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Abstract. In 1940 (and 1964) S.M. Ulam proposed the well-known Ulam stability problem. In 1941

D.H. Hyers solved the Hyers-Ulam problem for linear mappings. In 2008, J. M. Rassias introduced

the generalised Hyers-Ulam “product-sum” stability. In this paper we introduce a Cauchy type ad-

ditive functional equation and investigate the generalised Hyers-Ulam “product-sum” stability of this

equation.
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1. Introduction and Preliminaries

In 1940 (and 1964) Stanislaw M. Ulam [9] proposed the following stability problem,

well-known as Ulam stability problem:

“When is true that by slightly changing the hypotheses of a theorem one can still

assert that the thesis of the theorem remains true or approximately true?”

In particular he stated the stability question:

“Let G1 be a group and G2 a metric group with the metric ρ(., .). Given a constant

δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 → G2

satisfies ρ( f (x y), f (x) f (y)) < c for all x , y ∈ G1, then a unique homomorphism

h : G1→ G2 exists with ρ( f (x),h(x))< δ for all x ∈ G1 ?”

In 1941 D.H. Hyers [2] solved this problem for linear mappings as follows:
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Theorem 1 (D.H. Hyers, 1941: [2]). If a mapping f : E → E′ satisfies the approximately

additive inequality

|| f (x + y)− f (x)− f (y)|| ≤ ǫ,
for some fixed ǫ > 0 and all x , y ∈ E, where E and E′ are Banach spaces, then there exists a

unique additive mapping A : E→ E′, satisfying the formula

A(x) = lim
n→∞2−n f (2n x),

and inequality

|| f (x)− A(x)|| ≤ ǫ
for some fixed ǫ > 0 and all x ∈ E.

No continuity conditions are required for this result.

Theorem 2 (T. Aoki, 1950: [1]). Let f : E → E′ be a mapping from a normed vector space E

into a Banach space E′ subject to the inequality

|| f (x + y)− f (x)− f (y)|| ≤ ǫ(||x ||p+ ||y||p), (1)

for all x , y ∈ E, where ǫ > 0 and p < 1 constants. Then the limit

A(x) = lim
n→∞2−n f (2n x),

exists for all x ∈ E and A : E→ E′ is the unique additive mapping which satisfies

|| f (x)− A(x)|| ≤ 2ǫ

2− 2p
||x ||p (2)

for all x ∈ E. If p < 0 then the inequality (1) holds for x , y 6= 0 and (2) for x 6= 0.

Theorem 3 (Th. M. Rassias, 1978: [6]). Let f : E → E′ be a mapping from a normed vector

space E into a Banach space E′ subject to the inequality

|| f (x + y)− f (x)− f (y)|| ≤ ǫ(||x ||p+ ||y||p), (3)

for all x , y ∈ E, where ǫ > 0 and p < 1 constants. Then the limit

A(x) = lim
n→∞2−n f (2n x),

exists for all x ∈ E and A : E→ E′ is the unique additive mapping which satisfies

|| f (x)− A(x)|| ≤ 2ǫ

2− 2p
||x ||p (4)

for all x ∈ E. If p < 0 then the inequality (3) holds for x , y 6= 0 and (4) for x 6= 0.

If, moreover, f (t x) is continuous in t ∈ R for each fixed x ∈ E, then A(t x) = tA(x) for all x ∈ E

and t ∈ R. A : E→ E′ is a unique linear additive mapping satisfying equation

A(x + y) = A(x)+ A(y).
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Theorem 4 (J. M. Rassias, 1982-1989: [3, 4, 5]). Let X be a real normed linear space and Y a

real Banach space. Assume that f : X → Y is a mapping for which there exist constants θ ≥ 0

and p,q ∈ R such that r = p+ q 6= 1 and f satisfies the functional inequality

|| f (x + y)− f (x)− f (y)|| ≤ θ ||x ||p||y||q,

for all x , y ∈ X . Then the limit

A(x) = lim
n→∞2−n f (2n x),

exists for all x ∈ X and A : X → Y is the unique additive mapping which satisfies

|| f (x)− A(x)|| ≤ θ

|2r − 2| ||x ||
r

for all x ∈ X .

