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Abstract. The concept of an S−Linear ADL is defined and characterized in terms of the S−prime ideals

and S−prime filters. Equivalent condition for an ADL R to become a (dually)B−relatively normal ADL

in terms of minimal prime ideals(filters) and B−maximal ideals(filters) is obtained, where B is the

Birkhoff centre of R.
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1. Introduction

The concepts of S−completely normal lattice and dually S−completely normal lattice were

given by Cignoli [2]. The concept of an Almost Distributive Lattice (ADL) was introduced by

Swamy and Rao [9] as a common abstraction of the existing ring theoretic and lattice theoretic

generalizations of a Boolean algebra. The concept of an ideal in an ADL was introduced in [9]

analogous to that in a distributive lattice and it was observed that the set PI(R) of all principal

ideals of R forms a distributive lattice. This enables us to extend many existing concepts from

the class of distributive lattices to the class of ADLs. In our paper [5], we introduced the

concept of an S−normal ADL R, where S is a uni subADL of R and obtained necessary and

sufficient conditions for an ADL R to become an S−normal ADL in terms of S−prime filters,

S−maximal filters. B−normal ADLs were also studied, where B is the Birkhoff centre of R. In

this paper, we define the concept of an S−relative annihilator of any two elements of R and

characterize an S−normal ADL in terms of S−relative annihilators.
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We introduce the concepts of S−relatively normal ADL and dually S−relatively normal

ADL. We characterize the (dually)S−relatively normal ADL in terms of S−prime filters(ideals).

If B is the Birkhoff centre of R, then we define the concept of (dually)B−relatively normal ADL

and characterize it in terms of minimal prime ideals(filters) and B−maximal ideals(filters)of

R.

2. Preliminaries

Definition 1 ([9]). An Almost Distributive Lattice with zero or simply ADL is an algebra (R,∨,∧, 0)

of type (2,2,0) satisfying:

1. (x ∨ y)∧ z = (x ∧ z)∨ (y ∧ z)

2. x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)

3. (x ∨ y)∧ y = y

4. (x ∨ y)∧ x = x

5. x ∨ (x ∧ y) = x

6. 0∧ x = 0

7. x ∨ 0= x .

Every non-empty set X can be regarded as an ADL as follows. Let x0 ∈ X . Define the

binary operations ∨,∧ on X by

x ∨ y =

(

x if x 6= x0

y if x = x0

x ∧ y =

(

y if x 6= x0

x0 if x = x0.

Then (X ,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL. If (R,∨,∧, 0)

is an ADL, for any a, b ∈ R, define a ≤ b if and only if a = a ∧ b (or equivalently, a ∨ b = b),

then ≤ is a partial ordering on R.

Theorem 1 ([9]). If (R,∨,∧, 0) is an ADL, for any a, b, c ∈ R, we have the following:

1. a ∨ b = a⇔ a ∧ b = b

2. a ∨ b = b⇔ a ∧ b = a

3. ∧ is associative in R

4. a ∧ b ∧ c = b ∧ a ∧ c

5. (a ∨ b)∧ c = (b ∨ a)∧ c

6. a ∧ b = 0⇔ b ∧ a = 0
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7. a ∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c)

8. a ∧ (a ∨ b) = a, (a ∧ b)∨ b = b and a ∨ (b ∧ a) = a

9. a ≤ a ∨ b and a ∧ b ≤ b

10. a ∧ a = a and a ∨ a = a

11. 0∨ a = a and a ∧ 0= 0

12. If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a

13. a ∨ b = (a ∨ b)∨ a.

It can be observed that an ADL R satisfies almost all the properties of a distributive lattice

except the right distributivity of ∨ over ∧, commutativity of ∨, commutativity of ∧. Any one

of these properties make an ADL R a distributive lattice. That is

Theorem 2 ([9]). Let (R,∨,∧, 0) be an ADL with 0. Then the following are equivalent:

1. (R,∨,∧, 0) is a distributive lattice

2. a ∨ b = b ∨ a, for all a, b ∈ R

3. a ∧ b = b ∧ a, for all a, b ∈ R

4. (a ∧ b)∨ c = (a ∨ c)∧ (b ∨ c), for all a, b, c ∈ R.

As usual, an element m ∈ R is called maximal if it is a maximal element in the partially

ordered set (R,≤). That is, for any a ∈ R, m≤ a⇒ m = a.

