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Abstract. In this paper, we define a class ℜg

h

�

p, m,β
�

associated with convolution of p-valent ana-
lytic functions. Some properties in the form of coefficient inequality, growth and distortion bounds,
sufficient conditions with the help of various lemmas, integral means inequality for convolution of
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1. Introduction

Let Ap denotes a class of functions of the form:

f (z) = zp +

∞
∑

k=1

ap+kzp+k
�

p ∈ N = 1,2,3 . . .
�

, (1)

which are analytic and p-valent in the open unit disk ∆= {z ∈ C : |z| < 1}. Let g,h ∈ Ap be of
the form:

g(z) = zp +

∞
∑

k=1

bp+kzp+k, bp+k ≥ 0 (2)
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and

h(z) = zp +

∞
∑

k=1

cp+kzp+k, cp+k ≥ 0. (3)

A function f ∈ Ap is said to be p-valently starlike of order α in ∆, if it satisfies the inequality

Re

(

z f
′
(z)

f (z)

)

> α
�

z ∈∆; 0≤ α < p; p ∈ N
�

.

The class of all p-valent starlike functions of order α is denoted by S∗p (α). On the other hand,
a function f ∈ Ap is said to be p-valently convex of order α in ∆, if it satisfies the inequality

Re

(

1+
z f
′′
(z)

f
′
(z)

)

> α
�

z ∈∆; 0≤ α < p; p ∈ N
�

.

The class of all p-valent convex functions of order α is denoted by Kp (α). Furthermore, a
function f ∈ Ap is said to be p-valently close-to-convex of order α in ∆, if it satisfies the
inequality

Re
¦

z1−p f
′
(z)
©

> α
�

z ∈∆; 0≤ α < p; p ∈ N
�

.

The class of all p-valent close-to-convex functions of order α is denoted by CKp (α). If f ∈ Ap

satisfies
�

�

�

�

�

arg
z f
′
(z)

f (z)

�

�

�

�

�

<
β

p

π

2
(z ∈∆) ,

for some 0 < β ≤ p, then f is said to be p-valently strongly starlike function of order β in ∆
and this class is denoted by S

∗
p

�

β
�

. Further, if f ∈ Ap satisfies

�

�

�

�

�

arg

 

1+
z f
′′
(z)

f
′
(z)

!�

�

�

�

�

<
β

p

π

2
(z ∈∆) ,

for some 0 < β ≤ p, then f is said to be p-valently strongly convex function of order β in ∆
and is denote by K p

�

β
�

, the class of all such functions. Also, if f ∈ Ap satisfies

�

�

�arg
¦

z1−p f
′
(z)
©

�

�

� <
β

p

π

2
(z ∈∆) ,

for some 0 < β ≤ p, then f is said to be p-valently strongly close-to-convex function of order
β in ∆ and denote by CK p

�

β
�

the class of all such functions. A convolution (Hadamard
product) of f ∈ Ap of the form (1) with g ∈ Ap of the form (2) is defined by:

�

f ∗ g
�

(z) = zp +

∞
∑

k=1

ap+k bp+kzp+k =
�

g ∗ f
�

(z) . (4)
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Various convolution operators have been defined so far, which can be obtained by taking suit-
able g in (4). For example the convolution in (4) reduces to the operator W

p
q,s(
�

α1,A1
�

) f (z)

involving a Wright’s generalized hypergeometric function

qΨs [z] ≡ qΨs

�
�

α1,A1
�

,
�

α2,A2
�

, . . . ,
�

αq,Aq

�

�

β1, B1
�

,
�

β2, B2
�

, . . . ,
�

βs, Bs

� ; z

�

if g(z) = zp

s
∏

i=1
Γ(βi)

q
∏

i=1
Γ(αi)

qΨs [z], where for αi ∈ C(
αi

Ai
6= 0,−1,−2, . . .), i = 1,2, . . . ,q,

βi ∈ C(
βi

Bi
6= 0,−1,−2, . . .), i = 1,2, . . . , s and Ai > 0, i = 1,2, . . . ,q, Bi > 0, i = 1,2, . . . , s such

that 1+
s
∑

i=1
Bi −

q
∑

i=1
Ai ≥ 0,

qΨs [z] =

∞
∑

k=0

q
∏

i=1
Γ(αi + Aik)

s
∏

i=1
Γ(βi + Bik) k!

zk, z ∈∆, (5)

(
s
∏

i=1
B

Bi

i
≥

q
∏

i=1
A

Ai

i
in case 1+

s
∑

i=1
Bi−

q
∑

i=1
Ai = 0 [15]). The convolution operator W

p
q,s(
�

α1,A1
�

) f (z),

for which

bp+k =

q
∏

i=1

Γ(αi+Ai k)

Γ(αi)

s
∏

i=1

Γ(βi+Bi k)

Γ(βi)
k!