If, moreover, f (t x) is continuous in t ∈ R for each fixed x ∈ X , then A(t x) = tA(x) for all x ∈ X

and t ∈ R. A : X → Y is a unique linear additive mapping satisfying equation

A(x + y) = A(x)+ A(y).

For the theorem that follows, let (E,⊥) denote an orthogonality normed space with norm

||.||E and (F, ||.||F ) is a Banach space.

Theorem 5 (Ravi, K., Arunkumar, M. and Rassias, J. M., 2008: [7]). Let f : E → F be a

mapping which satisfies the inequality

|| f (mx + y) + f (mx − y)− 2 f (x + y)− 2 f (x − y)− 2(m2− 2) f (x)+ 2 f (y)||F
≤ ǫ�||x ||pE||y||pE +

�||x ||2p

E + ||y||2p

E

�	

(5)

for all x , y ∈ E with x ⊥ y, where ǫ and p are constants with ǫ, p > 0 and either m > 1; p < 1

or m< 1; p > 1 with m 6= 0; m 6= ±1; m 6= ±p2 and −1 6= |m|p−1 < 1.

Then the limit

Q(x) = lim
n→∞

f (mn x)

m2n

exists for all x ∈ E and Q : E→ F is the unique orthogonally Euler-Lagrange quadratic mapping

such that

|| f (x)−Q(x)||F ≤
ǫ

2|m2 −m2p| ||x ||
2p

E

for all x ∈ E.

Note that the mixed type product-sum function

(x , y)→ ǫ�||x ||pE||y||pE +
�||x ||2p

E + ||y||2p

E

��

was introduced by J. M. Rassias ([7, 8]).

In this paper we introduce a Cauchy type additive functional equation and investigate the

generalised Hyers-Ulam “product-sum” stability of this equation.
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2. Cauchy Type Additive Functional Equation

Let X be a real normed linear space and Y a real Banach space.

Definition 1. A mapping f : X → Y is called approximately Cauchy type additive, if the approx-

imately Cauchy additive functional inequality

|| f (x + y) + f (x − y) + f (y − x)− f (x)− f (y)|| ≤ ǫ�||x || α2 ||y|| α2 + ||x ||α+ ||y||α� (6)

holds for every x , y ∈ X with ǫ ≥ 0 and α 6= 1.

Lemma 1. Mapping A : X → Y satisfies the Cauchy-type additive equation

A(x + y) + A(x − y) + A(y − x) = A(x)+ A(y)

for all x , y ∈ X if and only if there exists a mapping C : X → Y satisfying the Cauchy additive

equation

C(x + y) = C(x)+ C(y)

for all x , y ∈ X such that A(x) = C(x) for all x ∈ X .

Proof. (⇒) Let mapping A : X → Y satisfy the Cauchy-type additive equation

A(x + y) + A(x − y) + A(y − x) = A(x)+ A(y) (7)

for all x , y ∈ X . Assume that there exists a mapping C : X → Y such that A(x) = C(x) for all

x ∈ X . Observe that for x = y = 0 and x = x , y = x from (7) we obtain respectively

C(0) = A(0) = 0

and

C(−x) = A(−x) = −A(x) = −C(x), for x ∈ X . (8)

From (7) and (8) it is obvious that

C(x + y) + C(x − y) + C(y − x) = C(x)+ C(y), or

C(x + y) + C(x − y) + C(−(x − y)) = C(x)+ C(y), or

C(x + y) = C(x)+ C(y).

Hence, C satisfies the Cauchy additive equation.

(⇐) Let mapping C : X → Y satisfy the Cauchy additive equation

C(x + y) = C(x)+ C(y) (9)

for all x , y ∈ X . Assume that there exists a mapping A : X → Y such that A(x) = C(x) for all

x ∈ X . Observe that for x = y = 0, from (9) we obtain

A(0) = C(0) = 0. (10)
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Thus, from (9) and (10) one gets

A(x)+ A(y) = C(x)+ C(y) = C(x + y) = A(x + y)

= A(x + y) + A(0) = A(x + y) + A((x − y) + (y − x))

= A(x + y) + A(x − y) + A(y − x).

Hence, A satisfies the Cauchy type additive equation.

Thus the proof of Lemma 1 is complete.

