EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 4, 2010, 704-716 ISSN 1307-5543 – www.ejpam.com

S-Linear Almost Distributive Lattices

G.C. Rao^{1,*}, N. Rafi¹, Ravi Kumar Bandaru²

 ¹ Department of Mathematics, Andhra University, Visakhapatnam, Andhra Pradesh, India - 530003.
² Department of Engineering Mathematics, GITAM University, Hyderabad Campus, Andhra Pradesh, India

Abstract. The concept of an *S*-Linear ADL is defined and characterized in terms of the *S*-prime ideals and *S*-prime filters. Equivalent condition for an ADL *R* to become a (dually)*B*-relatively normal ADL in terms of minimal prime ideals(filters) and *B*-maximal ideals(filters) is obtained, where *B* is the Birkhoff centre of *R*.

2000 Mathematics Subject Classifications: 06D99

Key Words and Phrases: Almost Distributive Lattice (ADL), *S*-normal ADL, *S*-relatively normal ADL, *S*-linear ADL, uni subADL, Birkhoff centre, *S*-lideal, *S*-filter, Prime ideal, Prime filter.

1. Introduction

The concepts of S-completely normal lattice and dually S-completely normal lattice were given by Cignoli [2]. The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [9] as a common abstraction of the existing ring theoretic and lattice theoretic generalizations of a Boolean algebra. The concept of an ideal in an ADL was introduced in [9] analogous to that in a distributive lattice and it was observed that the set PI(R) of all principal ideals of R forms a distributive lattice. This enables us to extend many existing concepts from the class of distributive lattices to the class of ADLs. In our paper [5], we introduced the concept of an S-normal ADL R, where S is a uni subADL of R and obtained necessary and sufficient conditions for an ADL R to become an S-normal ADL in terms of S-prime filters, S-maximal filters. B-normal ADLs were also studied, where B is the Birkhoff centre of R. In this paper, we define the concept of an S-relative annihilator of any two elements of R and characterize an S-normal ADL in terms of S-relative annihilators.

http://www.ejpam.com

© 2010 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: gcraomaths@yahoo.co.in (G. Rao), rafimaths@gmail.com (N. Rafi), ravimaths83@gmail.com (B. Kumar)

We introduce the concepts of *S*-relatively normal ADL and dually *S*-relatively normal ADL. We characterize the (dually)*S*-relatively normal ADL in terms of *S*-prime filters(ideals). If *B* is the Birkhoff centre of *R*, then we define the concept of (dually)*B*-relatively normal ADL and characterize it in terms of minimal prime ideals(filters) and *B*-maximal ideals(filters) of *R*.

2. Preliminaries

Definition 1 ([9]). An Almost Distributive Lattice with zero or simply ADL is an algebra $(R, \lor, \land, 0)$ of type (2, 2, 0) satisfying:

- 1. $(x \lor y) \land z = (x \land z) \lor (y \land z)$
- 2. $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- 3. $(x \lor y) \land y = y$
- 4. $(x \lor y) \land x = x$
- 5. $x \lor (x \land y) = x$
- $6. \quad 0 \wedge x = 0$
- 7. $x \lor 0 = x$.

Every non-empty set *X* can be regarded as an ADL as follows. Let $x_0 \in X$. Define the binary operations \lor , \land on *X* by

$$x \lor y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases} \qquad x \land y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0 \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL (where x_0 is the zero) and is called a discrete ADL. If $(R, \lor, \land, 0)$ is an ADL, for any $a, b \in R$, define $a \le b$ if and only if $a = a \land b$ (or equivalently, $a \lor b = b$), then \le is a partial ordering on R.

Theorem 1 ([9]). If $(R, \lor, \land, 0)$ is an ADL, for any $a, b, c \in R$, we have the following:

- 1. $a \lor b = a \Leftrightarrow a \land b = b$
- 2. $a \lor b = b \Leftrightarrow a \land b = a$
- 3. \land is associative in R
- 4. $a \wedge b \wedge c = b \wedge a \wedge c$
- 5. $(a \lor b) \land c = (b \lor a) \land c$
- 6. $a \wedge b = 0 \iff b \wedge a = 0$

7. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ 8. $a \land (a \lor b) = a$, $(a \land b) \lor b = b$ and $a \lor (b \land a) = a$

- 9. $a \leq a \lor b$ and $a \land b \leq b$
- 10. $a \land a = a$ and $a \lor a = a$
- 11. $0 \lor a = a \text{ and } a \land 0 = 0$
- 12. If $a \le c$, $b \le c$ then $a \land b = b \land a$ and $a \lor b = b \lor a$
- 13. $a \lor b = (a \lor b) \lor a$.

It can be observed that an ADL *R* satisfies almost all the properties of a distributive lattice except the right distributivity of \lor over \land , commutativity of \lor , commutativity of \land . Any one of these properties make an ADL *R* a distributive lattice. That is

Theorem 2 ([9]). Let $(R, \lor, \land, 0)$ be an ADL with 0. Then the following are equivalent:

- 1. $(R, \lor, \land, 0)$ is a distributive lattice
- 2. $a \lor b = b \lor a$, for all $a, b \in \mathbb{R}$
- 3. $a \land b = b \land a$, for all $a, b \in \mathbb{R}$
- 4. $(a \land b) \lor c = (a \lor c) \land (b \lor c)$, for all $a, b, c \in \mathbb{R}$.

