

On the Structure of Commutative Rings with $p_{1}{ }^{k_{1}} \cdots p_{n}{ }^{k_{n}}\left(1 \leq k_{i} \leq 7\right)$ Zero-Divisors II

M. Behboodi ${ }^{1,2, *}$ and R. Beyranvand ${ }^{3}$
${ }^{1}$ Department of Mathematical Science, Isfahan University of Technology, Isfahan, Iran
${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
${ }^{3}$ Faculty of Science, Department of Mathematics, Lorestan University, Khorramabad, Iran

Abstract

In this paper, we determine the structure of nonlocal commutative rings with p^{6} zerodivisors and characterize the structure of nonlocal commutative rings with p^{7} zero-divisors. Also, the structure and classification up to isomorphism all commutative rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}$ zero-divisors, where n is a positive integer, p_{i} s are distinct prime number and $1 \leq k_{i} \leq 4$, are determined.

2000 Mathematics Subject Classifications: 16B99; 13A99; 68R10
Key Words and Phrases: Finite ring, Zero-divisor, Local ring

1. Introduction

The present paper is a sequel to [2] and so the notations introduced in Introduction of [2] will remain in force. In particular, all rings are associative rings with identity elements, $J(R)$ denotes the jacobson radical of $R, Z(R)$ denotes the set of all zero-divisors of R and for any finite subset Y of R, we denote $|Y|$ for the cardinality of Y. Also, F_{q} is the finite field of order $q, F_{q}{ }^{*}$ is the group of nonzero elements of F_{q} and for a prime number p, Σ_{m} is a set of coset representation of $\left(F_{p}{ }^{*}\right)^{m}$ in $F_{p}{ }^{*}, \Sigma_{m}^{0}=\Sigma_{m} \cup\{0\}$ and $G R\left(p^{n r}, p^{r}\right)$ is the Galois ring of order $p^{n r}$ and characteristic p^{r}.

In [2] the structure and classification up to isomorphism all rings with $p_{1}{ }^{k_{1}} \ldots p_{s}{ }^{k_{s}}$ zerodivisors, where s is a positive integer, p_{i} 's are distinct prime number and $1 \leq k_{i} \leq 3$ were determined. Also we determined the structure of nonlocal rings with p^{k} zero-divisors where $k=4$ or 5 . In the paper we develop these results. In fact the structure and classification up to isomorphism all rings with $p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \ldots p_{s}{ }^{k_{s}}$ zero-divisors, where s is a positive integer, $p_{i}{ }^{\prime} s$ are distinct prime number and $1 \leq k_{i} \leq 4$ are determined. Also we determine the structure of nonlocal rings with p^{6} zero-divisors and characterize the structure of nonlocal rings with p^{7} zero-divisors.

[^0]http://www.ejpam.com 686 (c) 2010 EJPAM All rights reserved.

2. On Rings with p^{k} Zero-divisors

We recall the following facts that we will use them in the paper:
(i) An Artinian commutative ring R is called completely primary if $R / J(R)$ is a field. One can easily see that an Artinian commutative ring R is completely primary if and only if $Z(R)$ is an ideal of R, if and only if R is a local ring.
(ii) Let $R_{i}(1 \leq i \leq t)$ be a nonzero finite commutative ring with m_{i} elements and n_{i} zerodivisors. Then by [6, Theorem 2], the ring $R_{1} \times \ldots \times R_{t}$ has $m_{1} m_{2} \ldots m_{t}-\left(m_{1}-n_{1}\right)\left(m_{2}-\right.$ $\left.n_{2}\right) \ldots\left(m_{t}-n_{t}\right)$ zero-divisors.
(iii) Every finite commutative ring is uniquely expressible as a direct sum of completely primary (local) rings (see for example [7, p.95]).

We need the following two lemmas which are crucial in our investigation.
Lemma 1. [8, Theorem 2] Let R be a finite completely primary ring. Then

1. $Z(R)=J(R)$;
2. $|Z(R)|=p^{(n-1) r}$ and $|R|=p^{n r}$ for some prime number p, and some positive integers n, r;
3. $Z(R)^{n}=0$;
4. char $(R)=p^{k}$ for some integer k with $1 \leq k \leq n$;
5. $R / J(R) \cong F_{q}$, where $q=p^{r}$.