Theorem 6. Assume that f : X → Y is an approximately Cauchy type additive mapping satisfy-

ing (6).

Then, there exists a unique Cauchy type additive mapping A : X → Y which satisfies the formula

A(x) = lim
n→∞ fn(x),

where

fn(x) =

�2−n f (2n x), −∞<α<1

2n f (2−n x), α>1

for all x ∈ X and n ∈ N = {0,1,2, . . .}, which is the set of natural numbers and

|| f (x)− A(x)|| ≤ 3ǫ

|2− 2α| ||x ||
α

for some fixed ǫ > 0, α 6= 1 and all x ∈ X .

If, moreover, f (t x) is continuous in t ∈ R for each fixed x ∈ X , then A(t x) = tA(x) for all t ∈ R

and x ∈ X . A : X → Y is a unique linear Cauchy type additive mapping satisfying equation

A(x + y) + A(x − y) + A(y − x) = A(x)+ A(y). (11)

Proof. We start our proof considering: −∞< α < 1.

Step 1 By substituting x = y = 0 and x = y in (6), respectively, we can observe that

f (0) = 0

and

|| f (x)− 2−1 f (2x)|| ≤ 3

2
ǫ||x ||α.

Hence, for n ∈ N − {0}
|| f (x)− 2−n f (2n x)|| ≤ || f (x)− 2−1 f (2x)||+ ||2−1 f (2x)− 2−2 f (22 x)||+ . . .

+ ||2−(n−1) f (2n−1 x)− 2−n f (2nx)||
≤ 3

2
(1+ 2α−1+ ...+ 2(n−1)(α−1))ǫ||x ||α

=
3

2− 2α
(1− 2n(α−1))ǫ||x ||α.
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Thus,

|| f (x)− 2−n f (2nx)|| ≤ 3

2− 2α
(1− 2n(α−1))ǫ||x ||α,

for n ∈ N − {0} and −∞< α < 1.

Step 2 Following, we need to show that if there is a sequence { fn} : fn(x) = 2−n f (2nx), then

{ fn} converges.

For every n> m> 0, we can obtain

|| fn(x)− fm(x)|| = ||2−n f (2nx)− 2−m f (2mx)||
= 2−m|| f (2mx)− 2−(n−m) f (2(n−m)2mx)||
≤ 2−m

3ǫ

2− 2α
(1− 2(n−m)(α−1))||x ||α

< 2−m
3ǫ

2− 2α
||x ||α→ 0,

for m → ∞, as α < 1. Therefore, { fn} is a Cauchy sequence. Since Y is complete we

can conclude that { fn} is convergent. Thus, there is a well-defined A : X → Y such that

A(x) = limn→∞ 2−n f (2nx), for −∞< α < 1.

Step 3 Observe that

|| f (x)− fn(x)||= || f (x)− 2−n f (2nx)|| ≤ 3ǫ

2− 2α
(1− 2n(α−1))||x ||α,

from which by letting n→∞ we obtain

|| f (x)− A(x)|| ≤ 3ǫ

2− 2α
||x ||α. (12)

Step 4 Claim that mapping A : X → Y satisfies (11). In fact, by letting x → 2nx and y → 2n y,

from (6), we have:

|| f �2n(x + y)
�

+ f
�

2n(x − y)
�

+ f
�

2n(y − x)
�− f
�

2n x
�− f
�

2n y
�||

≤ ǫ�||2nx || α2 ||2n y|| α2 + ||2nx ||α+ ||2n y||α�.
Next, by multiplying with 2−n we obtain

0 ≤ ||2−n f
�

2n(x + y)
�

+ 2−n f
�

2n(x − y)
�

+ 2−n f
�

2n(y − x)
�− 2−n f
�

2n x
�− 2−n f
�

2n y
�||

≤ 2n(α−1)ǫ
�||x || α2 ||y|| α2 + ||x ||α+ ||y||α�

and by letting n→∞, for −∞ < α < 1 we can conclude that an A : X → Y truly exists

such that: A(x) = limn→∞ 2−n f (2nx) satisfies the Cauchy-type additivity property

A(x + y) +A(x − y) + A(y − x) = A(x)+ A(y). (13)

Therefore, existence of Theorem holds.
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Step 5 We need to prove that A is unique.