,

is studied by Aouf and Dziok [3, 4], Dziok and Raina [8], and Dziok et al. [9] and Sharma
[25] in their respective work and taking Ai = 1, i = 1,2, . . . ,q, Bi = 1, i = 1,2, . . . , s, for
q ≤ s+ 1, it reduces to Dziok Srivastava operator [10] which involve a generalized hypergeo-
metric function qFs [z] and is defined by

qHp
s

��

α1
��

f (z) = zp
qFs [z] ∗ f (z) (6)

where

qFs [z] = qFs

�

α1,α2, . . .αq;β1,β2, . . .βs; z
�

=

∞
∑

k=0

q
∏

i=1

�

αi

�

k

s
∏

i=1

�

βi

�

k k!

zk, z ∈∆,

the symbol (α)k is the familiar Pochhammer symbol defined by

(α)k =
Γ(α+ k)

Γ(α)
, k ∈ N0.
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The operator qH
p
s

��

α1
��

f (z) includes Hohlov operator [13] which involve Gaussian hy-
pergeometric function 2F1 as well as Carlson and Shaffer operator [6] defined by Saitoh and
Ruschweyh derivative operator [23] (for detail one may refer to [8, 9]). Also, the convolution
(4) reduces to the Salagean operator [24] if

bp+k =

�

p+ k

p

�n

, n ∈ N0

and to a generalized Salagean operator [2], if

bp+k =

�

p+ δk

p

�n

,δ > 0, n ∈ N0.

Further, the convolution (4) reduces to an integral operator involving generalized fractional

integral operator I
λ,µ,ν
0,z , if

bp+k =

�

p+ 1
�

k

�

p−µ+ ν + 1
�

k
�

p−µ+ 1
�

k

�

p+λ+ ν + 1
�

k

and hence
�

f ∗ g
�

(z) = zµ
Γ
�

p−µ+ 1
�

Γ
�

p+λ+ ν + 1
�

Γ
�

p+ 1
�

Γ
�

p−µ+ ν + 1
� I

λ,µ,ν
0,z f

where

I
λ,µ,ν
0,z zρ =

Γ
�

ρ+ 1
�

Γ
�

ρ−µ+ ν + 1
�

Γ
�

ρ−µ+ 1
�

Γ
�

ρ+λ+ ν + 1
�zρ−µ,

�

0≤ λ < 1,ρ >max
�

0,µ− ν
	

− 1
�

. Again, this convolution (4) reduces to the derivative

operator involving generalized fractional derivative operator J
λ,µ,ν
0,z , if

bp+k =

�

p+ 1
�

k

�

p−µ+ ν + 1
�

k
�

p−µ+ 1
�

k

�

p−λ+ ν + 1
�

k

and hence,
�

f ∗ g
�

(z) = zµ
Γ
�

p−µ+ 1
�

Γ
�

p−λ+ ν + 1
�

Γ
�

p+ 1
�

Γ
�

p−µ+ ν + 1
� J

λ,µ,ν
0,z f ,

where

J
λ,µ,ν
0,z zρ =

Γ
�

ρ+ 1
�

Γ
�

ρ−µ+ ν + 1
�

Γ
�

ρ−µ+ 1
�

Γ
�

ρ−λ+ ν + 1
�zρ−µ.

The generalized fractional calculus operators I
λ,µ,ν
0,z and J

λ,µ,ν
0,z defined above are studied in

[5], [20, 26]. These generalized fractional calculus operators reduce to fractional calculus
operators if we take µ = −λ and µ = λ respectively. Let Tp denotes the subclass of Ap

consisting of functions of the form:

f (z) = zp −
∞
∑

k=1

ap+kzp+k, ap+k ≥ 0. (7)

Motivated with the several work specially the work of Prajapat et al. [21], we consider
ℜg

h

�

p, m,β
�

class defined as follows:
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Definition 1. A function f ∈ Tp is said to be a member of the class ℜg

h

�

p, m,β
�

if and only if

for any g, h ∈ Ap with non-negative coefficients,

�

�

�

�

�

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)
−
�

p−m
�

�

�

�

�

�

< β ,

z ∈∆, p ∈ N, p > m, 0 < β ≤ p, m ∈ N0 = N
⋃

{0}, where
�

f ∗ g
�r
(z) denotes the r th derivative

of
�

f ∗ g
�

and is given by

�

f ∗ g
�r
(z) =

p!
�

p− r
�

!
zp−r +

∞
∑

k=1

�

p+ k
�

!
�

p+ k− r
�

!
ap+k bp+kzp+k−r , r ∈ N0. (8)

Obviously the class ℜg

h

�

p, m,β
�

contains the class S
g

h

�

p, m,β
�

, which is defined as fol-
lows:

Definition 2. A function f (z) ∈ Tp is said to be a member of the class S
g

h

�

p, m,β
�

if and only

if for any g, h ∈ Ap with non-negative coefficients,

Re

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

+m

)

> p− β ,

z ∈∆, p ∈ N, p > m, 0 < β ≤ p, m ∈ N0.