As usual, an element $m \in R$ is called maximal if it is a maximal element in the partially ordered set (R, \leq) . That is, for any $a \in R$, $m \leq a \Rightarrow m = a$.

Theorem 3 ([9]). Let R be an ADL and $m \in \mathbb{R}$. Then the following are equivalent:

- 1. *m* is maximal with respect to \leq
- 2. $m \lor a = m$, for all $a \in R$
- 3. $m \land a = a$, for all $a \in R$
- 4. $a \lor m$ is maximal, for all $a \in R$.

As in distributive lattices [1, 3], a non-empty sub set *I* of an ADL *R* is called an ideal of *R* if $a \lor b \in I$ and $a \land x \in I$ for any $a, b \in I$ and $x \in R$. Also, a non-empty subset *F* of *R* is said to be a filter of *R* if $a \land b \in F$ and $x \lor a \in F$ for $a, b \in F$ and $x \in R$.

The set I(R) of all ideals of R is a bounded distributive lattice with least element {0} and greatest element R under set inclusion in which, for any $I, J \in I(R), I \cap J$ is the infimum of Iand J while the supremum is given by $I \lor J := \{a \lor b \mid a \in I, b \in J\}$. A proper ideal P of Ris called a prime ideal if, for any $x, y \in R, x \land y \in P \Rightarrow x \in P$ or $y \in P$. A proper ideal Mof R is said to be maximal if it is not properly contained in any proper ideal of R. It can be observed that every maximal ideal of R is a prime ideal. Every proper ideal of R is contained in a maximal ideal. For any subset S of R the smallest ideal containing S is given by

 $(S] := \{ (\bigvee_{i=1}^{n} s_i) \land x \mid s_i \in S, x \in R \text{ and } n \in N \}. \text{ If } S = \{s\}, \text{ we write } (s] \text{ instead of } (S]. \text{ Similarly,}$ for any $S \subseteq R$, $[S] := \{x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in R \text{ and } n \in N \}. \text{ If } S = \{s\}, \text{ we write } [s] \text{ instead of } [S].$

Theorem 4 ([9]). For any x, y in R the following are equivalent:

- 1. $(x] \subseteq (y]$
- 2. $y \land x = x$
- 3. $y \lor x = y$
- 4. $[y) \subseteq [x)$.

For any $x, y \in R$, it can be verified that $(x] \lor (y] = (x \lor y]$ and $(x] \land (y] = (x \land y]$. Hence the set PI(R) of all principal ideals of R is a sublattice of the distributive lattice I(R) of ideals of R.

3. *S*-relatively Normal ADLs

If *R* is an ADL and *S* is a subADL with 0, then the concept of *S*-normality in *R* introduced in [5] and its properties were discussed. R. Cignoli [2] gave the concept of *S*-completely normal lattice. In this section we define the concept of *S*-relative normality in an ADL *R* through its principal ideal lattice PI(R). A subADL of an ADL with 0 carries the usual meaning where 0 is treated as a nullary operation. Through out this paper *R* represents an ADL and *S* stands for a subADL of *R* with 0. By a uni subADL of *R* we mean a subADL of *R* containing all maximal elements of *R*.

In [8], the concept of relative annihilator in an ADL was given.

If $x, y \in R$, then $\lfloor x, y \rfloor = \{a \in R \mid y \land a \land x = a \land x\}$ is called a relative annihilator in R and $\lfloor x, 0 \rfloor = (x)^*$ is the annihilator of x in R. Now we define the concept of an S-relative annihilator in R as follows.

Definition 2. Let $x, y \in R$. Define $\lfloor x, y \rfloor_S = \{a \in S \mid y \land a \land x = a \land x\}$. We call $\lfloor x, y \rfloor_S$ an *S*-relative annihilator.

It can be observed that $a \in \lfloor x, y \rfloor_S$ iff $y = y \lor (a \land x)$. Clearly $\lfloor x, y \rfloor_S$ is an ideal of S. The following result can be verified easily.

Lemma 1. Let $x, y \in R$. Then for any $a \in S$, $a \in \lfloor x, y \rfloor_S$ iff $x \land a \leq y \land a$.

The following definition is taken from [5].

Definition 3. Let *S* be a subADL of *R*. An ideal *I* of *R* is called an *S*-ideal of *R* if *I* is generated by the set $I \cap S(I = (I \cap S])$. An *S*-ideal *I* is called an *S*-prime ideal of *R* if $I \cap S$ is a prime ideal of *S* and *S*-maximal ideal if $I \cap S$ is a maximal ideal of *S*. It can be observed that every *S*-maximal ideal of *R* is an *S*-prime ideal.

The concepts of S – filters, S – prime filters and S – maximal filters are defined analogously. Now, the following lemma can be verified easily.