Theorem 3 ([9]). Let R be an ADL and m ∈ R. Then the following are equivalent:

1. m is maximal with respect to ≤

2. m∨ a = m, for all a ∈ R

3. m∧ a = a, for all a ∈ R

4. a ∨m is maximal, for all a ∈ R.

As in distributive lattices [1, 3], a non-empty sub set I of an ADL R is called an ideal of R

if a∨ b ∈ I and a∧ x ∈ I for any a, b ∈ I and x ∈ R. Also, a non-empty subset F of R is said to

be a filter of R if a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ R.

The set I(R) of all ideals of R is a bounded distributive lattice with least element {0} and

greatest element R under set inclusion in which, for any I , J ∈ I(R), I ∩ J is the infimum of I

and J while the supremum is given by I ∨ J := {a ∨ b | a ∈ I , b ∈ J}. A proper ideal P of R

is called a prime ideal if, for any x , y ∈ R, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P. A proper ideal M

of R is said to be maximal if it is not properly contained in any proper ideal of R. It can be
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observed that every maximal ideal of R is a prime ideal. Every proper ideal of R is contained

in a maximal ideal. For any subset S of R the smallest ideal containing S is given by

(S] := {(
n
∨

i=1

si)∧ x | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write (s] instead of (S]. Similarly,

for any S ⊆ R, [S) := {x ∨ (
n
∧

i=1

si) | si ∈ S, x ∈ R and n ∈ N}. If S = {s}, we write [s) instead of

[S).

Theorem 4 ([9]). For any x, y in R the following are equivalent:

1. (x]⊆ (y]

2. y ∧ x = x

3. y ∨ x = y

4. [y) ⊆ [x).

For any x , y ∈ R, it can be verified that (x]∨ (y] = (x ∨ y] and (x]∧ (y] = (x ∧ y]. Hence

the set PI(R) of all principal ideals of R is a sublattice of the distributive lattice I(R) of ideals

of R.

3. S−relatively Normal ADLs

If R is an ADL and S is a subADL with 0, then the concept of S−normality in R introduced

in [5] and its properties were discussed. R. Cignoli [2] gave the concept of S−completely

normal lattice. In this section we define the concept of S−relative normality in an ADL R

through its principal ideal lattice PI(R). A subADL of an ADL with 0 carries the usual meaning

where 0 is treated as a nullary operation. Through out this paper R represents an ADL and S

stands for a subADL of R with 0. By a uni subADL of R we mean a subADL of R containing all

maximal elements of R.

In [8], the concept of relative annihilator in an ADL was given.

If x , y ∈ R, then ⌊x , y⌋ = {a ∈ R | y ∧ a ∧ x = a ∧ x} is called a relative annihilator in R

and ⌊x , 0⌋ = (x)∗ is the annihilator of x in R. Now we define the concept of an S−relative

annihilator in R as follows.

Definition 2. Let x , y ∈ R. Define ⌊x , y⌋S = {a ∈ S | y ∧ a ∧ x = a ∧ x}. We call ⌊x , y⌋S an

S−relative annihilator.

It can be observed that a ∈ ⌊x , y⌋S iff y = y ∨ (a ∧ x). Clearly ⌊x , y⌋S is an ideal of S. The

following result can be verified easily.

Lemma 1. Let x , y ∈ R. Then for any a ∈ S, a ∈ ⌊x , y⌋S iff x ∧ a ≤ y ∧ a.

The following definition is taken from [5].
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Definition 3. Let S be a subADL of R. An ideal I of R is called an S-ideal of R if I is generated

by the set I ∩ S(I = (I ∩ S]). An S−ideal I is called an S−prime ideal of R if I ∩ S is a prime

ideal of S and S−maximal ideal if I ∩ S is a maximal ideal of S. It can be observed that every

S−maximal ideal of R is an S−prime ideal.

The concepts of S− filters, S−prime filters and S−maximal filters are defined analogously.

Now, the following lemma can be verified easily.

Lemma 2. Let R be an ADL, S a subADL of R and F1 a filter of S. Then the filter F of R is

generated by F1 is S−filter of R and F1 = F ∩ S.

We recall the following from [5].

Definition 4. Let R be an ADL with maximal elements and S a uni subADL of R. R is called

S−normal if for any x , y ∈ R such that x ∧ y = 0 then there exist elements a, b ∈ S such that

x ∧ a = 0= y ∧ b and a ∨ b is a maximal element.

