Fredholmness of Combinations of Two Idempotents

Tao Xie*, Kezheng Zuo

Math Department, Hubei Normal University, Hubei, Huangshi, 435002, China

Abstract

If P and Q are two idempotents on a Hilbert space, in this paper, we prove that Fredholmness of $a P+b Q-c P Q$ is independent of the choice of a, b, c with $a b \neq 0$.

2000 Mathematics Subject Classifications: 15A03, 15A24
Key Words and Phrases: Idempotent, Fredholmness, Combinations of idempotents

1. Introduction

Idempotents are important and have wide applications in the theory of linear algebra and operator theorem. It is shown in [17] that every $n \times n$ matrix over a field of characteristic zero is a linear combination of three idempotents and in [16] that every bounded linear operator on a complex infinite Hilbert space is a sum of at most five idempotents. See also [5],[18],[19].

Let X be a Banach space, and P, Q be two idempotent operators on X. Many researchers (see [1]-[15] and the references within) have addressed stability properties of the linear combination $a P+b Q$; it has been proved that some properties such as invertibility, nullity, Fredholmness, closeness of the range and complementarity of the Kernel of linear combinations of P and Q are independent of the choice of coefficients a and b, provided $a b \neq 0$ and $a+b \neq 0$.

A natural question is whether the results above can be extended to more general situations. In this note we consider the Fredholmness of some special combinations $a P+b Q-c Q P$ and $a P+b Q-c P Q-d Q P$ when P, Q are idempotents. We prove that Fredholmness and index of any combinations $a P+b Q-c Q P$ are independent of the choice of a, b, c with $a b \neq 0$. As an application, we obtain that the invertibility of combinations $a P+b Q-c Q P$ are equivalent to the invertibility of $P+Q$ for all $a, b, c \in \mathbb{C}$ with $a b \neq 0$, which generalizes the result of [4]. Moreover, counter examples are shown that the combination $a P+b Q-c P Q-d Q P$ fails to retain any such properties.

[^0]
2. Preliminaries

Let \mathscr{H} be a Hilbert space, and let all bounded linear operators on \mathscr{H} be denoted by $\mathscr{B}(\mathscr{H})$. An operator $P \in \mathscr{B}(\mathscr{H})$ is said to be idempotent if $P^{2}=P$. The set \mathscr{P} of all idempotents in $\mathscr{B}(\mathscr{H})$ is invariant under similarity; that is, is $P \in \mathscr{P}$ and $S \in \mathscr{B}(\mathscr{H})$ is an invertible operator, then $S^{-1} P S$ is still an idempotent since $\left(S^{-1} P S\right)^{2}=S^{-1} P S S^{-1} P S=S^{-1} P^{2} S=S^{-1} P S$. An idempotent P is called an orthogonal projection if $P^{2}=P=P^{*}$, where P^{*} is the adjoint of P. Moreover, for an idempotent $P \in \mathscr{P}$, there exists an invertible operator $U \in \mathscr{B}(\mathscr{H})$ such that $U^{-1} P U$ is an orthogonal projection. In fact, if $P \in \mathscr{P}$, then P can be written in the form of

$$
P=\left(\begin{array}{cc}
I & P_{1} \\
0 & 0
\end{array}\right)
$$

with respect to the space decomposition $\mathscr{H}=\mathscr{R}(P) \oplus \mathscr{R}(P)^{\perp}$, where $\mathscr{R}(M)$ denotes the range of the operator M. In this case, we have

$$
\left(\begin{array}{cc}
I & P_{1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & P_{1} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I & -P_{1} \\
0 & I
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

