EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 2, 2010, 295-302 ISSN 1307-5543 – www.ejpam.com

On supra b-open sets and supra b-continuity on topological spaces

O. R. Sayed^{1*} and Takashi Noiri²

¹ Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
& Department of Mathematics, University's College, Umm-Al-Qurah University, Makkah, Saudi Arabia

² 2949-1 Shiokita-cho, Hinagu, Yatsushiri-shi, Kumamoto-ken, 869-5142 Japan

Abstract. In this paper, we introduce and investigate a new class of sets and maps between topological spaces called supra b-open sets and supra b-continuous maps, respectively. Furthermore, we introduce the concepts of supra b-open maps and supra b-closed maps and investigate several properties of them.

2000 Mathematics Subject Classifications: 54A10, 54A20

Key Words and Phrases: Supra b-open set, supra b-continuity, supra b-open map, supra b-closed map and supra topological space

1. Introduction

In 1983, A. S. Mashhour et al. [6] introduced the supra topological spaces and studied s-continuous maps and s^* -continuous maps. In 1996, D. Andrijevic' [2] introduced and studied a class of generalized open sets in a topological space called b-open sets. This class of sets contained in the class of β -open sets [1] and contains all semi-open sets [4] and all pre-open sets [5]. In 2008, R. Devi et al. [3] introduced and studied a class of sets and maps between topological spaces called supra α -open sets and supra α -continuous maps, respectively. Now, we introduce the concept of supra b-open sets and study some basic properties of it. Also, we introduce the concepts of supra b-continuous maps, supra b-open maps and supra b-closed maps and investigate several properties for these classes of maps. In particular, we study the relation between supra b-continuous maps and supra b-open maps (supra b-closed maps).

Throughout this paper, (X, τ) , (Y, σ) and (Z, v) (or simply, X, Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset

http://www.ejpam.com

© 2010 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: o_r_sayed@yahoo.com (O. R. Sayed), t.noiri@nifty.com (T. Noiri)

A of (X, τ) , the closure and the interior of A in X are denoted by Cl(A) and Int(A), respectively. The complement of A is denoted by X - A. In the space (X, τ) , a subset A is said to be β -open (resp. b-open, semi-open, pre-open, α -open [7]) if $A \subseteq Cl(Int(Cl(A)))$ (resp. $A \subseteq Cl(Int(A)) \cup Int(Cl(A)), A \subseteq Cl(Int(A)), A \subseteq Int(Cl(A)), A \subseteq Int(Cl(Int(A)))$. The family of all β -open (resp. b-open, semi-open, preopen, α -open) sets of (X, τ) is denoted by $\beta(X)$ (resp. $B(X), SO(X), PO(X), \alpha(X)$). A subcollection $\mu \subset 2^X$ is called a supra topology [6] on X if $X \in \mu$ and μ is closed under arbitrary union. (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and the complement of a supra open set is called a supra closed set. The supra closure of a set A, denoted by $Cl^{\mu}(A)$, is the intersection of supra closed sets including A. The supra interior of a set A, denoted by $Int^{\mu}(A)$, is the union of supra open sets included in A. The supra topology μ on X is associated with the topology τ if $\tau \subset \mu$. A set A is called a supra α -open set [3] (resp. supra semi-open set [6]) if $A \subseteq Int^{\mu}(Cl^{\mu}(Int^{\mu}(A)))$ (resp. $A \subseteq Cl^{\mu}(Int^{\mu}(A))$).

Before we study the basic properties of supra b-open sets we have the following correction in [3].

- (1) Definition 6 should be written as we stated before.
- (2) Example 3.2 is not correct and we will state instead of it.
- (3) The proof of Theorem 3.3 (ii) is not correct as τ^* is not supa-topology as well as Theorem 3.4 (ii).

2. Supra *b*-open sets

In this section, we introduce a new class of generalized open sets called supra *b*-open sets and study some of their properties.