In the following theorem, we characterize the S−normal ADL in terms of S−relative an-

nihilators.

Theorem 5. Let R be an ADL with maximal elements and S a uni subADL of R. Then the following

conditions are equivalent:

1. R is S−normal

2. ⌊x , y⌋S ∨ ⌊y, x⌋S = S, for any x , y ∈ R with x ∧ y = 0

3. For any prime filter F of S and for any x , y ∈ R with x ∧ y = 0, there exists a ∈ F such

that x ∧ a and y ∧ a are comparable.

Proof.

(1)⇒ (2) : Assume that R is an S−normal ADL. Let x , y ∈ R such that x ∧ y = 0. Then

there exist a, b ∈ S such that a ∧ x = 0 = b ∧ y and a ∨ b is a maximal element. That

implies y ∧ a ∧ x = a ∧ x = 0= x ∧ b ∧ y = b ∧ y. Therefore ⌊x , y⌋S ∨ ⌊y, x⌋S = S.

(2) ⇒ (3) : Let F be any prime filter of S and x , y ∈ R such that x ∧ y = 0. Then

⌊x , y⌋S ∨ ⌊y, x⌋S = S. Let m be any maximal element in S. Then m = a ∨ b, for some

a ∈ ⌊x , y⌋S and b ∈ ⌊y, x⌋S. That implies a∧ x = y∧a∧ x = 0 and b∧ y = x∧ b∧ y = 0.

Since a ∨ b ∈ F, we get either a ∈ F or b ∈ F. Suppose a ∈ F. Since a ∈ ⌊x , y⌋S , we get

x ∧ a ≤ y ∧ a. Thus there is an element a ∈ F such that x ∧ a and y ∧ a are comparable.

Similarly, we get x ∧ b and y ∧ b are comparable, if b ∈ F.

(3)⇒ (1) : Let x , y ∈ R such that x ∧ y = 0. Suppose that ((x)∗ ∩ S) ∨ ((y)∗ ∩ S) 6= S.

Then there exists a maximal ideal M of S such that ((x)∗ ∩ S) ∨ ((y)∗ ∩ S) ⊆ M . That

implies S \ M is a prime filter of S. By (3), there exists x ∈ S \ M such that x ∧ a and

y ∧ a are comparable. Suppose x ∧ a ≤ y ∧ a. Then x ∧ a = x ∧ a ∧ y ∧ a = 0. Then

a ∈ ⌊x , y⌋S ∩ (S \ M), which is a contradiction. Therefore ((x)∗ ∩ S) ∨ ((y)∗ ∩ S) = S.

Hence R is S−normal.
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In [7], the concept of relatively normal ADL was given as follows.

Definition 5. Let R be an ADL with maximal elements. Then R is called relatively normal if for

any x , y ∈ R, there exist a, b ∈ R such that y ∧ a ∧ x = a ∧ x , x ∧ b ∧ y = b ∧ y and a ∨ b is a

maximal element.

The following definition is taken from Cignoli [2].

Definition 6. Let (L,∨,∧, 0,1) be a bounded distributive lattice and S a sublattice of L contain-

ing 0 and 1. Then L is called S−completely normal, if for any x , y ∈ L, there exist a, b ∈ S such

that x ∧ a ≤ y, y ∧ b ≤ x and a ∨ b = 1.

Now we define the concept of an S−relatively normal ADL in the following.

Definition 7. Let R be an ADL with maximal elements and S a uni subADL of R. R is called

S−relatively normal if P I(R) is P I(S)−completely normal lattice.

The following lemma can be verified directly.

Lemma 3. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−relatively normal if and if only for any x , y ∈ R, there exist a, b ∈ S such that y ∧ a ∧ x =

a ∧ x , x ∧ b ∧ y = b ∧ y and a ∨ b is a maximal element.

Example 1. Let A be a discrete ADL and B a Boolean algebra. Then R = A× B is an ADL. Let D

be a subADL of A containing at least two elements. Then S = D×B is a subADL of R. Let x , y ∈ R.

Then x = (x1, x2) and y = (y1, y2). Let t be any non-zero element of D. Suppose x1, y1 6= 0.