Taking m = 0 and 1 respectively and h(z) = g (z) = zp

1−z
, the class ℜg

h

�

p, m,β
�

coincides

with the classes S
∗
p

�

β
�

and K p

�

β
�

respectively and the class S
g

h

�

p, m,β
�

coincides with the

class S∗p
�

p− β
�

and Kp

�

p− β
�

respectively. Also, taking g (z) = zp

1−z
, h(z) = zp and m = 0,

the class ℜg

h

�

p, m,β
�

reduces to the class CK p

�

β
�

and the class S
g

h

�

p, m,β
�

reduces to the
the class CKp

�

p− β
�

.
If h = g, we denote ℜg

h

�

p, m,β
�

≡ ℜg

�

p, m,β
�

. Class ℜg

�

1,0,β
�

for g (z) = z

1−z
, co-

incides with the class studied by Chen et al. [7] as a particular case. In addition, the class
ℜg

�

p, 0, p (1−α)
�

reduces to the class studied by Ali et al. [1]. Taking, for n+ p > 0,

h(z) = g (z) = zp

(1−z)n+p and g (z) = zp

(1−z)n+p ,h(z) = zp respectively, the class ℜg

h

�

p, m,β
�

re-

duces to the classes, which were investigated by Raina and Srivastava [22] and these classes
coincide with the classes, studied by Güney and Breaz [12] if n+ p = 1 and are the gener-
alization of the classes investigated by Murugusundaramoorthi and Srivastava [18]. Further,
taking g ∈ A1 so that bk+1 = (1+ k)n , n ∈ N0, the class ℜg (1,0,1−α) would reduce to the
class studied in [1]. Moreover, a class similar to ℜg

�

p, m,β
�

is studied by Prajapat et al.
[21].

In this paper, we study coefficient inequality, growth and distortion bounds, sufficient
conditions with the help of various lemmas, integral means inequality for convolution of two
functions and a set of class preserving integral operators for functions belonging to the class
ℜg

h

�

p, m,β
�

.
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2. Coefficient Inequality, Growth and Distortion Bounds for the class

ℜg

h

�

p, m,β
�

A necessary and sufficient coefficient condition for a function f ∈ Tp to be in the class
ℜg

h

�

p, m,β
�

is derived in the form of following Theorem:

Theorem 1. Let the function f be of the form (7) and g, h ∈ Ap of the form (2) and (3)
respectively with

�

p+ k−m
�

bp+k >
�

p−m− β
�

cp+k . Then f is in the class ℜg

h

�

p, m,β
�

if

and only if

∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!
ap+k ≤

βp!
�

p−m
�

!
, (9)

p ∈ N, p > m, 0 < β ≤ p. The result is sharp for the function f given by

fk (z) = zp −
βp!

�

p+ k−m
�

!
�

p+ k
�

!
�

p−m
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�zp+k (k ≥ 1). (10)

Proof. We assume that the inequality (9) holds true, then we have to show that
�

�

�

�

�

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)
−
�

p−m
�

�

�

�

�

�

− β < 0

or,
�

�

�z
�

f ∗ g
�m+1

(z)−
�

p−m
��

f ∗ h
�m
(z)

�

�

�− β
�

�

�

f ∗ h
�m
(z)
�

� < 0.

Using series expansion of
�

f ∗ g
�m+1 and

�

f ∗ g
�m from (8), we have

�

�

�

�

�

−
∞
∑

k=1

�

p+ k
�

!ap+k
�

p+ k−m
�

!

¦
�

p+ k−m
�

bp+k −
�

p−m
�

cp+k

©

zp+k−m

�

�

�

�

�

−β

�

�

�

�

�

p!zp−m

�

p−m
�

!
−
∞
∑

k=1

�

p+ k
�

!ap+kcp+k
�

p+ k−m
�

!
zp+k−m

�

�

�

�

�

≤
∞
∑

k=1

�

p+ k
�

!ap+k
�

p+ k−m
�

!

¦
�

p+ k−m
�

bp+k −
�

p−m
�

cp+k

©

− β

(

p!
�

p−m
�

!
−
∞
∑

k=1

�

p+ k
�

!ap+kcp+k
�

p+ k−m
�

!

)

=

∞
∑

k=1

�

p+ k
�

!ap+k
�

p+ k−m
�

!

¦
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

©

−
βp!

�

p−m
�

!

≤ 0, if (9) holds.

Hence, f ∈ ℜg

h

�

p, m,β
�

. To prove the converse, we suppose that f ∈ ℜg

h

�

p, m,β
�

, that is

�

�

�

�

�

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)
−
�

p−m
�

�

�

�

�

�

< β , (11)
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z ∈ ∆, p ∈ N, p > m, 0 < β ≤ p, m ∈ N0. Since |Re (z)| ≤ |z| for any z. Choosing z to be real
and letting z→ 1− through real values, (11) yields

∞
∑

k=1

�

p+ k
�

!ap+k
�

p+ k−m
�

!