Observe, from (13), that

A(0) = 0 and A(2x) = 2A(x).

Therefore, by induction we can show that

A(2nx) = 2A(2n−1x) = 2nA(x)

or equivalently

A(x) = 2−nA(2nx). (14)

Assume, now, the existence of another A′ : X → Y, such that A′(x) = 2−nA′(2n x). With

the aid of the (12)-(14) and the triangular inequality, one gets

0≤ ||A(x)− A′(x)|| = ||2−nA(2nx)− 2−nA′(2nx)||
≤ ||2−nA(2nx)− 2−n f (2n x)||+ ||2−n f (2nx)− 2−nA′(2nx)||
≤ 2n(α−1)

3ǫ

2− 2α
||x ||α

→ 0,

as n → ∞, (−∞ < α < 1). Thus, the uniqueness of A is proved and the stability of

Cauchy-type additive mapping A : X → Y is established.

Step 6 To complete the proof of Theorem 6, we only need to examine whether A : X → Y is a

linear Cauchy-type mapping. To be more precise, we need to show that:

(1) A(x + y) + A(x − y) + A(y − x) = A(x)+ A(y), and

(2) A(r x) = rA(x), ∀r ∈ R.

Recall that we have shown already that (1) holds.

Therefore, we only need to show that (2) is valid ∀r ∈ R.

For that we will study four cases.

Case 1: Let r = k ∈ N = {0,1,2, . . .}.
For k = 0, from (2), we have A(0) = 0. This is verified if we substitute x = y = 0

in (13).

Assume, that A
�

(k− 1)x
�

= (k− 1)A(x) is true ∀k.

Then, we need to prove that A(kx) = kA(x).

Note that for x = x , and y = 0 from (13), we can easily obtain A(−x) = (−1)A(x).

Let x = x and y = (k− 1)x in (13). Then,

A(kx)+ A
�− (k− 2)x
�

+ A
�

(k− 2)x
�

= A(x)+ A
�

(k− 1)x
�

,

or

A(kx) = kA(x), ∀k ∈ N = {0,1,2, . . .}.
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Case 2: Let r = k ∈ Z .

We only need to observe that A is odd. Since, we have already proved that (2) is

valid ∀k ∈ N = {0,1,2, . . .} we can then conclude that

A(kx) = kA(x), ∀k ∈ Z .

Case 3: Let r = k

l
∈Q, for k ∈ Z , l ∈ Z − {0}.

Then, A(x) = A
�

l 1

l
x
�

= lA
�1

l
x
�

, for l ∈ Z − {0}. Hence, A
�1

l
x
�

= 1

l
A(x).

Besides, for k ∈ Z , A
� k

l
x
�

= A
�

k 1

l
x
�

= kA(1

l
x), from Case 2.

Thus, A
� k

l
x
�

= k

l
A(x), or A(r x) = rA(x) for r ∈Q.

Case 4: Let r ∈ R, where r = qn : rational numbers.

Since R is a complete space, every sequence {qn} converges in R, i.e. limn→∞ qn =

q ∈ R.

Recall that A(x) = limn→∞ 2−n f (2n x) and f (t x) is continuous in t for each fixed

x in X . Therefore, A(t x) is continuous in t for each fixed x in X . Besides,

lim
n→∞A(qnx) = A

�

lim
n→∞qn x
�

= A(qx) (15)

and

lim
n→∞A(qnx) = lim

n→∞qnA(x) = qA(x). (16)

From (15) and (16) Case 4. is now proved, which completes Step 6. and thus the proof

of our Theorem 6 for the case of −∞ < α < 1.

The proof for the case of α > 1 is similar to the proof for −∞< α < 1.

In fact, we can find the general inequality

|| f (x)− 2n f (2−nx)|| ≤ 3ǫ

2α− 2
(1− 2n(1−α))||x ||α, (17)

for all n ∈ N −{0}. Thus from this inequality (17) and the formula

A(x) = lim
n→∞2n f (2−n x),

for n→∞, we get the inequality

|| f (x)−A(x)|| ≤ 3ǫ

2α− 2
||x ||α, for α > 1.

The rest of the proof for α > 1 is omitted as similar to the above mentioned proof for −∞ <
α < 1.
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