Write a = (t, y2∨x ′2) and b = (t, x2∨y ′2). Now, y∧a∧x = (y1, y2)∧(t, y2∨x ′2)∧(x1, x2) = (y1∧
t∧x1, y2∧(y2∨x ′2)∧x2) = (x1, y2∧x2) = a∧x and x∧b∧ y = (x1∧ t∧ y1, x2∧(x2∨ y ′2)∧ y2) =

(y1, x2∧ y2) = b∧ y. Also a∨ b = (t, 1). Now, suppose x1 = 0 and y1 6= 0. Take a = (t, y2 ∨ x ′2)

and b = (0, x2 ∨ y ′2). Now, y ∧ a ∧ x = (y1 ∧ t ∧ 0, y2 ∧ (y2 ∨ x ′2)∧ x2) = (0, y2 ∧ x2) = a ∧ x

and x ∧ b ∧ y = (0∧ 0∧ y1, x2 ∧ (x2 ∨ y ′2)∧ y2) = (0, x2 ∧ y2) = b ∧ y. Clearly a ∨ b = (t, 1).

Thus R is an S−relatively normal ADL.

Lemma 4. Let R be an ADL with maximal elements and S a uni subADL of R. If R is S−relatively

normal, then, for each pair a, b ∈ S such that a < b, the segment [a, b] is an S ∩ [a, b]−normal

lattice.

Proof. Let x , y ∈ [a, b] such that x ∧ y = a. Since R is S−relatively normal, there exist

c, d ∈ S such that y ∧ c ∧ x = c ∧ x , x ∧ d ∧ y = d ∧ y and c ∨ d is a maximal element.

Now, take c1 = a ∨ (c ∧ b) and d1 = a ∨ (d ∧ b). Clearly c1, d1 ∈ [a, b] ∩ S. Now, c1 ∧ x =

(a ∨ (c ∧ b))∧ x = (a ∧ x)∨ (c ∧ b ∧ x) = a ∨ (c ∧ x) = a ∨ (c ∧ y ∧ x) = a ∨ (c ∧ a) = a and

d1∧ y = (a∨(d∧ b))∧ y = (a∧ y)∨(d∧ b∧ y) = a∨(d∧ y) = a∨(d∧ x∧ y) = a∨(d∧a) = a.

Clearly c1 ∨ d1 = b. Therefore [a, b] is S ∩ [a, b]−normal lattice.

The following two results can be verified easily.

Lemma 5. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−relatively normal if and only if for any x , y ∈ R, ⌊x , y⌋S ∨ ⌊y, x⌋S = S.
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Lemma 6. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−relatively normal if and only if for any prime filter F of S and for any x , y ∈ R, there ex-

ists a ∈ F such that x ∧ a and y ∧ a are comparable.

Theorem 6. Let R be an ADL with maximal elements, S a uni subADL of R, F an S−filter of R

and K a non-empty subset of R, which is closed under the operation join such that F ∩ K = ;.
Then there exists an S−prime filter P of R such that F ⊆ P and P ∩ K = ;.

Theorem 7. Let R be an ADL with maximal elements and S a uni subADL of R. Then the following

conditions are equivalent:

1. R is S−relatively normal

2. For each pair x , y ∈ R, there is no proper ideal of S contain both ⌊x , y⌋S and ⌊y, x⌋S

3. The set of all filters of R that contain a given S−prime filter of R form a chain

4. The set of all prime filters of R that contain a given S−prime filter of R form a chain

5. Any proper filter of R that contain a given S−prime filter of R is prime.

Proof.

(1)⇒ (2) : It follows from lemma 5.

(2)⇒ (3) : Assume (2). Suppose P is an S−prime filter of R and F1, F2 are two filters

of R such that P ⊆ F1 and P ⊆ F2. Suppose F1 * F2 and F2 * F1. Choose x ∈ F1 \ F2

and y ∈ F2 \ F1. Let a ∈ ⌊x , y⌋S . Then y ∧ a ∧ x = a ∧ x . Suppose a /∈ S \ (P ∩ S). Then

a ∈ P ∩ S. That implies a ∈ F1 and x ∈ F1. Hence a∧ x ∈ F1. Thus y ∨ (a∧ x) = y ∈ F1,

which is a contradiction. Therefore a ∈ S \ (P ∩ S). Hence ⌊x , y⌋S ⊆ S \ (P ∩ S) and

similarly, we have ⌊y, x⌋S ⊆ S \ (P ∩ S). Since S \ (P ∩ S) is a prime ideal of S, this is a

contradiction.

(3)⇒ (4) : Clear.