Lemma 2. [2, Theorem 2] Let R be a commutative ring such that $|Z(R)|=p^{k}$ for some prime number p and a positive number k. Then either
(i) R is local,
(ii) R is reduced or
(iii) $k \geq 3$ and $R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where s and t are positive integers, each $F_{q_{i}}$ is a field, and where each R_{i} is a commutative finite local ring with $\left|Z\left(R_{i}\right)\right|=p^{t_{i}},\left|R_{i}\right|=p^{k_{i}}$ for some positive integers k_{i} and t_{i} with $1 \leq \sum_{i=1}^{s} t_{i} \leq \sum_{i=1}^{s} k_{i}-s \leq k-s-1$ such that

$$
\begin{equation*}
p^{k-\Sigma_{i=1}^{s} t_{i}}=q_{1} \ldots q_{t} p^{\Sigma_{i=1}^{s}\left(k_{i}-t_{i}\right)}-\left(q_{1}-1\right) \ldots\left(q_{t}-1\right) \Pi_{i=1}^{s}\left(p^{k_{i}-t_{i}}-1\right) . \tag{1}
\end{equation*}
$$

Consequently, in the latter case, $q_{i} \equiv 1(p)$ and for each $i=1, \ldots, s, t_{i} \leq k-2$. Moreover, if $t_{j}=k-2$ for some $j \in\{1, \ldots, s\}$, then $s=t=1$, i.e., $R \cong R_{1} \times F_{q}$ where $\left|Z\left(R_{1}\right)\right|=p^{k-2}$ and so $p^{2}=p+q-1$.

Also we need the following construction [3, p.5071].
Construction A. Let R_{0} be the Galois ring $G R\left(p^{2 r}, p^{2}\right)$ or $G R\left(p^{3 r}, p^{3}\right)$. Let s, d, t, λ be integers with either $1 \leq t \leq s^{2}, 1 \leq 1+t \leq s^{2}$ or $1 \leq d+t \leq s^{2}$ if $\operatorname{char}\left(R_{0}\right)=p^{2}$ or $1 \leq 1+d+t \leq 1+s^{2}$ if $\operatorname{char}\left(R_{0}\right)=p^{3}$, and $\lambda \geq 0$. Let V, W be $R_{0} / p R_{0}$-spaces which when considered as R_{0}-modules have generating sets $\left\{v_{1}, \ldots, v_{\lambda}\right\}$ and $\left\{w_{1}, \ldots, w_{t}\right\}$ respectively. Let U be an R_{0}-module with an R_{0}-modules generating set $\left\{u_{1}, \ldots, u_{s}\right\}$; and suppose that $d \geq 0$ of the u_{i} are such that $p u_{i} \neq 0$. Since R_{0} is commutative, we can think of them as left and right R_{0}-module.
Let ($a_{i j}^{l}$), for $l=0,1, \ldots, t, t+1$ or $d+t$, be $s \times s$ matrices with entries in $R_{0} / p R_{0}$ if $\operatorname{char}\left(R_{0}\right)=p^{2}$ or $l=0,1, \ldots, d+t$ be $(1+s) \times(1+s)$ matrices with entries in $R_{0} / p R_{0}$ if $\operatorname{char}\left(R_{0}\right)=p^{3}$.
Consider the additive group direct sum $R=R_{0} \oplus U \oplus V \oplus W$ and define a multiplication on R by
$\left(\alpha_{0}, \sum_{i=1}^{s} \alpha_{i} u_{i}, \sum_{j=1}^{\lambda} \beta_{j} v_{j}, \sum_{k=1}^{t} \gamma_{k} w_{k}\right) .\left(\alpha_{0}^{\prime}, \sum_{i=1}^{s} \alpha_{i}^{\prime} u_{i}, \sum_{j=1}^{\lambda} \beta_{j}^{\prime} v_{j}, \sum_{k=1}^{t} \gamma_{k}^{\prime} w_{k}\right)=$ $\left(\alpha_{0} \alpha_{0}^{\prime}+p^{f} \sum_{i, j=1}^{s} a_{i j}^{0}\left[\alpha_{i} \alpha_{j}^{\prime}+p R_{0}\right], \sum_{i=1}^{s}\left[\alpha_{0} \alpha_{i}^{\prime}+\alpha_{i} \alpha_{0}^{\prime}+p \sum_{i, j=1}^{s} a_{i j}^{i}\left[\alpha_{i} \alpha_{j}^{\prime}+p R_{0}\right]\right] u_{i}, \sum_{j=1}^{\lambda}\left[\left(\alpha_{0}+\right.\right.\right.$ $\left.\left.\left.p R_{0}\right) \beta_{j}^{\prime}+\beta_{j}\left(\alpha_{0}^{\prime}+p R_{0}\right)\right] v_{j}, \sum_{k=1}^{t}\left[\left(\alpha_{0}+p R_{0}\right) \gamma_{k}^{\prime}+\gamma_{k}\left(\alpha_{0}^{\prime}+p R_{0}\right)+\sum_{i, j=1}^{s} a_{i j}^{d+k}\left[\alpha_{i} \alpha_{j}^{\prime}+p R_{0}\right]\right] w_{k}\right)$ where $f=1$ or 2 , depending on whether $\operatorname{char}(R)=p^{2}$ or p^{3}. Then by [3, Theorem 6.1], this multiplication turns R into a ring and any local ring with $Z(R)^{3}=0, Z(R)^{2} \neq 0$ of characteristic p^{2} or p^{3}, is isomorphic to one given by construction A.