¦
�

p+ k−m
�

bp+k −
�

p−m
�

cp+k

©

−β

(

p!
�

p−m
�

!
−
∞
∑

k=1

�

p+ k
�

!ap+kcp+k
�

p+ k−m
�

!

)

≤ 0

or,
∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!
ap+k ≤

βp!
�

p−m
�

!

which leads us immediately to the desired inequality (9). Sharpness follows if we take ex-
tremal function given by (10).

Corollary 1. If f ∈ ℜg

h

�

p, m,β
�

, then

ap+k ≤
βp!

�

p+ k−m
�

!
�

p+ k
�

!
�

p−m
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

� , k ≥ 1. (12)

The equality in (12) is attained for the function fk given by ( 10).

Corollary 2. Let f ∈ ℜg

h

�

p, m,β
�

and dp+k :=
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k be such

that dp+k ≥ dp+1,∀ k ≥ 1, then

∞
∑

k=1

ap+k ≤
β
�

p−m+ 1
�

�

p+ 1
�

dp+1
. (13)

Corollary 3. Let f ∈ ℜg

h

�

p, m,β
�

and dp+k :=
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k be such

that dp+k ≥ dp+1,∀ k ≥ 1, then

∞
∑

k=1

�

p+ k
�

ap+k ≤
β
�

p−m+ 1
�

dp+1
.

Corollary 4. Let the function f be of the form (7) and g, h ∈ Ap of the form (2) and (3)
respectively with

�

p+ k−m
�

bp+k >
�

p−m− β
�

cp+k ,if

∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!
ap+k ≤

βp!
�

p−m
�

!
,

p ∈ N, p > m, 0 < β ≤ p holds, then f ∈ S
g

h

�

p, m,β
�

.

Theorem 2. Let f ∈ Tp of the form (7) be in the class ℜg

h

�

p, m,β
�

and g, h be of the form (2),

(3) respectively with dp+k :=
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k ≥ dp+1,∀ k ≥ 1, then

|zp| −
β
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� ≤
�

� f (z)
�

� ≤ |zp|+
β
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� (14)
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and
�

�pzp−1
�

�−
β
�

p−m+ 1
�

dp+1
|zp| ≤

�

�

� f
′
(z)

�

�

� ≤
�

�pzp−1
�

�+
β
�

p−m+ 1
�

dp+1
|zp| . (15)

Also let g (1) be finite and ζ :=max bp+k (k ≥ 1), then

|zp| −
βζ
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� ≤
�

�

�

f ∗ g
�

(z)
�

� ≤ |zp|+
βζ
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� . (16)

The bounds are sharp and extremal function may given by

f (z) = zp −
β
�

p−m+ 1
�

�

p+ 1
�

dp+1
zp+1. (17)

Proof. Taking absolute value of f (z) given in (7) and using Corollary 2, we get

�

� f (z)
�

� ≤ |zp|+
∞
∑

k=1

ap+k

�

�zp+k
�

� ≤ |zp|+
β
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

�

and
�

� f (z)
�

�≥ |zp| −
∞
∑

k=1

ap+k

�

�zp+k
�

� ≥ |zp| −
β
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� ,

which prove assertion (14). Again, taking absolute value of f ′ (z) and using Corollary 3, we
get

�

�

� f
′
(z)

�

�

� ≤
�

�pzp−1
�

�+

∞
∑

k=1

�

p+ k
�

ap+k

�

�zp+k−1
�

�≤
�

�pzp−1
�

�+
β
�

p−m+ 1
�

dp+1
|zp|

and

�

�

� f
′
(z)

�

�

�≥
�

�pzp−1
�

�−
∞
∑

k=1

�

p+ k
�

ap+k

�

�zp+k−1
�

�≥
�

�pzp−1
�

�−
β
�

p−m+ 1
�

dp+1
|zp| ,

which prove assertion (15).
Further, taking absolute value of f ∗ g, where f and g are of the form (7) and (2)

respectively. If ζ :=max bp+k, then using corollary (2), we get

�

�

�

f ∗ g
�

(z)
�

� ≤ |zp|+
∞
∑

k=1

ap+k bp+k

�

�zp+k
�

� ≤ |zp|+
βζ
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

�

and
�

�

�

f ∗ g
�

(z)
�

�≥ |zp| −
∞
∑

k=1

ap+k bp+k

�

�zp+k
�

�≥ |zp| −
βζ
�

p−m+ 1
�

�

p+ 1
�

dp+1

�

�zp+1
�

� ,

which prove (16). The bounds in (14), (15) and (16) are sharp, with extremal function given
by (10).
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3. Sufficient Conditions for Classes ℜg

h

�

p, m,β
�

and S
g

h

�

p, m,β
�

In this section, we obtain sufficient conditions for the classesℜg

h

�

p, m,β
�

and S
g

h

�

p, m,β
�

with the use of following Lemmas:

Lemma 1. [14] Let w (z) be analytic in ∆ and such that w (0) = 0. Then if |w (z)| attains its

maximum value on circle |z| = r < 1 at a point z0 ∈∆, we have

z0w
′ �

z0
�

= kw
�

z0
�

,

where k ≥ 1 is a real number.