(4)⇒ (5) : Assume (4). Let P be an S−prime filter of R and F a proper filter of R such

that P ⊆ F. Suppose F is not prime filter of R. Then there exist a, b ∈ R such that a /∈ F,

b /∈ F and a ∨ b ∈ F. Then there exist prime filters Pa, Pb of R such that a /∈ Pa, b /∈ Pb

and F ⊆ Pa ∩ Pb. Since a∨ b ∈ Pa ∩ Pb, we get b ∈ Pa and a ∈ Pb. Therefore Pa * Pb and

Pb * Pa, which is a contradiction. Hence F is a prime filter of R.

(5) ⇒ (1) : Assume (5). Let x , y ∈ R. Suppose ⌊x , y⌋S ∨ ⌊y, x⌋S 6= S. Let m be any

maximal element in R. Then m /∈ ⌊x , y⌋S ∨⌊y, x⌋S and hence there exists an prime filter

P ′ of S such that (⌊x , y⌋S∨⌊y, x⌋S)∩P ′ = ;. So that ⌊x , y⌋S∩P ′ = ; and ⌊y, x⌋S∩P ′ = ;.
Let P be the filter of R generated by P ′. By the lemma 2, we get that P is an S−prime

filter of R and P ′ = P ∩ S. If 0 ∈ P ∨ [x ∨ y), then 0 = p ∧ (x ∨ y) and hence p ∧ x = 0

and p ∧ y = 0. Since p ∈ P, there exists s ∈ P ∩ S = P ′ such that p ∨ s = p. Now, we

prove that the filter P ∨ [x ∨ y) is a proper filter of R. Now, s ∧ x = p ∧ s ∧ x = 0. So
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that s ∈ ⌊x , y⌋S ∩ P ′, which is a contradiction. Therefore P ∨ [x ∨ y) is a proper filter

of R containing P. By our assumption, P ∨ [x ∨ y) is a prime filter of R. Without loss of

generality, suppose x ∈ P ∨ [x ∨ y). Then x = t ∧ (x ∨ y), for some t ∈ P. Since t ∈ P,

there exists s1 ∈ P∩S such that t∨s1 = t. Now, s1∧ x = s1∧ t∧(x∨ y) = (s1∧ x)∨(s1∧ y)

and hence s1 ∧ y = s1 ∧ x ∧ s1 ∧ y = x ∧ s1 ∧ y. That implies s1 ∈ ⌊y, x⌋S ∩ P, which is a

contradiction. Therefore ⌊x , y⌋S ∨ ⌊y, x⌋S = S.

Corollary 1. Let R be an ADL with maximal elements and S1,S2 uni subADLs of R such that

S1 ⊆ S2. Then the following conditions are equivalent:

1. R is S1−relatively normal

2. R is S2−relatively normal and the filters generated in S2 by prime filters of S1 are prime.

Proof.

(1) ⇒ (2) : Assume that R is S1−relatively normal. Clearly R is S2−relatively normal

and S2 is S1−relatively normal. Let P be a prime filter of S1. We have to prove that

[P) is an S1−prime filter of S2, where [P) = {s ∨ a | s ∈ S2 and a ∈ P}. Let x , y ∈ [P).
Then x = s1 ∨ a1 and y = s2 ∨ a2, for some s1, s2 ∈ S2 and a1, a2 ∈ P. Now, x ∧ y =

(s1∨a1)∧(s2∨a2) = (s1∧(s2∨a2))∨(a1∧(s2∨a2)) = (s1∧(s2∨a2))∨((a1∧s2)∨(a1∧a2))

and hence (x∧ y)∧(a1∧a2) = ((s1∧(s2∨a2))∨((a1∧s2)∨(a1∧a2)))∧(a1∧a2) = (a1∧a2).

Thus x ∧ y = (x ∧ y) ∨ (a1 ∧ a2) and hence x ∧ y ∈ [P). Let x ∈ [P) and r ∈ S2. Then

x = s ∨ a, for some s ∈ S2 and a ∈ P. Now, (r ∨ x)∧ a = (r ∨ (s ∨ a))∧ a = a and hence

r ∨ x = (r ∨ x)∨ a. Therefore r ∨ x ∈ [P). Hence [P) is a filter of S2. Let x ∈ [P). Then

x = s ∨ a, for some s ∈ S2 and a ∈ P. Now, x ∨ a = (s ∨ a)∨ a = s ∨ a = x . Hence [P) is

an S1−filter of R. Let a, b ∈ S1 such that a ∨ b ∈ [P)∩ S1. Then a ∨ b = s ∨ x , for some

s ∈ S2 and x ∈ P. Now, x = (a ∨ b) ∧ x = (a ∧ x) ∨ (b ∧ x) ∈ P (since x ∈ P). That

implies either a ∧ x ∈ P or b ∧ x ∈ P. Suppose a ∧ x ∈ P. Then a ∧ x ∈ [P). That implies

a ∨ (a ∧ x) ∈ [P)∩ S1. Hence a ∈ [P)∩ S1. Thus [P) is an S1− prime filter of S2. Since