Proposition 1. Let R be a commutative ring with $|Z(R)|=p^{4}$ and $|R|=p^{6}$ where p is a prime number. Then R is isomorphic to one of the rings $G R\left(p^{6}, p^{3}\right), F_{p^{2}} \oplus F_{p^{2}} \oplus F_{p^{2}}$ with multiplication $\left(r_{0}, r_{1}, r_{2}\right)\left(s_{0}, s_{1}, s_{2}\right)=\left(r_{0} s_{0}, r_{0} s_{1}+r_{1} s_{0}, r_{0} s_{2}+r_{2} s_{0}\right), S \oplus F$ with multiplication $\left(r_{0}, r_{1}\right)\left(s_{0}, s_{1}\right)=$ $\left(r_{0} s_{0}, r_{0} s_{1}+r_{1} s_{0}\right)$, where $S=G R\left(p^{4}, p^{2}\right)$ and $F=S / p S, F_{p^{2}} \oplus F_{p^{2}} \oplus F_{p^{2}}$ with multiplication $\left(\alpha_{0}, \alpha, \gamma\right)\left(\alpha_{0}^{\prime}, \alpha^{\prime}, \gamma^{\prime}\right)=\left(\alpha_{0} \alpha_{0}^{\prime}, \alpha_{0} \alpha^{\prime}+\alpha \alpha_{0}^{\prime}, \alpha_{0} \gamma^{\prime}+\gamma \alpha_{0}^{\prime}+\alpha \alpha^{\prime}\right)$ or $R_{0} \oplus R_{0} / p R_{0}$ with multiplication $\left(\alpha_{0}, \alpha+p R_{0}\right)\left(\alpha_{0}^{\prime}, \alpha^{\prime}+p R_{0}\right)=\left(\alpha_{0} \alpha_{0}^{\prime}+\alpha \alpha^{\prime} p, \alpha_{0} \alpha^{\prime}+\alpha \alpha_{0}^{\prime}+p R_{0}\right)$ where $R_{0}=G R\left(p^{4}, p^{2}\right)$.

Proof. Since R is a ring with $|Z(R)|=p^{4}$ and $|R|=p^{6}$, by Lemma $1, Z(R)^{3}=0$. Thus we consider the following cases.

Case 1: $Z(R)^{2}=0$ i.e., R is a ring in which the multiplication of any two zero-divisors is zero. Then by [1, Theorem 1], R is isomorphic to one of the rings $S \oplus F^{k}$, where S is either the field of p^{r} elements or the Galois ring $G R\left(p^{2 r}, p^{2}\right)$ and $F=S / p S$ with the multiplication

$$
\left(r_{0}, r_{1}, \ldots, r_{k}\right)\left(s_{0}, s_{1}, \ldots, s_{k}\right)=\left(r_{0} s_{0}, r_{0} s_{1}+r_{1} s_{0}, \ldots, r_{0} s_{k}+r_{k} s_{0}\right)
$$