Definition 1. Let (X, μ) be a supra topological space. A set A is called a supra b -open set if $A \subseteq Cl^{\mu}(Int^{\mu}(A)) \bigcup Int^{\mu}(Cl^{\mu}(A))$. The complement of a supra b-open set is called a supra b-closed set.

Theorem 1. Every supra semi-open set is supra b-open.

Proof. Let A be a supra semi-open set in (X, μ) . Then $A \subseteq Cl^{\mu}(Int^{\mu}(A))$. Hence, $A \subseteq Cl^{\mu}(Int^{\mu}(A)) \bigcup Int^{\mu}(Cl^{\mu}(A))$ and A is supra b-open in (X, μ) .

The converse of the above theorem need not be true as shown by the following example.

Example 1. Let (X, μ) be a supra topological space, where $X = \{a, b, c\}$ and $\mu = \{X, \phi, \{a\}, \{a, b\}, \{b, c\}\}$. Here $\{a, c\}$ is a supra b-open set, but it is not supra semi-open.

In [3], the author proved that every supra α -open set is supra semi-open. The following example (Instead of Example 3.2 [3]) shows the converse need not be true.

Example 2. Let (X, μ) be a supra topological space, where $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Here $\{b, c\}$ is a supra semi-open set, but it is not supra α -open.

From Theorems 3.1 and 3.2 in [3], the above theorem, Example 3.1 [3], and the above two examples, we have the following diagram in which the converses of the implications need not be true:

(DIAGRAM 1)

 $supra - open \rightarrow supra \ \alpha - open \rightarrow supra \ semi - open \rightarrow supra \ b - open$

Theorem 2.

- (i) Arbitrary union of supra b-open sets is always supra b-open.
- (ii) Finite intersection of supra b-open sets may fail to be supra b-open.
- (iii) X is a supra b-open set.

Proof.

- (i) Let A and B be two supra b-open sets. Then, $A \subseteq Cl^{\mu}(Int^{\mu}(A)) \bigcup Int^{\mu}(Cl^{\mu}(A))$ and $B \subseteq Cl^{\mu}(Int^{\mu}(B)) \bigcup Int^{\mu}(Cl^{\mu}(B))$. Then, $A \cup B \subseteq Cl^{\mu}(Int^{\mu}(A \cup B)) \bigcup Int^{\mu}(Cl^{\mu}(A \cup B))$. Therefore, $A \cup B$ is supra b-open set.
- (ii) In Example 1, both {a, c} and {b, c} are supra b-open sets, but their intersection {c} is not supra b-open.

Theorem 3.

- (i) Arbitrary intersection of supra b-closed sets is always supra b-closed.
- (ii) Finite union of supra b-closed sets may fail to be supra b-closed.

Proof.

- (i) This follows immediately from Theorem 2.
- (ii) In Example 1, both {a} and {b} are supra b-closed sets, but their union {a, b} is not supra b-closed.

Definition 2. The supra b-closure of a set A, denoted by $Cl_b^{\mu}(A)$, is the intersection of supra b-closed sets including A. The supra b-interior of a set A, denoted by $Int_b^{\mu}(A)$, is the union of supra b-open sets included in A.

Remark 1. It is clear that $Int_{b}^{\mu}(A)$ is a supra b-open set and $Cl_{b}^{\mu}(A)$, is a supra b-closed set.

Theorem 4.

- (i) $A \subseteq Cl_{h}^{\mu}(A)$; and $A = Cl_{h}^{\mu}(A)$ iff A is a supra b-closed set;
- (ii) $Int_{b}^{\mu}(A) \subseteq A$; and $Int_{b}^{\mu}(A) = A$ iff A is a supra b-open set;

(iii) $X - Int_{b}^{\mu}(A) = Cl_{b}^{\mu}(X - A);$ (iv) $X - Cl_{b}^{\mu}(A) = Int_{b}^{\mu}(X - A).$

Proof. Obvious.

Theorem 5.