where $\widetilde{P}=\left(\begin{array}{cc}I & -P_{1} \\ 0 & I\end{array}\right)$ is invertible and $\widetilde{P}^{-1}=\left(\begin{array}{cc}I & P_{1} \\ 0 & I\end{array}\right)$. An operator $A \in \mathscr{B}(\mathscr{H})$ is said to be positive if $(A x, x) \geq 0$ for all $x \in \mathscr{H}$. If A is positive, then $A^{\frac{1}{2}}$ denotes the positive square root of A. An operator T is Fredholm if the nullities of T denoted by $\operatorname{nul}(T)$ and T^{*} are finite and the range of T is closed. For a Fredholm operator T, its index, ind T, is by definition $\operatorname{nul}(T)-\operatorname{nul}\left(T^{*}\right)$. It is know that the Fredholmness of T is preserved under compact perturbations and is equivalent to the existence of an operator T^{\prime} with $T T^{\prime}-I$ and $T^{\prime} T-I$ being compact. For details of Fredholmness, see[3], Chapter XI.

For the proof of the main theorem we need the following two lemmas which are well known, so the proofs are omitted.

Lemma 1 ([3]). Let $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ be a bounded linear operator on $\mathscr{H} \oplus \mathscr{K}$. Then A is a positive operator if and only if $A_{11} \geq 0, A_{22} \geq 0, A_{12}=A_{21}^{*}$ and there exists a contraction D from \mathscr{K} into \mathscr{H} such that

$$
A=\left(\begin{array}{cc}
A_{11} & A_{11}^{\frac{1}{2}} D A_{22}^{\frac{1}{2}} \\
A_{22}^{\frac{1}{2}} D^{*} A_{11}^{\frac{1}{2}} & A_{22}
\end{array}\right)
$$

Lemma 2 ([3]). Let $T=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be an operator on $\mathscr{H} \oplus \mathscr{K}$, where A is Fredholm with A^{\prime} act on \mathscr{H} satisfying $A A^{\prime}=I+K_{1}$ and $A^{\prime} A=I+K_{2}$ for some compact operators K_{1} and K_{2}. Then T is Fredholm if and only if $D-C A^{\prime} B$ is. In this case, ind $T=\operatorname{ind} A+\operatorname{ind}\left(D-C A^{\prime} B\right)$.

3. Main results

Theorem 1. Let P and Q in $\mathscr{B}(\mathscr{H})$ be two idempotents, then the Fredholmness of a $P+b Q-c P Q$ is independent of the choice of a, b, c with $a b \neq 0$ and ind $(a P+b Q-c P Q)=\operatorname{ind}(P+Q)$.

Proof. Let P and Q be two idempotents. By the discussion above, since $a P+b Q-c P Q$ is Fredholm if and only if $a S^{-1} P S+b S^{-1} Q S-c\left(S^{-1} P S\right)\left(S^{-1} P S\right)$ is Fredholm, to consider the Fredholmness of $a P+b Q-c P Q$, without loss of generality, we can assume that one of P and Q is an orthogonal projection. For example, assume that Q is an orthogonal projection. Of course, Q is a positive operator. In this case, by Lemma 1, P and Q have the following operator matrix forms:

$$
P=\left(\begin{array}{cc}
I & P_{1} \\
0 & 0
\end{array}\right) \text { and } Q=\left(\begin{array}{cc}
Q_{1} & Q_{1}^{\frac{1}{2}} D Q_{2}^{\frac{1}{2}} \\
Q_{2}^{\frac{1}{2}} D^{*} Q_{1}^{\frac{1}{2}} & Q_{2}
\end{array}\right)
$$

with respect to the space decomposition $\mathscr{H}=\mathscr{R}(P) \oplus \mathscr{R}(P)^{\perp}$, where Q_{1} and Q_{2} are positive operators on $\mathscr{R}(P)$ and $\mathscr{R}(P)^{\perp}$, respectively, and D is a contraction operator from $\mathscr{R}(P)^{\perp}$ into $\mathscr{R}(P)$. Furthermore, Q_{1} and Q_{2} have the following operator matrix forms:

$$
Q_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & Q_{11}
\end{array}\right), Q_{2}=\left(\begin{array}{ccc}
Q_{22} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right)
$$