Lemma 2. [17] Let φ (u, v) be a complex valued function:

φ : D→ C,
�

D ⊂ C×C; Cis the complex plane
�

,

and let u= u1 + iu2 and v = v1 + iv2. Suppose that the function φ (u, v) satisfies

(i) φ (u, v) is continuous in D;

(ii) (1,0) ∈ D and Re
�

φ (1,0)
�

> 0;

(iii) Re
�

φ
�

iu2, v1
��

≤ 0 for all
�

iu2, v1
�

∈ D and such that v1 ≤ −
�

1+ u2
2

�

/2.

Let p (z) = 1+ p1z + p2z2 + · · · be regular in ∆ such that
�

p (z) , zp
′
(z)
�

∈ D for all z ∈ ∆. If

Re
�

φ
�

p (z) , zp
′
(z)
��

> 0 (z ∈∆), then Re
�

p (z)
�

> 0 (z ∈∆).

Lemma 3. [19] Let a function p (z) be analytic in ∆, p (0) = 1, and p (z) 6= 0 (z ∈∆). If there

exists a point z0 ∈∆ such that

�

�arg p (z)
�

�<
π

2
β for |z| <

�

�z0

�

�

and
�

�arg p
�

z0
�
�

�=
π

2
β

with 0< β ≤ 1, then we have

z0p
′ �

z0
�

p
�

z0
� = ilβ

where

l ≥ 1 when arg p
�

z0
�

=
π

2
β

and

l ≤ −1 when arg p
�

z0

�

= −
π

2
β .
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Theorem 3. Let the function f ∈ Ap, if for g, h ∈ Ap, p ∈ N, p > m, 0< β ≤ p,

�

�

�

�

�

1+
z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
−

z
�

f ∗ h
�m+1

(z)
�

f ∗ h
�m
(z)

�

�

�

�

�

<
β

�

p−m
�

+ β
, (18)

holds, then f ∈ ℜg

h

�

p, m,β
�

.

Proof. Let w (z) be defined by

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

=
�

p−m
�

+βw (z) .

Clearly w (z) is analytic in ∆ and w (0) = 0. Differentiating logarithmically, we obtain

1+
z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
−

z
�

f ∗ h
�m+1

(z)
�

f ∗ h
�m
(z)

=
zβw

′
(z)

��

p−m
�

+ βw (z)
� .

Suppose that there exists a point z0 ∈∆ such that

max
|z|<|z0|

|w (z)| =
�

�w
�

z0
�
�

� = 1
�

w(z0) 6= 1
�

.

Then using Jack’s Lemma 1, we get z0w
′ �

z0
�

= kw
�

z0
�

(k ≥ 1). Therefore, letting
w
�

z0
�

= eiθ (θ 6= 0),

�

�

�

�

�

1+
z0

�

f ∗ g
�m+2 �

z0

�

�

f ∗ g
�m+1 �

z0

�
−

z0

�

f ∗ h
�m+1 �

z0

�

�

f ∗ h
�m �

z0

�

�

�

�

�

�

=

�

�

�

�

�

z0βw
′ �

z0

�

�

p−m
�

+ βw
�

z0
�

�

�

�

�

�

=
βk

¦
�

p−m
�2
+ β2+ 2β

�

p−m
�

cos θ
©

1
2

≥
β

p−m+ β
,

which contradicts the condition (18), we have |w (z)| < 1 for all z0 ∈ ∆, consequently, we
conclude that f ∈ ℜg

h

�

p, m,β
�

.

Taking h= g, we get following inclusion result with the help of Jack’s Lemma.

Theorem 4. For p > m, ℜg

�

p, m+ 1,β
�

⊂ℜg

�

p, m,α
�

, where

0< α ≤
−
�

p−m− β + 1
�

± 2
Æ

�

p−m− β + 1
�2
+ 4β

�

p−m
�

2
≤ p−m. (19)
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Proof. Let f ∈ ℜg

�

p, m+ 1,β
�

. Then
�

�

�

�

�

z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
−
�

p−m− 1
�

�

�

�

�

�

< β (20)

and let w (z) be defined by

z
�

f ∗ g
�m+1

(z)
�

f ∗ g
�m
(z)
−
�

p−m
�

= αw (z) . (21)

Clearly w (z) is analytic in ∆ and w (0) = 0. Differentiating logarithmically, we obtain

z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
=

�

p−m− 1
�

+αw (z) +
αzw

′
(z)

�

p−m
�

+αw (z)

z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
−
�

p−m− 1
�

= αw (z)



1+
αzw

′
(z)

αw (z)

1
�

p−m
�

+αw (z)



 .