Lemma 2. Let *R* be an ADL, *S* a subADL of *R* and F_1 a filter of *S*. Then the filter *F* of *R* is generated by F_1 is *S*-filter of *R* and $F_1 = F \cap S$.

We recall the following from [5].

Definition 4. Let R be an ADL with maximal elements and S a uni subADL of R. R is called S-normal if for any $x, y \in R$ such that $x \wedge y = 0$ then there exist elements $a, b \in S$ such that $x \wedge a = 0 = y \wedge b$ and $a \vee b$ is a maximal element.

In the following theorem, we characterize the S-normal ADL in terms of S-relative annihilators.

Theorem 5. Let R be an ADL with maximal elements and S a uni subADL of R. Then the following conditions are equivalent:

- 1. R is S-normal
- 2. $[x, y]_S \lor [y, x]_S = S$, for any $x, y \in R$ with $x \land y = 0$
- 3. For any prime filter F of S and for any $x, y \in R$ with $x \wedge y = 0$, there exists $a \in F$ such that $x \wedge a$ and $y \wedge a$ are comparable.

Proof.

 $(1) \Rightarrow (2)$: Assume that *R* is an *S*-normal ADL. Let $x, y \in R$ such that $x \land y = 0$. Then there exist $a, b \in S$ such that $a \land x = 0 = b \land y$ and $a \lor b$ is a maximal element. That implies $y \land a \land x = a \land x = 0 = x \land b \land y = b \land y$. Therefore $\lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S = S$.

 $(2) \Rightarrow (3)$: Let *F* be any prime filter of *S* and $x, y \in R$ such that $x \land y = 0$. Then $\lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S = S$. Let *m* be any maximal element in *S*. Then $m = a \lor b$, for some $a \in \lfloor x, y \rfloor_S$ and $b \in \lfloor y, x \rfloor_S$. That implies $a \land x = y \land a \land x = 0$ and $b \land y = x \land b \land y = 0$. Since $a \lor b \in F$, we get either $a \in F$ or $b \in F$. Suppose $a \in F$. Since $a \in \lfloor x, y \rfloor_S$, we get $x \land a \leq y \land a$. Thus there is an element $a \in F$ such that $x \land a$ and $y \land a$ are comparable. Similarly, we get $x \land b$ and $y \land b$ are comparable, if $b \in F$.

 $(3) \Rightarrow (1)$: Let $x, y \in R$ such that $x \land y = 0$. Suppose that $((x)^* \cap S) \lor ((y)^* \cap S) \neq S$. Then there exists a maximal ideal M of S such that $((x)^* \cap S) \lor ((y)^* \cap S) \subseteq M$. That implies $S \setminus M$ is a prime filter of S. By (3), there exists $x \in S \setminus M$ such that $x \land a$ and $y \land a$ are comparable. Suppose $x \land a \leq y \land a$. Then $x \land a = x \land a \land y \land a = 0$. Then $a \in [x, y]_S \cap (S \setminus M)$, which is a contradiction. Therefore $((x)^* \cap S) \lor ((y)^* \cap S) = S$. Hence R is S-normal.

In [7], the concept of relatively normal ADL was given as follows.

Definition 5. Let *R* be an ADL with maximal elements. Then *R* is called relatively normal if for any $x, y \in R$, there exist $a, b \in R$ such that $y \wedge a \wedge x = a \wedge x$, $x \wedge b \wedge y = b \wedge y$ and $a \vee b$ is a maximal element.

The following definition is taken from Cignoli [2].

Definition 6. Let $(L, \lor, \land, 0, 1)$ be a bounded distributive lattice and *S* a sublattice of *L* containing 0 and 1. Then *L* is called *S*-completely normal, if for any $x, y \in L$, there exist $a, b \in S$ such that $x \land a \leq y, y \land b \leq x$ and $a \lor b = 1$.

Now we define the concept of an *S*-relatively normal ADL in the following.

Definition 7. Let R be an ADL with maximal elements and S a uni subADL of R. R is called S-relatively normal if PI(R) is PI(S)-completely normal lattice.

The following lemma can be verified directly.

Lemma 3. Let *R* be an ADL with maximal elements and *S* a uni subADL of *R*. Then *R* is *S*-relatively normal if and if only for any $x, y \in R$, there exist $a, b \in S$ such that $y \wedge a \wedge x = a \wedge x$, $x \wedge b \wedge y = b \wedge y$ and $a \vee b$ is a maximal element.