respect to the space decomposition

$$
\mathscr{R}(P)=\mathscr{N}\left(Q_{1}\right) \oplus \mathscr{N}\left(I-Q_{1}\right) \oplus\left(\mathscr{R}(P) \ominus\left(\mathscr{N}\left(Q_{1}\right) \oplus \mathscr{N}\left(I-Q_{1}\right)\right)\right)
$$

and the space decomposition

$$
\mathscr{R}(P)^{\perp}=\left(\mathscr{R}(P)^{\perp} \ominus \mathscr{N}\left(I-Q_{2}\right)\right) \oplus \mathscr{N}\left(I-Q_{2}\right) \oplus \mathscr{N}\left(Q_{2}\right),
$$

respectively. Then denote $\mathscr{H}_{0}=\mathscr{N}\left(Q_{1}\right), \mathscr{H}_{1}=\mathscr{N}\left(I-Q_{1}\right), \mathscr{H}_{2}=\mathscr{R}(P) \ominus\left(\mathscr{N}\left(Q_{1}\right) \oplus \mathscr{N}\left(I-Q_{1}\right)\right)$, $\mathscr{H}_{3}=\mathscr{R}(P)^{\perp} \ominus \mathscr{N}\left(I-Q_{2}\right)$ and $\mathscr{H}_{4}=\mathscr{N}\left(I-Q_{2}\right), \mathscr{H}_{5}=\mathscr{N}\left(Q_{2}\right)$, therefore P and Q have the following matrix representations:

$$
Q=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & Q_{11} & Q_{11}^{\frac{1}{2}} D_{1} Q_{22}^{\frac{1}{2}} & 0 & 0 \\
0 & 0 & Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}} & Q_{22} & 0 & 0 \\
0 & 0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
P=\left(\begin{array}{cccccc}
I & 0 & 0 & P_{11} & P_{12} & P_{13} \\
0 & I & 0 & P_{21} & P_{22} & P_{23} \\
0 & 0 & I & P_{31} & P_{32} & P_{33} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with respect to the space decomposition $\mathscr{H}=\oplus_{i=0}^{5} \mathscr{H}_{i}$ for some contraction D_{1} from \mathscr{H}_{3} to \mathscr{H}_{2}. If we let

$$
Q_{0}=\left(\begin{array}{cc}
Q_{11} & Q_{11}^{\frac{1}{2}} D_{1} Q_{22}^{\frac{1}{2}} \\
Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}} & Q_{22}
\end{array}\right)
$$

then Q being an orthogonal projection implies that Q_{0} is also an orthogonal projection on $\mathscr{H}_{2} \oplus \mathscr{H}_{3}$. That is, $Q_{0}=Q_{0}^{2}$. We obtain

$$
\left\{\begin{array}{l}
Q_{11}=Q_{11}^{2}+Q_{11}^{\frac{1}{2}} D_{1} Q_{22} D_{1}^{*} Q_{11}^{\frac{1}{2}}, \\
Q_{11}^{2} D_{1} Q_{22}^{2}=Q_{11}^{2} D_{1} Q_{22}^{2}+Q_{11}^{2} D_{1} Q_{22}^{\frac{3}{2}}, \\
Q_{22}^{2} D_{1}^{*} Q_{11}^{2}=Q_{22}^{\frac{2}{2}} D_{1}^{*} Q_{11}^{2}+Q_{22}^{2} D_{1}^{*} Q_{11}^{2}, \\
Q_{22}, Q_{22}^{2}+Q_{22}^{2} D_{1}^{*} Q_{11} D_{1} Q_{22}^{2} .
\end{array}\right.
$$

It can be derived by using the injectivity of $Q_{11}, I-Q_{11}, Q_{22}$ and $I-Q_{22}$ that

$$
\left\{\begin{array}{l}
D_{1} D_{1}^{*}=I, \tag{1}\\
D_{1}^{*} D_{1}=I \\
Q_{22}=D_{1}^{*}\left(I-Q_{11}\right) D_{1}
\end{array}\right.
$$