Now, suppose that there exists a point z0 ∈∆ such that

max
|z|<|z0|

|w (z)| =
�

�w
�

z0
�
�

� = 1
�

w(z0) 6= 1
�

.

Using Jack’s Lemma 1, we have z0w
′ �

z0

�

= kw
�

z0

�

(k ≥ 1). Therefore, letting
w
�

z0

�

= eiθ (θ 6= 0),
�

�

�

�

�

z0
�

f ∗ g
�m+2 �

z0
�

�

f ∗ g
�m+1 �

z0

�
−
�

p−m− 1
�

�

�

�

�

�

= α
�

�w(z0)
�

�

�

�

�

�

�

1+
αz0w

′ �
z0
�

αw
�

z0
�

1
�

p−m
�

+αw
�

z0
�

�

�

�

�

�

= α

�

�

�

�

1+
k

�

p−m
�

+αeiθ

�

�

�

�

≥ α











1+
k

�

p−m
�Re







1+ α

(p−m)
cos θ − i α

(p−m)
sin θ

1+
�

α

(p−m)

�2

+ 2α

(p−m)
cos θ

















= α















1+
k

�

p−m
�















1

2+

�

α

(p−m)

�2
−1

1+ α

(p−m)
cos θ





























≥ α



1+
1

�

p−m
�

(

�

p−m+α
��

p−m
�

2
�

p−m+α
��

p−m
�

+α2 −
�

p−m
�2

)



= α

�

p−m+α+ 1

p−m+α

�

,
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on using (19), it gives
�

�

�

�

�

z
�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
−
�

p−m− 1
�

�

�

�

�

�

≥ β

which contradicts (20). Hence |w (z)| < 1 and from (21), it follows that f ∈ ℜg

�

p, m,α
�

.

Theorem 5. Let f ∈ Ap if

Re











δ
z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

+ (1− δ)z

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′












> γ (z ∈∆) ,

for some γ
�

γ < δ
�

p−m
��

, 0≤ δ ≤ 1, then f ∈ S
g

h

�

p, m,β
�

, where β =
2(δ(p−m)−γ)

1+δ
≤ p.

Proof. If δ = 1, the result holds. Let 0≤ δ < 1, define the function p (z) by

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

=
�

p−m− β
�

+ βp (z) . (22)

Then p (z) = 1+ p1z + p2z2 + · · · is regular in ∆. It follows from (22) that

1+ z

�

f ∗ g
�m+2

(z)
�

f ∗ g
�m+1

(z)
− z

�

f ∗ h
�m+1

(z)
�

f ∗ h
�m
(z)

=
βzp

′
(z)

�

p−m− β
�

+ βp (z)
,

or,

z

�

f ∗ h
�m
(z)

�

f ∗ g
�m+1

(z)

(

�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′

=
βzp

′
(z)−

��

p−m− β
�

+ βp (z)
	

�

p−m− β
�

+ βp (z)
,

or, equivalently

z2

(

�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′

= βzp
′
(z)−

��

p−m− β
�

+ βp (z)
	

.

Therefore, we have

Re











δ
z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

+ (1− δ) z

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′




− γ







= Re













z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

+ (1− δ) z2

(

�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′




− γ
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= Re
¦

δ
�

p−m−β
�

+ βδp (z) + (1− δ)βzp
′
(z)− γ

©

> 0

If we define a function φ (u, v) by

φ (u, v) = δ
�

p−m− β
�

+ βδu+ (1− δ)β v− γ (23)

with u = u1 + iu2 and v = v1 + iv2, then

(i) φ (u, v) is continuous in D ⊂ C×C;

(ii) (1,0) ∈ D and Re φ (1,0) = δ
�

p−m
�

− γ > 0;

(iii) For all
�

iu2, v1
�

∈ D and such that for v1 ≤ −
�

1+ u2
2

�

/2, we get

Re
�

φ
�

iu2, v1
�	

= δ
�

p−m− β
�

+ (1− δ)β v1 − γ

≤ δ
�

p−m− β
�

− (1− δ)β
�

1+ u2
2

�

/2− γ

= − (1− δ)βu2
2/2

≤ 0.

Therefore, φ (u, v) satisfies the conditions of Lemma 2. This show that Re
�

p (z)
�

> 0 (z ∈∆),
i.e.

Re

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)

> p−m− β (z ∈∆)

which proves that f (z) ∈ S
g

h

�

p, m,β
�

.