for some positive integers r and k.
Now since $|Z(R)|=p^{4}$ and $|R|=p^{6}$, we can conclude that $S=F_{p^{2}}$ and $k=2$ or $S=G R\left(p^{4}, p^{2}\right)$ and $k=1$. Thus R is isomorphic to one of the rings $F_{p^{2}} \oplus F_{p^{2}} \oplus F_{p^{2}}$ with $\left(r_{0}, r_{1}, r_{2}\right)\left(s_{0}, s_{1}, s_{2}\right)=\left(r_{0} s_{0}, r_{0} s_{1}+r_{1} s_{0}, r_{0} s_{2}+r_{2} s_{0}\right)$ or $S \oplus F$ with $\left(r_{0}, r_{1}\right)\left(s_{0}, s_{1}\right)=$ $\left(r_{0} s_{0}, r_{0} s_{1}+r_{1} s_{0}\right)$, where $S=G R\left(p^{4}, p^{2}\right)$ and $F=S / p S$.

Case 2: $Z(R)^{2} \neq 0$. If $\operatorname{char}(R)=p$, then by [3, Theorem 4.1], any commutative local ring of characteristic p in which the multiplication of any two zero-divisors is zero, is isomor-
phic to one of the rings $F \oplus U \oplus V \oplus W$ with multiplication

$$
\begin{gathered}
\left(\alpha_{0}, \sum_{i=1}^{s} \alpha_{i} u_{i}, \sum_{j=1}^{\lambda} \beta_{j} v_{j}, \sum_{k=1}^{t} \gamma_{k} w_{k}\right)\left(\alpha_{0}^{\prime}, \sum_{i=1}^{s} \alpha_{i}^{\prime} u_{i}, \sum_{j=1}^{\lambda} \beta_{j}^{\prime} v_{j}, \sum_{k=1}^{t} \gamma_{k}^{\prime} w_{k}\right) \\
=\left(\alpha_{0} \alpha_{0}^{\prime}, \sum_{i=1}^{s}\left[\alpha_{0} \alpha_{i}^{\prime}+\alpha_{i} \alpha_{0}^{\prime}\right] u_{i}, \sum_{j=1}^{\lambda}\left[\alpha_{0} \beta_{j}^{\prime}+\beta_{j} \alpha_{0}^{\prime}\right] v_{j}, \sum_{k=1}^{t}\left[\alpha_{0} \gamma_{k}^{\prime}+\gamma_{k} \alpha_{0}^{\prime}+\sum_{i, j=1}^{s} a_{i, j}^{k} \alpha_{i} \alpha_{j}^{\prime}\right] w_{k}\right)
\end{gathered}
$$

where F is the field of order r and U, V, W are s, λ, t-dimensional F-spaces respectively, for some integers s, λ, t with $\lambda \geq 0$ and $1 \leq t \leq s^{2}$, where $\left\{u_{i}\right\},\left\{v_{i}\right\}$ and $\left\{w_{i}\right\}$ are bases for U, V and W respectively, and $\left(a_{i, j}^{k}\right) 1 \leq k \leq t$ are t matrices of size $s \times s$ with entries in F. Since $|R|=p^{6}$, we can conclude that $t=s=1$ and $\lambda=0$. On the other hand by [3, Corollary 5.2], we can put $a_{11}^{1}=1$. Thus $R \cong F_{p^{2}} \oplus F_{p^{2}} \oplus F_{p^{2}}$ with multiplication $\left(\alpha_{0}, \alpha, \gamma\right)\left(\alpha_{0}^{\prime}, \alpha^{\prime}, \gamma^{\prime}\right)=\left(\alpha_{0} \alpha_{0}^{\prime}, \alpha_{0} \alpha^{\prime}+\alpha \alpha_{0}^{\prime}, \alpha_{0} \gamma^{\prime}+\gamma \alpha_{0}^{\prime}+\alpha \alpha^{\prime}\right)$.
Now suppose that $\operatorname{char}(R)=p^{2}$ or p^{3}. Since $|R|=p^{6}$ and $|R / J(R)|=p^{2}$, by construction A we conclude that $s=1$ and $t=\lambda=0$ if $\operatorname{char}(R)=p^{2}$ and $s=t=\lambda=0$ if $\operatorname{char}(R)=p^{3}$. Also by [3, Lemma 7.1], we can put $a_{11}^{0}=1$ and so the following rings is obtained.
If $\operatorname{char}(R)=p^{2}$, then $R \cong R_{0} \oplus R_{0} / p R_{0}$ with multiplication $\left(\alpha_{0}, \alpha+p R_{0}\right) \cdot\left(\alpha_{0}^{\prime}, \alpha^{\prime}+p R_{0}\right)=$ $\left(\alpha_{0} \alpha_{0}^{\prime}+\alpha \alpha^{\prime} p, \alpha_{0} \alpha^{\prime}+\alpha \alpha_{0}^{\prime}+p R_{0}\right)$, where $R_{0}=G R\left(p^{4}, p^{2}\right)$ and if $\operatorname{char}(R)=p^{3}$, then $R \cong G R\left(p^{6}, p^{3}\right)$.