- (a) $Int_{b}^{\mu}(A) \cup Int_{b}^{\mu}(B) \subseteq Int_{b}^{\mu}(A \cup B);$
- (b) $Cl_b^{\mu}(A \cap B) \subseteq Cl_b^{\mu}(A) \cap Cl_b^{\mu}(B).$

Proof. obvious.

Proposition 1. The intersection of a supra α -open set and a supra b-open set is a supra b-open set.

3. Supra *b*-continuous maps

In this section, we introduce a new type of continuous maps called a supra *b*-continuous map and obtain some of their properties and characterizations.

Definition 3. Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A map $f : (X, \tau) \to (Y, \sigma)$ is called a supra b-continuous map if the inverse image of each open set in Y is a supra b-open set in X.

Theorem 6. Every continuous map is supra b-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous map and A is open in Y. Then $f^{-1}(A)$ is an open set in X. Since μ is associated with τ , then $\tau \subseteq \mu$. Therefore, $f^{-1}(A)$ is supra open in X and it is supra b-open in X. Hence f is supra b-continuous.

The converse of the above theorem is not true as shown in the following example.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$ be a topology on X. The supra topology μ is defined as follows: $\mu = \{X, \phi, \{a\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be a map defined as follows: f(a) = a, f(b) = c, f(c) = b. The inverse image of the open set $\{a, b\}$ is $\{a, c\}$ which is not an open set but it is a supra b-open. Then f is supra b-continuous but it is not continuous.

The following example shows that supra b-continuous maps need not be supra semicontinuous.

Example 4. Consider the set $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a, c\}, \{b, d\}\}$ and the supra topology $\mu = \{X, \phi, \{a, c\}, \{b, d\}, \{a, c, d\}\}$. Also, suppose $Y = \{x, y, z\}$ with the topology $\sigma = \{Y, \phi, \{z\}\}$. Define the map $f : (X, \tau) \rightarrow (Y, \sigma)$ by: f(a) = y, f(b) = f(c) = z, f(d) = x. The inverse image of the open set $\{z\}$ is $\{b, c\}$ which is a supra b-open set but it is not a supra semi-open set. Then f is supra b-continuous but it is not supra semi-continuous map.

Therefore, from diagram 1 we have the following diagram in which the converses of the implications need not be true by the above discussion.

(DIAGRAM 2) supra-continuity \rightarrow supra α -continuity \rightarrow supra semicontinuity \rightarrow supra b-continuity

Theorem 7. Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . Let f be a map from X into Y. Then the following are equivalent:

- (1) f is a supra b-continuous map;
- (2) The inverse image of a closed set in Y is a supra b-closed set in X;
- (3) $Cl_{h}^{\mu}(f^{-1}(A)) \subseteq f^{-1}(Cl(A))$ for every set A in Y;
- (4) $f(Cl_h^{\mu}(A)) \subseteq Cl(f(A))$ for every set A in X;
- (5) $f^{-1}(Int(B)) \subseteq Int_{b}^{\mu}(f^{-1}(B))$ for every B in Y.

Proof.