Theorem 6. Let for p ∈ N, p > m, m ∈ N0, 0< β ≤ p, if

�

�

�

�

�

�

�

�

arg







1
�

p−m
�







z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

+ z

 

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

!′













�

�

�

�

�

�

�

�

<
β

p

π

2
+tan−1

�

β

p

�

(z ∈∆) ,

(24)

then

�

�

�

�

arg

�

z( f ∗g)
m+1
(z)

( f ∗h)
m
(z)

�
�

�

�

�

<
β

p

π

2
(z ∈∆) . In particular, if

�

�

�

�

�

arg

(

z f
′
(z)

p f (z)

 

2+
z f
′′
(z)

f
′
(z)
−

z f
′
(z)

f (z)

!)�

�

�

�

�

<
β

p

π

2
+ tan−1

�

β

p

�

(z ∈∆) ,

then f ∈ S
∗
p

�

β
�

.

Proof. Let

p(z) :=
1

�

p−m
�

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)

.
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We obtain

zp
′
(z) =

z
�

p−m
�

(

z
�

f ∗ g
�m+1

(z)
�

f ∗ h
�m
(z)

)′

.

Suppose that there exists point z0 ∈∆ such that

�

�arg p (z)
�

� <
β

p

π

2
for |z| <

�

�z0

�

� ,
�

�arg p
�

z0

�
�

� =
β

p

π

2
.

Then applying Lemma 3, we write that

z0p
′ �

z0
�

p
�

z0
� = il

β

p

where

l ≥ 1 when arg p
�

z0
�

=
β

p

π

2

and

l ≤ −1 when arg p
�

z0

�

= −
β

p

π

2
.

Then it follows that

arg







1
�

p−m
�







z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
� + z0





z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
�





′











= arg
¦

p
�

z0

�

+ z0p
′ �

z0

�
©

= arg

(

p
�

z0
�

 

1+
z0p

′ �
z0
�

p
�

z0
�

!)

= arg p
�

z0
�

+ arg

�

1+ il
β

p

�

= arg p
�

z0
�

+ tan−1

�

l
β

p

�

.

When arg p
�

z0
�

=
β

p

π

2
, we have

arg







1
�

p−m
�







z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
� + z0

 

z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
�

!′













(25)

=
β

p

π

2
+ tan−1

�

l
β

p

�

≥
β

p

π

2
+ tan−1

�

β

p

�

.
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Similarly, if arg p
�

z0

�

= −β
p

π

2
, then we obtain that

arg







1
�

p−m
�







z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
� + z0





z0
�

f ∗ g
�m+1 �

z0
�

�

f ∗ h
�m �

z0
�





′











(26)

= −
β

p

π

2
+ tan−1

�

l
β

p

�

≤ −
�

β

p

π

2
+ tan−1

�

β

p

��

.

Thus we see that (25) and (26) contradicts the condition (24). Consequently, we conclude
that

�

�arg p(z)
�

� <
β

p

π

2
(z ∈∆) .

This proves Theorem 6.

4. Integral Means Inequality for the Class ℜg

h

�

p, m,β
�

Definition 3. [Subordination Principle]. For two functions f1 and f2, analytic in ∆, we say that

the function f1 (z) is subordinate to f2 (z) in ∆, and write

f1 (z) ≺ f2 (z) (z ∈∆) ,

if there exists a Schwartz function w (z), analytic in ∆ with

w (0) = 0 and |w (z)| < 1,

such that

f1 (z) = f2 (w (z)) (z ∈∆) .

In particular, if the function f2 is univalent in ∆, the subordination is equivalent to

f1 (0) = f2 (0) and f1 (∆)⊂ f2 (∆) .

Littlewood [16] proved the following subordination result (See also Duren [11]).

Lemma 4. [16] If f1 and f2 are analytic in∆ with f1 ≺ f2, then for τ > 0 and z = reiθ (0< r < 1),

2π
∫

0

�

� f1 (z)
�

�

τ
dθ ≤

2π
∫

0

�

� f2 (z)
�

�

τ
dθ .
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Theorem 7. Let g (z), h(z) be of the form (2), (3) respectively and f ∈ ℜg

h

�

p, m,β
�

be of the

form (7) and let for some i ∈ N,
ϕi

bp+i

= min
k≥1

ϕk

bp+k

,

where ϕk :=
(p+k)!dp+k

(p+k−m)!
and dp+k :=

�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

> 0. Also let for

such i ∈ N, functions fi and gi be defined respectively by

fi (z) = zp −
βp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
zp+i , gi = zp + bp+iz

p+i , (27)

If there exists an analytic function w defined by

{w (z)}i =
dp+i

�

p+ i
�

!
�

p−m
�

!

bp+iβp!
�

p+ i −m
�

!

∞
∑

k=1

ap+k bp+kzk

then, for τ > 0 and z = reiθ (0< r < 1),

2π
∫

0

�

�

�

f ∗ g
�

(z)
�

�

τ
dθ ≤

2π
∫

0

�

�

�

fi ∗ gi

�
�

�

τ
dθ (τ > 0) .