S2 is S1−relatively normal, [P) is a prime filter of S2.

(2) ⇒ (1) : Assume that R is S2−relatively normal and the filters generated in S2 by

prime filters of S1 are prime. Let P be an S1−prime filter of R. Let F be a proper filter of

R such that P ⊆ F. Clearly P is an S2−filter of R. We have to prove that [P∩S1) = P∩S2.

Let a ∈ [P ∩S1). Then a = s∨ x , for some s ∈ S2 and x ∈ P ∩S1. That implies a ∈ P ∩S2.

Therefore [P ∩ S1) ⊆ P ∩ S2. Let a ∈ P ∩ S2. Then there exists s ∈ P ∩ S1 such that

a ∨ s = a. That implies a ∈ [P ∩ S1). Hence P ∩ S2 is a prime filter of S2. That implies

P is an S2−prime filter of R. Therefore F is prime filter of R. Thus R is an S1−relatively

normal ADL.

Corollary 2. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−relatively normal if and only if R is relatively normal and the S−prime filters of R are prime.
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Proof. Take S1 = S and S2 = R in the above corollary.

Let R be an ADL and F a filter in R. Then the relation ψ(F) = {(x , y) ∈ R×R | x∧ t = y∧ t,

for some t ∈ F} is a congruence relation on R and the set R/ψ(F) = {x/ψ(F) | x ∈ R} is an

ADL. Let
∏

be the natural homomorphism from R onto R/ψ(F) defined by
∏

(x) = x/ψ(F)

for all x ∈ R.

Theorem 8. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−relatively normal if and only if R/ψ(F) is a chain, for each prime filter F of S.

Proof. Assume that R is S−relatively normal. Let x/ψ(F), y/ψ(F) ∈ R/ψ(F). Since x , y ∈
R, by theorem 6, there exists a ∈ F such that x ∧ a and y ∧ a are comparable. With out loss of

generality, suppose x∧a ≤ y∧a. Then x∧a = x∧a∧ y∧a = x∧ y∧a. That implies (x , x∧ y) ∈
ψ(F) and hence x/ψ(F) = (x ∧ y)/ψ(F) = x/ψ(F)∧ y/ψ(F). Therefore x/ψ(F) ≤ y/ψ(F).

Hence R/ψ(F) is a chain. Conversely, assume that R/ψ(F) is a chain. Let x , y ∈ R. Then

x/ψ(F), y/ψ(F) ∈ R/ψ(F). Since R/ψ(F) is a chain, x/ψ(F), y/ψ(F) are comparable. With

out loss of generality, suppose x/ψ(F) ≤ y/ψ(F). Then x/ψ(F) = x/ψ(F) ∧ y/ψ(F). That

implies (x , x ∧ y) ∈ ψ(F). Then x ∧ a = x ∧ y ∧ a, for some a ∈ F. Therefore x ∧ a ≤ y ∧ a.

Thus R is an S−relatively normal.

The following result follows directly from the above theorem.

Theorem 9. Each S−relatively normal ADL is a subdirect product of the bounded chains R \ P,

where P runs through the set of all prime ideals of S.

4. Dually S−relatively Normal ADLs

The concept of a dually S−completely normal lattices was given by Cignoli [2]. In this

section we define the concept of dually S−relative normality in an ADL R through its principal

filter lattice PF(R). We begin with the following.

Definition 8. Let R be an ADL, S a uni subADL of R and x , y ∈ R. We define ⌈x , y⌉S = {a ∈
S | (x ∨ a)∨ y = x ∨ a}. We call ⌈x , y⌉S an S−relative dual annihilator. It can be observed that

a ∈ ⌈x , y⌉S iff y = (x ∨ a)∧ y. Clearly ⌈x , y⌉S is a filter of S.