Example 1. Let A be a discrete ADL and B a Boolean algebra. Then $R = A \times B$ is an ADL. Let D be a subADL of A containing at least two elements. Then $S = D \times B$ is a subADL of R. Let $x, y \in R$. Then $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Let t be any non-zero element of D. Suppose $x_1, y_1 \neq 0$. Write $a = (t, y_2 \vee x'_2)$ and $b = (t, x_2 \vee y'_2)$. Now, $y \wedge a \wedge x = (y_1, y_2) \wedge (t, y_2 \vee x'_2) \wedge (x_1, x_2) = (y_1 \wedge t \wedge x_1, y_2 \wedge (y_2 \vee x'_2) \wedge x_2) = (x_1, y_2 \wedge x_2) = a \wedge x$ and $x \wedge b \wedge y = (x_1 \wedge t \wedge y_1, x_2 \wedge (x_2 \vee y'_2) \wedge y_2) = (y_1, x_2 \wedge y_2) = b \wedge y$. Also $a \vee b = (t, 1)$. Now, suppose $x_1 = 0$ and $y_1 \neq 0$. Take $a = (t, y_2 \vee x'_2)$ and $b = (0, x_2 \vee y'_2)$. Now, $y \wedge a \wedge x = (y_1 \wedge t \wedge 0, y_2 \wedge (y_2 \vee x'_2) \wedge x_2) = (0, y_2 \wedge x_2) = a \wedge x$ and $x \wedge b \wedge y = (0 \wedge 0 \wedge y_1, x_2 \wedge (x_2 \vee y'_2) \wedge y_2) = (0, x_2 \wedge y_2) = b \wedge y$. Clearly $a \vee b = (t, 1)$. Thus R is an S-relatively normal ADL.

Lemma 4. Let R be an ADL with maximal elements and S a uni subADL of R. If R is S-relatively normal, then, for each pair $a, b \in S$ such that a < b, the segment [a, b] is an $S \cap [a, b]$ -normal lattice.

Proof. Let $x, y \in [a, b]$ such that $x \wedge y = a$. Since *R* is *S*-relatively normal, there exist $c, d \in S$ such that $y \wedge c \wedge x = c \wedge x$, $x \wedge d \wedge y = d \wedge y$ and $c \vee d$ is a maximal element. Now, take $c_1 = a \vee (c \wedge b)$ and $d_1 = a \vee (d \wedge b)$. Clearly $c_1, d_1 \in [a, b] \cap S$. Now, $c_1 \wedge x = (a \vee (c \wedge b)) \wedge x = (a \wedge x) \vee (c \wedge b \wedge x) = a \vee (c \wedge x) = a \vee (c \wedge y \wedge x) = a \vee (c \wedge a) = a$ and $d_1 \wedge y = (a \vee (d \wedge b)) \wedge y = (a \wedge y) \vee (d \wedge b \wedge y) = a \vee (d \wedge y) = a \vee (d \wedge x \wedge y) = a \vee (d \wedge a) = a$. Clearly $c_1 \vee d_1 = b$. Therefore [a, b] is $S \cap [a, b]$ -normal lattice.

The following two results can be verified easily.

Lemma 5. Let *R* be an ADL with maximal elements and *S* a uni subADL of *R*. Then *R* is *S*-relatively normal if and only if for any $x, y \in R$, $\lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S = S$.

Lemma 6. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is S-relatively normal if and only if for any prime filter F of S and for any $x, y \in R$, there exists $a \in F$ such that $x \land a$ and $y \land a$ are comparable.

Theorem 6. Let R be an ADL with maximal elements, S a uni subADL of R, F an S-filter of R and K a non-empty subset of R, which is closed under the operation join such that $F \cap K = \emptyset$. Then there exists an S-prime filter P of R such that $F \subseteq P$ and $P \cap K = \emptyset$.

Theorem 7. Let R be an ADL with maximal elements and S a uni subADL of R. Then the following conditions are equivalent:

- 1. *R* is *S*-relatively normal
- 2. For each pair $x, y \in \mathbb{R}$, there is no proper ideal of S contain both $\lfloor x, y \rfloor_S$ and $\lfloor y, x \rfloor_S$
- 3. The set of all filters of R that contain a given S-prime filter of R form a chain
- 4. The set of all prime filters of R that contain a given S-prime filter of R form a chain
- 5. Any proper filter of R that contain a given S-prime filter of R is prime.

Proof.

 $(1) \Rightarrow (2)$: It follows from lemma 5.

 $(2) \Rightarrow (3)$: Assume (2). Suppose *P* is an *S*-prime filter of *R* and F_1, F_2 are two filters of *R* such that $P \subseteq F_1$ and $P \subseteq F_2$. Suppose $F_1 \nsubseteq F_2$ and $F_2 \nsubseteq F_1$. Choose $x \in F_1 \setminus F_2$ and $y \in F_2 \setminus F_1$. Let $a \in \lfloor x, y \rfloor_S$. Then $y \land a \land x = a \land x$. Suppose $a \notin S \setminus (P \cap S)$. Then $a \in P \cap S$. That implies $a \in F_1$ and $x \in F_1$. Hence $a \land x \in F_1$. Thus $y \lor (a \land x) = y \in F_1$, which is a contradiction. Therefore $a \in S \setminus (P \cap S)$. Hence $\lfloor x, y \rfloor_S \subseteq S \setminus (P \cap S)$ and similarly, we have $\lfloor y, x \rfloor_S \subseteq S \setminus (P \cap S)$. Since $S \setminus (P \cap S)$ is a prime ideal of *S*, this is a contradiction.

 $(3) \Rightarrow (4)$: Clear.