Note that

$$
\begin{align*}
a P+b Q-c P Q & = \tag{2}\\
& =\left(\begin{array}{cccccc}
U_{11} & 0 & U_{13} & U_{14} & U_{15} & U_{16} \\
0 & U_{22} & U_{23} & U_{24} & U_{25} & U_{26} \\
0 & 0 & V_{11} & V_{12} & U_{35} & U_{36} \\
0 & 0 & V_{21} & V_{22} & 0 & 0 \\
0 & 0 & 0 & 0 & U_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \tag{3}
\end{align*}
$$

with respect to the space decomposition $\mathscr{H}=\oplus_{i=0}^{5} \mathscr{H}_{i}$, where

$$
\begin{array}{ll}
U_{11}=a I, & U_{13}=-c P_{11} Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}} \\
U_{14}=a P_{11}-c P_{11} Q_{22}, & U_{15}=a P_{12}-c P_{12} \\
U_{16}=a P_{13}, & U_{22}=(a+b-c) I \\
U_{23}=-c P_{21} Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}}, & U_{24}=a P_{21}-c P_{21} Q_{22} \\
U_{25}=a P_{22}-c P_{22}, & U_{26}=a P_{23} \\
U_{35}=a P_{32}-c P_{32}, & U_{36}=a P_{33} \\
U_{55}=b I . &
\end{array}
$$

and

$$
\begin{aligned}
V_{11}= & a I+b Q_{11}-c\left(Q_{11}+P_{31} Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}}\right) \\
= & a I+b Q_{11}-c\left(Q_{11}+P_{31} D_{1}^{*} Q_{11}^{\frac{1}{2}}\left(I-Q_{11}\right)^{\frac{1}{2}}\right), \\
V_{12}= & a P_{31}+b Q_{11}^{\frac{1}{2}} D_{1} Q_{22}^{\frac{1}{2}}-c\left(Q_{11}^{\frac{1}{2}} D_{1} Q_{22}^{\frac{1}{2}}+P_{31} Q_{22}\right), \\
= & a P_{31}+b Q_{11}^{\frac{1}{2}}\left(I-Q_{11}\right)^{\frac{1}{2}} D_{1}-c\left(Q_{11}^{\frac{1}{2}}\left(I-Q_{11}\right)^{\frac{1}{2}} D_{1}\right. \\
& \left.+P_{31} D_{1}^{*}\left(I-Q_{11}\right)^{\frac{1}{2}} D_{1}\right), \\
V_{21}= & b Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}}=b D_{1}^{*} Q_{11}^{\frac{1}{2}}\left(I-Q_{11}\right)^{\frac{1}{2}}, \\
V_{22}= & b Q_{22}=b D_{1}^{*}\left(I-Q_{11}\right) D_{1} .
\end{aligned}
$$

We claim that $a P+b Q-c P Q$ is Fredholm if and only if $I-Q_{11}$ is invertible and $I-P_{31} D_{1}^{*}(I-$ $\left.P_{11}\right)^{-\frac{1}{2}} P_{11}^{\frac{1}{2}}$ is Fredholm. Indeed, if $a P+b Q-c P Q$ is Fredholm, then, letting A be an operator on \mathscr{H} such that

$$
K=(a P+b Q-c P Q) A-I
$$

is compact, we have, with

$$
\begin{gathered}
A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \text { and } K=\left(\begin{array}{ll}
K_{1} & K_{2} \\
K_{3} & K_{4}
\end{array}\right) \text { on } \mathscr{H}=\mathscr{R}(P) \oplus \mathscr{R}(P)^{\perp}, \\
\\
\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)=\left(\begin{array}{cc}
I+K_{1} & K_{2} \\
K_{3} & I+K_{4}
\end{array}\right) .
\end{gathered}
$$