The usual lattice theoretic duality principle doesn’t hold in ADLs. For example, in an ADL

R, ∧ is right distributive over ∨ but ∨ is not right distributive over ∧. However, we get that

the dual of many results of section 3, hold good in dually S− relatively normal ADLs. For this

reason we give only statements of these results.

Lemma 7. Let R be an ADL with maximal elements and S a uni subADL of R. If m1, m2 are two

maximal elements in R, then for any x ∈ R, ⌈x , m1⌉S = ⌈x , m2⌉S.

Lemma 8. Let P be any prime ideal of S. For any x , y ∈ R, if y ∈ P ∨ (x], then P ∩ ⌈x , y⌉S is

non-empty.



G. Rao, N. Rafi and B. Kumar / Eur. J. Pure Appl. Math, 3 (2010), 704-716 713

Definition 9. Let R be an ADL with maximal elements and S a uni subADL of R. R is called dually

S−normal if for any x , y ∈ R with x ∨ y is a maximal element in R, then there exist a, b ∈ R

such that x ∨ a, y ∨ b are maximal elements and a ∧ b = 0.

Theorem 10. Let R be an ADL with maximal elements and S a uni subADL of R. Then the

following are equivalent:

1. R is dually S−normal

2. ⌈x , y⌉S ∨ ⌈y, x⌉S = S, for any x , y ∈ R with x ∨ y is a maximal element.

The following definition is taken from [8].

Definition 10. Let R be an ADL with maximal elements. Then R is called dually relatively normal

if for any x , y ∈ R there exist a, b ∈ R such that (x ∨ a) ∨ y = x ∨ a, (y ∨ b) ∨ x = y ∨ b and

a ∧ b = 0.

The following definition is taken from Cignoli [2].

Definition 11. Let (L,∨,∧, 0,1) be a bounded distributive lattice and S a sublattice of L con-

taining 0 and 1. Then L is called dually S−completely normal, if for any x , y ∈ L, there exist

a, b ∈ S such that x ∨ a ≥ y, y ∨ b ≥ x and a ∧ b = 0.

Now we define the concept of dually S−relatively normal ADL in the following.

Definition 12. Let R be an ADL with maximal elements and S a uni subADL of R. R is called

dually S−relatively normal if PF(R) is dually PF(S)−completely normal lattice.

Lemma 9. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is dually

S−relatively normal if and only if for any x , y ∈ R, there exist a, b ∈ R such that (x ∨ a)∨ y =

x ∨ a, (y ∨ b)∨ x = y ∨ b and a ∧ b = 0.

Lemma 10. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is dually

S−relatively normal if and only if for any x , y ∈ R, ⌈x , y⌉S ∨ ⌈y, x⌉S = S.

Theorem 11. Let R be an ADL with maximal elements and S a uni subADL of R. Then the

following conditions are equivalent:

1. R is dually S−relatively normal

2. For each pair x , y ∈ R, there is no proper filter of S containing both ⌈x , y⌉S and ⌈y, x⌉S

3. The set of all ideals of R that contain a given S−prime ideal of R form a chain

4. The set of all prime ideals of R that contain a given S−prime ideal of R form a chain

5. Any proper ideal of R that contain a given S−prime ideal of R is a prime.

Corollary 3. Let R be an ADL with maximal elements and S1,S2 uni subADLs of R such that

S1 ⊆ S2. Then the following conditions are equivalent:
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1. R is dually S1−relatively normal

2. R is dually S2−relatively normal and the ideals generated in S2 by prime ideals of S1 are

prime.

Corollary 4. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is dually

S−relatively normal if and only if R is dually relatively normal and the S−prime ideals of R are

prime.

Proof. Take S1 = S and S2 = R in the above corollary.

Definition 13. Let R be an ADL with maximal elements. R is called relatively normal if for any

x , y ∈ R, there exist a, b ∈ R such that y ∧ a ∧ x = a ∧ x , x ∧ b ∧ y = b ∧ y and a ∨ b is a

maximal element. R is called dually relatively normal if for any x , y ∈ R, there exist a, b ∈ R

such that (x ∨ a)∨ y = x ∨ a, (y ∨ b)∨ x = y ∨ b and a ∧ b = 0.

Definition 14. Let R be an ADL with maximal elements. Then R is called a linear ADL if R is

both relatively normal and dually relatively normal. If S is a uni subADL of R, then R is called an

S−linear ADL if R is both S−relatively normal and dually S−relatively normal.