 $(4) \Rightarrow (5)$: Assume (4). Let *P* be an *S*-prime filter of *R* and *F* a proper filter of *R* such that $P \subseteq F$. Suppose *F* is not prime filter of *R*. Then there exist *a*, *b* \in *R* such that $a \notin F$, $b \notin F$ and $a \lor b \in F$. Then there exist prime filters P_a, P_b of *R* such that $a \notin P_a, b \notin P_b$ and $F \subseteq P_a \cap P_b$. Since $a \lor b \in P_a \cap P_b$, we get $b \in P_a$ and $a \in P_b$. Therefore $P_a \notin P_b$ and $P_b \notin P_a$, which is a contradiction. Hence *F* is a prime filter of *R*.

 $(5) \Rightarrow (1)$: Assume (5). Let $x, y \in R$. Suppose $\lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S \neq S$. Let *m* be any maximal element in *R*. Then $m \notin \lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S$ and hence there exists an prime filter P' of *S* such that $(\lfloor x, y \rfloor_S \lor \lfloor y, x \rfloor_S) \cap P' = \emptyset$. So that $\lfloor x, y \rfloor_S \cap P' = \emptyset$ and $\lfloor y, x \rfloor_S \cap P' = \emptyset$. Let *P* be the filter of *R* generated by *P'*. By the lemma 2, we get that *P* is an *S*-prime filter of *R* and $P' = P \cap S$. If $0 \in P \lor \lfloor x \lor y \rfloor$, then $0 = p \land (x \lor y)$ and hence $p \land x = 0$ and $p \land y = 0$. Since $p \in P$, there exists $s \in P \cap S = P'$ such that $p \lor s = p$. Now, we prove that the filter $P \lor [x \lor y]$ is a proper filter of *R*. Now, $s \land x = p \land s \land x = 0$. So

that $s \in \lfloor x, y \rfloor_S \cap P'$, which is a contradiction. Therefore $P \vee [x \vee y)$ is a proper filter of *R* containing *P*. By our assumption, $P \vee [x \vee y)$ is a prime filter of *R*. Without loss of generality, suppose $x \in P \vee [x \vee y)$. Then $x = t \wedge (x \vee y)$, for some $t \in P$. Since $t \in P$, there exists $s_1 \in P \cap S$ such that $t \vee s_1 = t$. Now, $s_1 \wedge x = s_1 \wedge t \wedge (x \vee y) = (s_1 \wedge x) \vee (s_1 \wedge y)$ and hence $s_1 \wedge y = s_1 \wedge x \wedge s_1 \wedge y = x \wedge s_1 \wedge y$. That implies $s_1 \in \lfloor y, x \rfloor_S \cap P$, which is a contradiction. Therefore $\lfloor x, y \rfloor_S \vee \lfloor y, x \rfloor_S = S$.

Corollary 1. Let R be an ADL with maximal elements and S_1, S_2 uni subADLs of R such that $S_1 \subseteq S_2$. Then the following conditions are equivalent:

1. *R* is S_1 -relatively normal

2. R is S_2 -relatively normal and the filters generated in S_2 by prime filters of S_1 are prime.

Proof.

 $(1) \Rightarrow (2)$: Assume that *R* is S_1 -relatively normal. Clearly *R* is S_2 -relatively normal and S_2 is S_1 -relatively normal. Let *P* be a prime filter of S_1 . We have to prove that [P) is an S_1 -prime filter of S_2 , where $[P) = \{s \lor a \mid s \in S_2 \text{ and } a \in P\}$. Let $x, y \in [P)$. Then $x = s_1 \lor a_1$ and $y = s_2 \lor a_2$, for some $s_1, s_2 \in S_2$ and $a_1, a_2 \in P$. Now, $x \land y =$ $(s_1 \lor a_1) \land (s_2 \lor a_2) = (s_1 \land (s_2 \lor a_2)) \lor (a_1 \land (s_2 \lor a_2)) = (s_1 \land (s_2 \lor a_2)) \lor ((a_1 \land s_2) \lor (a_1 \land a_2))$ and hence $(x \land y) \land (a_1 \land a_2) = ((s_1 \land (s_2 \lor a_2)) \lor ((a_1 \land s_2) \lor (a_1 \land a_2)) = (a_1 \land a_2)$. Thus $x \land y = (x \land y) \lor (a_1 \land a_2)$ and hence $x \land y \in [P)$. Let $x \in [P)$ and $r \in S_2$. Then $x = s \lor a$, for some $s \in S_2$ and $a \in P$. Now, $(r \lor x) \land a = (r \lor (s \lor a)) \land a = a$ and hence $r \lor x = (r \lor x) \lor a$. Therefore $r \lor x \in [P)$. Hence [P) is a filter of S_2 . Let $x \in [P)$. Then $x = s \lor a$, for some $s \in S_2$ and $a \in P$. Now, $x \lor a = (s \lor a) \lor a = s \lor a = x$. Hence [P) is an S_1 -filter of *R*. Let $a, b \in S_1$ such that $a \lor b \in [P) \cap S_1$. Then $a \lor b = s \lor x$, for some $s \in S_2$ and $x \in P$. Now, $x = (a \lor b) \land x = (a \land x) \lor (b \land x) \in P$ (since $x \in P$). That implies either $a \land x \in P$ or $b \land x \in P$. Suppose $a \land x \in P$. Then $a \land x \in [P)$. That implies $a \lor (a \land x) \in [P) \cap S_1$. Hence $a \in [P) \cap S_1$. Thus [P) is an S_1 -prime filter of S_2 . Since S_2 is S_1 -relatively normal, [P) is a prime filter of S_2 .