- (1)⇒(2): Let A be a closed set in Y, then Y − A is an open set in Y. Then f⁻¹(Y − A) = X − f⁻¹(A) is a supra b-open set in X. It follows that f⁻¹(A) is a supra b-closed subset of X.
- (2)⇒(3): Let A be any subset of Y. Since Cl(A) is closed in Y, then f⁻¹(Cl(A)) is supra b-closed in X. Therefore, Cl^µ_b(f⁻¹(A)) ⊆ Cl^µ_b(f⁻¹(Cl(A))) = f⁻¹(Cl(A)).
- (3) \Rightarrow (4): Let *A* be any subset of *X*. By (3) we have $f^{-1}(Cl(f(A))) \supseteq Cl_b^{\mu}(f^{-1}(f(A))) \supseteq Cl_b^{\mu}(A)$. Therefore, $f(Cl_b^{\mu}(A)) \subseteq Cl(f(A))$.
- (4) \Rightarrow (5):Let *B* be any subset of *Y*. By (4), $f(Cl_b^{\mu}(X f^{-1}(B))) \subset Cl(f(X f^{-1}(B)))$ and $f(X - Int_b^{\mu}(f^{-1}(B))) \subset Cl(Y - B) = Y - Int(B)$. Therefore, we have $X - Int_b^{\mu}(f^{-1}(B)) \subset f^{-1}(Y - Int(B))$ and $f^{-1}(Int(B)) \subset Int_b^{\mu}(f^{-1}(B))$.
- (5) \Rightarrow (1): Let *B* be an open set in *Y* and $f^{-1}(Int(B)) \subseteq Int_b^{\mu}(f^{-1}(B))$. Then, $f^{-1}(B) \subseteq Int_b^{\mu}(f^{-1}(B))$. But, $Int_b^{\mu}(f^{-1}(B)) \subseteq f^{-1}(B)$. Hence, $f^{-1}(B) = Int_b^{\mu}(f^{-1}(B))$. Therefore, $f^{-1}(B)$ is supra *b*-open in *X*.

Theorem 8. Let $(X, \tau), (Y, \sigma)$ and (Z, v) be three topological spaces. If a map $f : (X, \tau) \rightarrow (Y, \sigma)$ is supra b-continuous and $g : (Y, \sigma) \rightarrow (Z, v)$ is a continuous map, then $g \circ f : (X, \tau) \rightarrow (Z, v)$ is supra b-continuous.

Proof. Obvious.

Theorem 9. Let (X, τ) and (Y, σ) be two topological spaces and μ and ν be the associated supra topologies with τ and σ , respectively. Then $f : (X, \tau) \to (Y, \sigma)$ is a supra b-continuous map, if one of the following holds:

- (1) $f^{-1}(Int_{h}^{v}(B)) \subseteq Int(f^{-1}(B))$ for every set B in Y.
- (2) $Cl(f^{-1}(B)) \subseteq f^{-1}(Cl_{b}^{\nu}(B))$ for every set *B* in *Y*.
- (3) $f(Cl(A)) \subseteq Cl_b^{\mu}(f(A))$ for every set A in X.

Proof. Let *B* be any open set of *Y*. If condition (1) is satisfied, then $f^{-1}(Int_b^{\nu}(B)) \subseteq Int(f^{-1}(B))$. We get $f^{-1}(B) \subseteq Int(f^{-1}(B))$. Therefore, $f^{-1}(B)$ is an open set. Every open set is supra *b*-open. Hence, *f* is a supra *b*-continuous map.

If condition (2) is satisfied, then we can easily prove that f is a supra b-continuous map. Let condition (3) be satisfied and B be any open set of Y. Then $f^{-1}(B)$ is a set in X and $f(Cl(f^{-1}(B))) \subseteq Cl_b^{\mu}(f(f^{-1}(B)))$. This implies $f(Cl(f^{-1}(B))) \subseteq Cl_b^{\mu}(B)$. This is nothing but condition (2). Hence f is a supra b-continuous map.

4. Supra b-open maps and supra b-closed maps

Definition 4. A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called a supra b-open (resp. supra b-closed) if the image of each open (resp. closed) set in X is supra b-open (resp. supra b-closed) in (Y, v).

Theorem 10. A map $f : (X, \tau) \to (Y, \sigma)$ is supra b-open if and only if $f(Int(A)) \subseteq Int_b^{\nu}(f(A))$ for each set A in X.

Proof. Suppose that *f* is a supra b-open map. Since $Int(A) \subseteq A$, then $f(Int(A)) \subseteq f(A)$. By hypothesis, f(Int(A)) is a supra b-open set and $Int_b^{\nu}(f(A))$ is the largest supra b-open set contained in f(A). Hence $f(Int(A)) \subseteq Int_b^{\nu}(f(A))$.