Carrying out the mulitiplication here yields

$$
b Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}} A_{2}+b Q_{22} A_{4}=I+K_{4}
$$

or

$$
b Q_{22}^{\frac{1}{2}}\left(D_{1}^{*} Q_{11}^{\frac{1}{2}} A_{2}+Q_{22}^{\frac{1}{2}} A_{4}\right)=I+K_{4} .
$$

This shows that $Q_{22}^{\frac{1}{2}}$ is Fredholm and hence so is Q_{22}. Therefore, Q_{22} is invertible and thus so is $I-Q_{11}$ by (1). The Fredholmness of $a P+b Q-c P Q$ is equivalent to that of

$$
\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)
$$

by (3), which is in turn equivalent to that of

$$
V_{11}-V_{12} V_{22}^{\prime} V_{21}=a I+b Q_{11}-\left(a P_{31}+b Q_{11}^{\frac{1}{2}} D_{1} Q_{22}^{\frac{1}{2}}\right)\left(b Q_{22}\right)^{\prime}\left(b Q_{22}^{\frac{1}{2}} D_{1}^{*} Q_{11}^{\frac{1}{2}}\right)
$$

by Lemma 2. But this letter operator is equal to

$$
a I+b Q_{11}-\left(a P_{31}+b Q_{11}^{\frac{1}{2}} D_{1} D_{1}^{*}\left(I-Q_{11}\right)^{\frac{1}{2}} D_{1}\right) D_{1}^{*}\left(I-Q_{11}\right)^{-\frac{1}{2}} D_{1} D_{1}^{*} Q_{11}^{\frac{1}{2}},
$$

which can be further simplified to

$$
a\left(I-P_{31} D_{1}^{*}\left(I-Q_{11}\right)^{-\frac{1}{2}} Q_{11}^{\frac{1}{2}}\right)
$$

by (1). This proves one direction. For the other, if $I-Q_{11}$ is invertible and $I-P_{31} D_{1}^{*}(I-$ $\left.Q_{11}\right)^{-\frac{1}{2}} Q_{11}^{\frac{1}{2}}$ is Fredholm then we can reverse the above arguments to show that $a P+b Q-c P Q$ is Fredholm. The equivalence of Fredholmness of $a P+b Q-c P Q$ and $P+Q$ follows easily. Finally, we also have

$$
\operatorname{ind}(a P+b Q-c P Q)=\operatorname{ind}\left(I-P_{31} D_{1}^{*}\left(I-Q_{11}\right)^{-\frac{1}{2}} Q_{11}^{\frac{1}{2}}\right)=\operatorname{ind}(P+Q)
$$

which complete the proof.
As an application, we immediately have the following corollary.
Corollary 1. Let P, Q be two idempotents in $\mathscr{B}(X)$. Then
(i) the invertibility of $a P+b Q-c Q P$ is independent of the choice of $a, b, c \in \mathbb{C}$ and $a b \neq 0$.
(ii) the invertibility of $a P+b Q-c Q P$ is equivalent to the invertibility of $a P+b Q$ for all choice of $a, b, c \in \mathbb{C}$ and $a b \neq 0$.

Proof.
(i) Let $a_{0} P+b_{0} Q-c_{0} Q P$ be invertible for some $a_{0}, b_{0}, c_{0} \in \mathbb{C}$ with $a_{0} b_{0} \neq 0$. Then $a_{0} P+$ $b_{0} Q-c_{0} Q P$ is Fredholm with the nullity and defect equal to zero. By the above Theorem ,$a P+b Q-c Q P$ is invertible for all $a, b, c \in \mathbb{C}$ with $a b \neq 0$.
(ii) Let $c=0$, then the (ii) follows from (i).