 $(2) \Rightarrow (1)$: Assume that *R* is S_2 -relatively normal and the filters generated in S_2 by prime filters of S_1 are prime. Let *P* be an S_1 -prime filter of *R*. Let *F* be a proper filter of *R* such that $P \subseteq F$. Clearly *P* is an S_2 -filter of *R*. We have to prove that $[P \cap S_1) = P \cap S_2$. Let $a \in [P \cap S_1)$. Then $a = s \lor x$, for some $s \in S_2$ and $x \in P \cap S_1$. That implies $a \in P \cap S_2$. Therefore $[P \cap S_1) \subseteq P \cap S_2$. Let $a \in P \cap S_2$. Then there exists $s \in P \cap S_1$ such that $a \lor s = a$. That implies $a \in [P \cap S_1)$. Hence $P \cap S_2$ is a prime filter of S_2 . That implies *P* is an S_2 -prime filter of *R*. Therefore *F* is prime filter of *R*. Thus *R* is an S_1 -relatively normal ADL.

Corollary 2. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is S-relatively normal if and only if R is relatively normal and the S-prime filters of R are prime.

Proof. Take $S_1 = S$ and $S_2 = R$ in the above corollary.

Let *R* be an ADL and *F* a filter in *R*. Then the relation $\psi(F) = \{(x, y) \in R \times R \mid x \wedge t = y \wedge t, for some <math>t \in F\}$ is a congruence relation on *R* and the set $R/\psi(F) = \{x/\psi(F) \mid x \in R\}$ is an ADL. Let \prod be the natural homomorphism from *R* onto $R/\psi(F)$ defined by $\prod(x) = x/\psi(F)$ for all $x \in R$.

Theorem 8. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is S-relatively normal if and only if $R/\psi(F)$ is a chain, for each prime filter F of S.

Proof. Assume that *R* is *S*-relatively normal. Let $x/\psi(F)$, $y/\psi(F) \in R/\psi(F)$. Since $x, y \in R$, by theorem 6, there exists $a \in F$ such that $x \wedge a$ and $y \wedge a$ are comparable. With out loss of generality, suppose $x \wedge a \leq y \wedge a$. Then $x \wedge a = x \wedge a \wedge y \wedge a = x \wedge y \wedge a$. That implies $(x, x \wedge y) \in \psi(F)$ and hence $x/\psi(F) = (x \wedge y)/\psi(F) = x/\psi(F) \wedge y/\psi(F)$. Therefore $x/\psi(F) \leq y/\psi(F)$. Hence $R/\psi(F)$ is a chain. Conversely, assume that $R/\psi(F)$ is a chain. Let $x, y \in R$. Then $x/\psi(F)$, $y/\psi(F) \in R/\psi(F)$. Since $R/\psi(F)$ is a chain, $x/\psi(F)$, $y/\psi(F)$ are comparable. With out loss of generality, suppose $x/\psi(F) \leq y/\psi(F)$. Then $x/\psi(F) = x/\psi(F) \wedge y/\psi(F)$. That implies $(x, x \wedge y) \in \psi(F)$. Then $x \wedge a = x \wedge y \wedge a$, for some $a \in F$. Therefore $x \wedge a \leq y \wedge a$. Thus *R* is an *S*-relatively normal.

The following result follows directly from the above theorem.

Theorem 9. Each *S*-relatively normal ADL is a subdirect product of the bounded chains $R \setminus P$, where *P* runs through the set of all prime ideals of *S*.

4. Dually *S*-relatively Normal ADLs

The concept of a dually S-completely normal lattices was given by Cignoli [2]. In this section we define the concept of dually S-relative normality in an ADL R through its principal filter lattice PF(R). We begin with the following.

Definition 8. Let *R* be an ADL, *S* a uni subADL of *R* and $x, y \in R$. We define $[x, y]_S = \{a \in S \mid (x \lor a) \lor y = x \lor a\}$. We call $[x, y]_S$ an *S*-relative dual annihilator. It can be observed that $a \in [x, y]_S$ iff $y = (x \lor a) \land y$. Clearly $[x, y]_S$ is a filter of *S*.

The usual lattice theoretic duality principle doesn't hold in ADLs. For example, in an ADL R, \wedge is right distributive over \vee but \vee is not right distributive over \wedge . However, we get that the dual of many results of section 3, hold good in dually S – relatively normal ADLs. For this reason we give only statements of these results.

