411, α23 = −43.852, α24 = 29.412,

α34 = 23.367.

(3) For removing death records according to the “deaths” file, γ1, γ2, γ3 and γ4 mean match

or non-match on first name, middle name, last name and date of birth respectively. The

fitted model isM10 with an estimated mixing proportion π̂ = 4.455e− 4, where the U

component is

α= 12.652, α1 = −6.725, α2 = −3.058, α3 = −5.531, α4 = −9.320,

α12 = 3.794, α13 = 2.159, α14 = −20.402, α23 = 1.391, α24 = −0.302,

α34 = −20.899,

and the M component is

α= −28.828, α1 = 3.570, α2 = 3.871, α3 = 4.956, α4 = 21.366.

In these fitted models, we see interactions among names (first, middle and last), date of

birth, and postal code. Note that these four synthetic files were actually constructed from

other survey sources about PEI. So more or less they reflect the local information. The reason

for the interactions among names may be traced back historically on the residents’ family,

origin and culture. In addition, PEI is a relatively closed island and the economy is not as

active as most of other Canadian provinces. Families who are relatives might be more likely

to live in a closed regions due to some reasons like traditional farming or other social activies,

which could lead to the spatial patterns for surnames. Hence, these interactions are caused

or confounded by the latent factors. Of course, these reasons could lead to higher order

interactions, say three-factor interactions. However, with the current sample sizes, only two-

factor interactions are significant enough to be included in the selected models.

We also build models for male and female block pairs separately in each task. Results are

very similar and hence omitted.

It is straightforward to calculate matching weights and perform record pair partition for

each task according to the corresponding selected model; this part is also omitted as it is not

the focus of this paper.

6. Discussion

The simplified method for the EM algorithm is computationally effective. It also extends

the Jaro’s method for a general contingency table in fitting loglinear mixture models. This

method can be easily implemented in a sophisticated statistical software using existing pack-

ages or functions for loglinear model fitting. We utilize R in this study. Compared with the

Jaro’s method, we extend not only the factor interactions but also the number of levels of each

factor. The factor is not necessarily binary. It can be more than two levels for each factor.

This data-driven strategy of model building avoids subjective specification of the under-

lying loglinear mixture model, and thus minimizes the chance of underfitting or overfitting
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caused by biased opinions. Often it yields a model consistent with the true one or close to the

true one. Therefore, it is more likely to result in a better partition for record linkage. However,

since the proposed strategy is not a global search, the selected model may not be the best.

Future investigations regarding other testing methods and building strategies, as well as

error rate investigation are under way. We welcome any real case collaboration.
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