Remark 1. Let $c=0$, we obtain the Theorems of [4] and [7].
As to the invertibility of $a P+b Q-c P Q$, there is an natural question that does the combination $a P+b Q-c P Q-d Q P$ retain the invertibility for any $a b \neq 0$ and $a+b=c+d$. However, there is an counterexample to note that this is impossible. Let $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $Q=\left(\begin{array}{cc}2 & 1 \\ -2 & 1\end{array}\right)$, then P, Q are idempotent and the determinant of $a P+b Q-c P Q-d Q P$ is 0 when $a=12, b=-5, c=10, d=-3$ with $a+b=c+d$, and is -3 when $a=1, b=1, c=$ $-1, d=-1$ with $a+b=c+d$. So the invertibility of $a P+b Q-c P Q-d Q P$ depending on the choice of scalars a, b, c, d with $a+b=c+d$. Therefore the idea of generalize the invertibility of $a P+b Q-c P Q$ or $a P+b Q-c Q P$ to the invertibility of $a P+b Q-c P Q-d Q P$ or more generally $a P+b Q-c P Q-d Q P-e P Q P-f Q P Q-\cdots$ can not be achieved.

References

[1] J.K. Baksalary and O.M. Baksalary. Nonsingularity of linear combinations of idempotent matrices. Linear Algebra and its Applications, 388: 25-29, 2004.
[2] J.K. Baksalary and O.M. Baksalary. Idempotency of linear combinations of three idempotent matrices, two of which are disjoint. Linear Algebra and its Applications 388: 67-78, 2004.
[3] J.B. Conway. A Course in Functional Analysis, 2nd ed., Springer, New York, 1990.
[4] H. Du, X. Yao and C. Deng. Invertibility of linear combinations of two idempotents. Proceedings of American Mathematical Society, 134: 1451-1457, 2006.
[5] P.A. Fillmore. On sums of projections. Journal of Functional Analysis, 4: 146-152, 1969.
[6] J. Gro and G. Trenkler. Nonsingularity of the difference of two oblique projectors. SIAM J. Matrix Anal. Appl., 21: 390-395, 1999.
[7] H.L. Gau and P.Y. Wu. Fredholmness of linear combinations of two idempotents. Integral Equations and Opertor Theory, 59: 579-583, 2007.
[8] H.L. Gau, C.J. Wang and N.C. Wong. Invertibility and Fredholmness of linear combinations of quadratic, k-potent and nilpotent operators. Operators and Matrices, 2: 193-199, 2008.
[9] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York and Basel, 1988.
[10] J.J. Koliha and V. Rakočević. Invertibility of the sum of idempotents. Linear and Multilinear Algebra, 50: 285-292, 2002.
[11] J.J. Koliha and V. Rakočević. Invertibility of the difference of idempotents. Linear and Multilinear Algebra, 51: 97-110, 2003.
[12] J.J. Koliha and V. Rakočević. I.Straškraba. The difference and sum of projectors. Linear Algebra Appl., 388: 279-288, 2004.
[13] J.J. Koliha and V. Rakočević. Fredholm properties of the difference of orthogonal projections in a Hilbert space. Integr. Equ. Oper. Theory, 52: 125-134, 2005.
[14] J.J. Koliha and V. Rakočević. The nullity and rank of linear combinations of idempotent matrices. Linear Algebra Appl., 418: 11-14, 2006.
[15] J.J. Koliha and V. Rakočevićs. Stability theorems for linear combinations of idempotents. Integr. Equ. Oper. Theory, 58: 597-601, 2007.
[16] C. Pearcy and D. Topping. Sums of small numbers of idempotents. Michigan Journal of Mathematics, 14(4): 453-465, 1967.
[17] V. Rabanovic. Every matrix is a linear combination of three idempotents. Linear Algebra and its Applications, 390: 137-143, 2004.
[18] P.Y. Wu. Sums of idempotent matrices. Linear Algebra and its Applications, 142: 43-54, 1990.
[19] P.Y. Wu. Additive combinations of special operations. Functional Analysis and Operator Theorem, 30: 337-361, 1994.

[^0]: *Corresponding author.

 Email addresses: xietao_1294@163.com (T. Xie), xiangzuo28@yahoo.cn (K. Zuo)
 (c) 2010 EJPAM All rights reserved.