The following theorem can be verified easily.

Theorem 12. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is

S−linear if and only if

1. R is a linear ADL

2. The S−prime filters of R are prime in R

3. The S−prime ideals of R are prime in R.

Definition 15. Let R be an ADL with maximal elements. Then

B = {a ∈ R | there exists b ∈ R such that a ∧ b = 0 and a ∨ b is maximal}

is called the Birkhoff centre of R and (B, ∨, ∧) is a uni sub ADL of R which is also a relatively

complemented ADL [10].

If a ∈ B, then an element b ∈ R with the property a ∧ b = 0 and a ∨ b is maximal is called

a complement of a in B. It was observed in [7] that every relatively complemented ADL is a

normal ADL and hence B is normal.

We conclude this paper with the following characterization theorem.

Theorem 13. Let R be an ADL with maximal elements and B the Birkhoff centre of R. Then the

following conditions are equivalent:

1. R is B−relatively normal
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1.′ R is dually B−relatively normal

2. Given x , y ∈ R, there is a ∈ B and a complement a′ of a such that y ∧ a ∧ x = a ∧ x and

x ∧ a′ ∧ y = a′ ∧ y

2.′ Given x , y ∈ R, there is a ∈ B a complement a′ of a such that x ∨ a ∨ y = x ∨ a and

y ∨ a′ ∨ x = y ∨ a′

3. R is a linear ADL and the minimal prime ideals of R are B−maximal ideals of R

3.′ R is linear ADL and the minimal prime filters of R are B−maximal filters of R.

Proof.

(1)⇒ (2) : Assume (1). Let x , y ∈ R. Then there exist a, b ∈ B such that y ∧ a ∧ x =

a∧x , x∧b∧y = b∧y and a∨b is a maximal element. Since a ∈ B, there exists c ∈ R such

that a∧ c = 0 and a∨ c is a maximal element. Now, a∨ (c∧ b) = (a∨ c)∧ (a∨ b) = a∨ b

and a ∧ c ∧ b = 0. So that c ∧ b(= a′ say ) is a complement of a in B and x ∧ a′ ∧ y =

x ∧ c ∧ b ∧ y = c ∧ x ∧ b ∧ y = c ∧ b ∧ y = a′ ∧ y.

(2)⇒ (2′) : Assume (2). Let x , y ∈ R. Then by our assumption there exists a ∈ B and

a complement a′ of a in B such that y ∧ a ∧ x = a ∧ x and x ∧ a′ ∧ y = a′ ∧ y. Now,

(x ∨ a)∧ y = ((x ∨ (a′ ∧ y)∨ a)∧ y = (x ∨ a ∨ a′)∧ (x ∨ a ∨ y)∧ y = (a ∨ a′)∧ y = y.

Therefore (x ∨ a)∨ y = x ∨ a. Similarly, (y ∨ a′)∨ x = y ∨ a′.

(2′) ⇒ (2) : Assume (2′). Let x , y ∈ R. Then there exists a ∈ B and a complement a′

of a in B such that (x ∨ a) ∨ y = x ∨ a and (y ∨ a′) ∨ x = y ∨ a′. Now, y ∨ (a ∧ x) =

y ∨ (a ∧ (y ∨ a′)∧ x) = y ∨ ((a∧ y ∧ x)∨ (a∧ a′ ∧ x)) = y ∨ (a ∧ y ∧ x) = y. Therefore

y ∧ (a ∧ x) = a ∧ x . Similarly, x ∧ (a′ ∧ y) = a′ ∧ y.

(2)⇒ (3) : Assume (2). Since (2) and (2′) are equivalent, R is a linear ADL. Let P be a

minimal prime ideal of R and x ∈ P. Then there exists y ∈ R \ P such that x ∧ y = 0. By

(2), there exists a ∈ B and a complement a′ of a such that a ∧ x = y ∧ (a ∧ x) = 0 and

a′ ∧ y = x ∧ (a′ ∧ y) = 0. So that a′ ∧ y ∈ P and hence a′ ∈ P. Now, x = (a ∨ a′)∧ x =

(a ∧ x) ∨ (a′ ∧ x) = a′ ∧ x . Therefore P is B−ideal of R and hence P is a B−maximal

ideal of R, since B is a relatively complemented ADL. Similarly, we get that (2′)⇒(3′).
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