Lemma 7. Let R be an ADL with maximal elements and S a uni subADL of R. If m_1, m_2 are two maximal elements in R, then for any $x \in R$, $[x, m_1]_S = [x, m_2]_S$.

Lemma 8. Let P be any prime ideal of S. For any $x, y \in R$, if $y \in P \lor (x]$, then $P \cap [x, y]_S$ is non-empty.

Definition 9. Let R be an ADL with maximal elements and S a uni subADL of R. R is called dually S-normal if for any $x, y \in R$ with $x \lor y$ is a maximal element in R, then there exist $a, b \in R$ such that $x \lor a$, $y \lor b$ are maximal elements and $a \land b = 0$.

Theorem 10. Let *R* be an ADL with maximal elements and *S* a uni subADL of *R*. Then the following are equivalent:

- 1. *R* is dually *S*-normal
- 2. $[x, y]_S \lor [y, x]_S = S$, for any $x, y \in R$ with $x \lor y$ is a maximal element.

The following definition is taken from [8].

Definition 10. Let *R* be an ADL with maximal elements. Then *R* is called dually relatively normal if for any $x, y \in R$ there exist $a, b \in R$ such that $(x \lor a) \lor y = x \lor a$, $(y \lor b) \lor x = y \lor b$ and $a \land b = 0$.

The following definition is taken from Cignoli [2].

Definition 11. Let $(L, \lor, \land, 0, 1)$ be a bounded distributive lattice and *S* a sublattice of *L* containing 0 and 1. Then *L* is called dually *S*-completely normal, if for any $x, y \in L$, there exist $a, b \in S$ such that $x \lor a \ge y$, $y \lor b \ge x$ and $a \land b = 0$.

Now we define the concept of dually *S*-relatively normal ADL in the following.

Definition 12. Let R be an ADL with maximal elements and S a uni subADL of R. R is called dually S-relatively normal if PF(R) is dually PF(S)-completely normal lattice.

Lemma 9. Let *R* be an ADL with maximal elements and *S* a uni subADL of *R*. Then *R* is dually *S*-relatively normal if and only if for any $x, y \in R$, there exist $a, b \in R$ such that $(x \lor a) \lor y = x \lor a$, $(y \lor b) \lor x = y \lor b$ and $a \land b = 0$.

Lemma 10. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is dually S-relatively normal if and only if for any $x, y \in R$, $[x, y]_S \vee [y, x]_S = S$.

Theorem 11. Let *R* be an ADL with maximal elements and *S* a uni subADL of *R*. Then the following conditions are equivalent:

- 1. *R* is dually *S*-relatively normal
- 2. For each pair $x, y \in R$, there is no proper filter of S containing both $[x, y]_S$ and $[y, x]_S$
- 3. The set of all ideals of R that contain a given S-prime ideal of R form a chain
- 4. The set of all prime ideals of R that contain a given S-prime ideal of R form a chain
- 5. Any proper ideal of R that contain a given S-prime ideal of R is a prime.

Corollary 3. Let R be an ADL with maximal elements and S_1, S_2 uni subADLs of R such that $S_1 \subseteq S_2$. Then the following conditions are equivalent:

- G. Rao, N. Rafi and B. Kumar / Eur. J. Pure Appl. Math, 3 (2010), 704-716
 - 1. *R* is dually S_1 -relatively normal
 - 2. R is dually S_2 -relatively normal and the ideals generated in S_2 by prime ideals of S_1 are prime.

Corollary 4. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is dually S-relatively normal if and only if R is dually relatively normal and the S-prime ideals of R are prime.

Proof. Take $S_1 = S$ and $S_2 = R$ in the above corollary.

Definition 13. Let *R* be an ADL with maximal elements. *R* is called relatively normal if for any $x, y \in R$, there exist $a, b \in R$ such that $y \wedge a \wedge x = a \wedge x$, $x \wedge b \wedge y = b \wedge y$ and $a \vee b$ is a maximal element. *R* is called dually relatively normal if for any $x, y \in R$, there exist $a, b \in R$ such that $(x \vee a) \vee y = x \vee a$, $(y \vee b) \vee x = y \vee b$ and $a \wedge b = 0$.

Definition 14. Let R be an ADL with maximal elements. Then R is called a linear ADL if R is both relatively normal and dually relatively normal. If S is a uni subADL of R, then R is called an S-linear ADL if R is both S-relatively normal and dually S-relatively normal.

The following theorem can be verified easily.

Theorem 12. Let R be an ADL with maximal elements and S a uni subADL of R. Then R is S-linear if and only if

- 1. R is a linear ADL
- 2. The S-prime filters of R are prime in R
- 3. The S-prime ideals of R are prime in R.

Definition 15. Let R be an ADL with maximal elements. Then

 $B = \{a \in R \mid \text{ there exists } b \in R \text{ such that } a \land b = 0 \text{ and } a \lor b \text{ is maximal} \}$

is called the Birkhoff centre of R and (B, \lor, \land) is a uni sub ADL of R which is also a relatively complemented ADL [10].