Proof. Convolution of f and g is defined as:

�

f ∗ g
�

(z) = zp −
∞
∑

k=1

ap+k bp+kzp+k = zp

 

1−
∞
∑

k=1

ap+k bp+kzk

!

Similarly, from (27), we obtain

�

fi ∗ gi

�

(z) = zp −
bp+iβp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
zp+i

= zp

�

1−
bp+iβp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
z i

�

.

To prove the theorem, we must show that for τ > 0 and z = reiθ (0< r < 1),

2π
∫

0

�

�

�

�

�

1−
∞
∑

k=1

ap+k bp+kzk

�

�

�

�

�

τ

dθ ≤

2π
∫

0

�

�

�

�

�

1−
bp+iβp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
z i

�

�

�

�

�

τ

dθ .

Thus, by applying Lemma 4, it would suffice to show that

1−
∞
∑

k=1

ap+k bp+kzk ≺ 1−
bp+iβp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
z i . (28)
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If the subordination (28) holds true, then there exist an analytic function w with w (0) = 0
and |w (z)| < 1 such that

1−
∞
∑

k=1

ap+k bp+kzk = 1−
bp+iβp!

�

p+ i −m
�

!

dp+i

�

p+ i
�

!
�

p−m
�

!
{w (z)}i .

From the hypothesis of the theorem, there exists an analytic function w given by

{w (z)}i =
dp+i

�

p+ i
�

!
�

p−m
�

!

bp+iβp!
�

p+ i −m
�

!

∞
∑

k=1

ap+k bp+kzk

which readily yields w (0) = 0. Thus for such function w, using the hypothesis in the coeffi-
cient inequality for the class ℜg

h

�

p, m,β
�

, we get

|w (z)|r ≤
dp+i

�

p+ i
�

!
�

p−m
�

!

bp+iβp!
�

p+ i −m
�

!

∞
∑

k=1

ap+k bp+k |z|
k

≤ |z|
dp+i

�

p+ i
�

!
�

p−m
�

!

bp+iβp!
�

p+ i −m
�

!

∞
∑

k=1

ap+k bp+k

≤ |z| < 1.

Therefore the subordination (28) holds true, thus the theorem is proved.

5. Class-preserving Integral-Operators for the Class ℜg

h

�

p, m,β
�

In this section, we present several integral operators which preserve class ℜg

h

�

p, m,β
�

.
For f ∈ ℜg

h

�

p, m,β
�

, we define the integral operators by

L1 f (z) =

�

p+ c
�

zc

z
∫

0

t c−1 f (t) d t, c > −p,

L2 f (z) =

�

p+ c
�σ

zcΓ(σ)

z
∫

0

t c−1
�

log
z

t

�σ−1

f (t) d t, c > −p,σ ≥ 0,

L3 f (z) =

�

p+ c +σ− 1

p+ c − 1

�

σ

zc

z
∫

0

�

1−
t

z

�σ−1

t c−1 f (t) d t, c > −p, σ ≥ 0.

Theorem 8. Let f ∈ ℜg

h

�

p, m,β
�

, then for p > m, 0 < β ≤ p, c > −p and

σ ≥ 0, L j f ∈ ℜg

h

�

p, m,β
�

, j = 1,2,3.
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Proof. Let f ∈ Tp of the form (7) be in the class ℜg

h

�

p, m,β
�

, then

L1 f (z) = zp −
∞
∑

k=1

�

c + p

c + p+ k

�

ap+kzp+k,

L2 f (z) = zp −
∞
∑

k=1

�

c + p

c + p+ k

�σ

ap+kzp+k,

L3 f (z) = zp −
∞
∑

k=1

�

p+ c
�

k
�

p+ c +σ
�

k

ap+kzp+k.

Since
�

c+p

c+p+k

�

< 1 , for σ ≥ 0,
�

c+p

c+p+k

�σ

≤ 1 and
(p+c)k
(p+c+σ)k

≤ 1, k ≥ 1, by Theorem 1, we see

that

∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!

�

c + p

c + p+ k

�

ap+k

≤
∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!
ap+k ≤

βp!
�

p−m
�

!
.

Hence, by Theorem 1, L1 f (z) ∈ ℜg

h

�

p, m,β
�

. Also

∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!

�

c + p

c + p+ k

�σ

ap+k

≤
∞
∑

k=1

�

p+ k
�

!
�
�

p+ k−m
�

bp+k −
�

p−m− β
�

cp+k

�

�

p+ k−m
�

!
ap+k ≤

βp!
�

p−m
�

!
.

Hence, L2 f (z) ∈ ℜg

h

�

p, m,β
�

. Similarly, we obtain that L3 f (z) ∈ ℜg

h

�

p, m,β
�

.
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