Conversely, suppose A is an open set in X. Then, $f(Int(A)) \subseteq Int_b^{\nu}(f(A))$. Since Int(A) = A, then $f(A) \subseteq Int_b^{\nu}(f(A))$. Therefore f(A) is a supra b-open set in (Y, ν) and f is a supra b-open map.

Theorem 11. A map $f : (X, \tau) \to (Y, \sigma)$ is supra b-closed if and only if $Cl_b^{\nu}(f(A)) \subseteq f(Cl(A))$ for each set A in X.

Proof. Suppose f is a supra b-closed map. Since for each set A in X, Cl(A) is closed set in X, then f(Cl(A)) is a supra b-closed set in Y. Also, since $f(A) \subseteq f(Cl(A))$, then $Cl_h^{\nu}(f(A)) \subseteq f(Cl(A))$.

Conversely, Let *A* be a closed set in *X*. Since $Cl_b^{\nu}(f(A))$ is the smallest supra b-closed set containing f(A), then $f(A) \subseteq Cl_b^{\nu}(f(A)) \subseteq f(Cl(A)) = f(A)$. Thus, $f(A) = Cl_b^{\nu}(f(A))$. Hence, f(A) is a supra b-closed set in *Y*. Therefore, *f* is a supra b-closed map.

Theorem 12. Let $(X, \tau), (Y, \sigma)$ and (Z, υ) be three topological spaces and $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \upsilon)$ be two maps. Then,

(1) if $g \circ f$ is supra b-open and f is continuous surjective, then g is a supra b-open map.

REFERENCES

(2) if $g \circ f$ is open and g is supra b-continuous injective, then f is a supra b-open map.

Proof.

- (1) Let A be an open set in Y. Then, $f^{-1}(A)$ is an open set in X. Since $g \circ f$ is a supra b-open map, then $(g \circ f)(f^{-1}(A)) = g(f(f^{-1}(A))) = g(A)$ (because f is surjective) is a supra b-open set in Z. Therefore, g is a supra b-open map.
- (2) Let *A* be an open set in *X*. Then, g(f(A)) is an open set in *Z*. Therefore, $g^{-1}(g(f(A))) = f(A)$ (because *g* is injective) is a supra b-open set in *Y*. Hence, *f* is a supra b-open map.

Theorem 13. Let (X, τ) and (Y, σ) be two topological spaces and $f : (X, \tau) \to (Y, \sigma)$ be a bijective map. Then the following are equivalent:

- (1) f is a supra b-open map;
- (2) f is a supra b-closed map;
- (3) f^{-1} is a supra b-continuous map.

Proof.

- (1) \implies (2): Suppose *B* is a closed set in *X*. Then *X B* is an open set in *X* and by (1), f(X-B) is a supra b-open set in *Y*. Since *f* is bijective, then f(X-B) = Y f(B). Hence, f(B) is a supra b-closed set in *Y*. Therefore, *f* is a supra b-closed map.
- (2) \implies (3): Let *f* is a supra b-closed map and *B* be closed set in *X*. Since *f* is bijective, then $(f^{-1})^{-1}(B) = f(B)$ which is a supra b-closed set in *Y*. Therefore, by Theorem 7, *f* is a supra b-continuous map.
- (3) \implies (1): Let *A* be an open set in *X*. Since f^{-1} is a supra b-continuous map, then $(f^{-1})^{-1}(A) = f(A)$ is a supra b-open set in *Y*. Hence, *f* is a supra b-open map.

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77- - 90.
- [2] D. Andrijevic', On b-open sets, Mat. Vesnik, 48 (1996), 59- 64.
- [3] R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and $s\alpha$ -continuous maps, General Mathematics, **16** (2) (2008), 77 84.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963), 36- - 41.

REFERENCES

- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mapping, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47- -53.
- [6] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, *Indian J. Pure and Appl. Math.*, **14** (4) (1983), 502- -510.
- [7] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961--970.