If $a \in B$, then an element $b \in R$ with the property $a \land b = 0$ and $a \lor b$ is maximal is called a complement of a in B. It was observed in [7] that every relatively complemented ADL is a normal ADL and hence B is normal.

We conclude this paper with the following characterization theorem.

Theorem 13. Let *R* be an ADL with maximal elements and *B* the Birkhoff centre of *R*. Then the following conditions are equivalent:

1. *R* is *B*-relatively normal

REFERENCES

- 1.' R is dually B-relatively normal
- 2. Given $x, y \in R$, there is $a \in B$ and a complement a' of a such that $y \land a \land x = a \land x$ and $x \land a' \land y = a' \land y$
- 2.' Given $x, y \in R$, there is $a \in B$ a complement a' of a such that $x \lor a \lor y = x \lor a$ and $y \lor a' \lor x = y \lor a'$
- 3. R is a linear ADL and the minimal prime ideals of R are B-maximal ideals of R
- 3.' R is linear ADL and the minimal prime filters of R are B-maximal filters of R.

Proof.

 $(1) \Rightarrow (2)$: Assume (1). Let $x, y \in R$. Then there exist $a, b \in B$ such that $y \land a \land x = a \land x, x \land b \land y = b \land y$ and $a \lor b$ is a maximal element. Since $a \in B$, there exists $c \in R$ such that $a \land c = 0$ and $a \lor c$ is a maximal element. Now, $a \lor (c \land b) = (a \lor c) \land (a \lor b) = a \lor b$ and $a \land c \land b = 0$. So that $c \land b(=a' \text{ say })$ is a complement of a in B and $x \land a' \land y = x \land c \land b \land y = c \land x \land b \land y = c \land b \land y = a' \land y$.

 $(2) \Rightarrow (2')$: Assume (2). Let $x, y \in R$. Then by our assumption there exists $a \in B$ and a complement a' of a in B such that $y \land a \land x = a \land x$ and $x \land a' \land y = a' \land y$. Now, $(x \lor a) \land y = ((x \lor (a' \land y) \lor a) \land y = (x \lor a \lor a') \land (x \lor a \lor y) \land y = (a \lor a') \land y = y$. Therefore $(x \lor a) \lor y = x \lor a$. Similarly, $(y \lor a') \lor x = y \lor a'$.

 $(2') \Rightarrow (2)$: Assume (2'). Let $x, y \in R$. Then there exists $a \in B$ and a complement a' of a in B such that $(x \lor a) \lor y = x \lor a$ and $(y \lor a') \lor x = y \lor a'$. Now, $y \lor (a \land x) = y \lor (a \land (y \lor a') \land x) = y \lor ((a \land y \land x) \lor (a \land a' \land x)) = y \lor (a \land y \land x) = y$. Therefore $y \land (a \land x) = a \land x$. Similarly, $x \land (a' \land y) = a' \land y$.

 $(2) \Rightarrow (3)$: Assume (2). Since (2) and (2') are equivalent, *R* is a linear ADL. Let *P* be a minimal prime ideal of *R* and $x \in P$. Then there exists $y \in R \setminus P$ such that $x \wedge y = 0$. By (2), there exists $a \in B$ and a complement a' of *a* such that $a \wedge x = y \wedge (a \wedge x) = 0$ and $a' \wedge y = x \wedge (a' \wedge y) = 0$. So that $a' \wedge y \in P$ and hence $a' \in P$. Now, $x = (a \vee a') \wedge x = (a \wedge x) \vee (a' \wedge x) = a' \wedge x$. Therefore *P* is *B*-ideal of *R* and hence *P* is a *B*-maximal ideal of *R*, since *B* is a relatively complemented ADL. Similarly, we get that $(2') \Rightarrow (3')$.

References

- [1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Colloq. Publ. XXV, Providence. 1967.
- [2] Cignoli, R.: The lattice of global sections of sheaves of chains over Boolean spaces. *Algebra Univesalis*, **8**, 357-373. 1978.
- [3] Gratzer, G.: General Lattice Theory. Academic Press, New York, Sanfransisco. 1978.

- [4] Rao, G.C.: Almost Distributive Lattices. Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam. 1980.
- [5] Rao, G.C. Rafi, N. and Ravi Kumar Bandaru.: *S*–ideals in Almost Distributive Lattices. *Accepted for publication in Southeast Asian Bulletin of Mathematics.*
- [6] Rao, G.C. and Ravi Kumar, S.: Minimal prime ideals in an ADL. *Int. J. Contemp. Sciences*, 4, 475-484. 2009.
- [7] Rao, G.C. and Ravi Kumar, S.: Normal Almost Distributive Lattices. *Southeast Asian Bullettin of Mathematics*, **32**, 831-841. 2008.
- [8] Ravi Kumar, S.: Normal Almost Distributive Lattices. Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam. 2009.
- [9] Swamy, U.M. and Rao, G.C.: Almost Distributive Lattices. J. Aust. Math. Soc. (Series A), 31, 77-91. 1981.
- [10] Swamy, U.M. and Ramesh, S.: Birkhoff Centre of ADL. Int. J. Algebra, 3, 539-546. 2009.