Proposition 2. Let R be a commutative ring with $|Z(R)|=p^{4}$ and $|R|=p^{5}$ where p is a prime number. Then R is isomorphic to one of the rings $\mathbb{Z}_{p^{5}}, F_{p}[x] /\left(x^{5}\right), F_{p}[x, y] /\left(x^{4}, x y, y^{2}\right)$, $F_{p}[x, y] /\left(x^{4}, x y, y^{2}-x^{3}\right), \mathbb{Z}_{p}[x, y, z, t] /(x, y, z, t)^{2}, \mathbb{Z}_{p^{2}}[x] /\left(p x, x^{4}-a p\right)$ where $a \in \Sigma_{4}^{0}$, $\mathbb{Z}_{p^{2}}[x] /\left(p x^{2}, x^{3}-b p\right)$ where $b \in \Sigma_{3}$ and $p \neq 3, \mathbb{Z}_{9}[x] /\left(3 x^{2}, x^{3}-3-3 b x\right)$ where $b \in$ $\{-1,0,1\}, \mathbb{Z}_{p^{2}}[x] /\left(p x^{2}, x^{3}-a p x\right)$ where $a \in \Sigma_{2}^{0}, \mathbb{Z}_{p^{2}}[x, y, z] /(p, x, y, z)^{2}, \mathbb{Z}_{p^{3}}[x] /\left(p^{2} x, x^{2}-\right.$ ap) where $a \in \Sigma_{2}$ and $p \neq 2, \mathbb{Z}_{8}[x] /\left(4 x, x^{2}-2 a-2 b x\right)$ where $(a, b) \in\{(1,0),(1,1),(-1,1)\}$, $\mathbb{Z}_{p^{3}}[x] /\left(p x, x^{3}-a p^{2}\right)$ where $a \in \Sigma_{3}^{0}, \mathbb{Z}_{p^{3}}[x] /\left(p^{2} x, x^{2}-a p^{2}\right)$ where $a \in \Sigma_{2}^{0}$ and $p \neq 2$, $\mathbb{Z}_{8}[x] /\left(4 x, x^{2}-4 a-2 b x\right)$ where $(a, b) \in\{(0,0),(0,1),(1,1)\}, \mathbb{Z}_{p^{4}}[x] /\left(p x, x^{2}-a p^{3}\right)$ where $a \in \Sigma_{2}^{0}$,
$\left\langle 1, x_{1}, x_{2}, y_{1}, y_{2} ; p 1=0, x_{1}^{2}=y_{1}, x_{2}^{2}=0, x_{1} x_{2}=y_{2}, x_{i} y_{i}=y_{i} y_{j}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, y_{1}, y_{2} ; p 1=0, x_{1}^{2}=x_{2}{ }^{2}=y_{1}, x_{1} x_{2}=y_{2}, x_{i} y_{i}=y_{i} y_{j}=0\right\rangle$ where $p \neq 2$,
$\left\langle 1, x_{1}, x_{2}, y_{1}, y_{2} ; p 1=0, x_{1}^{2}=y_{1}, x_{2}^{2}=\xi y_{1}, x_{1} x_{2}=y_{2}, x_{i} y_{i}=y_{i} y_{j}=0\right\rangle$ where $p \neq 2$ and ξ is a non-square in F_{p},
$\left\langle 1, x_{1}, x_{2}, y_{1}, y_{2} ; 2.1=0, x_{1}^{2}=y_{1}, x_{2}^{2}=y_{2}, x_{1} x_{2}=y_{2}, x_{i} y_{i}=y_{i} y_{j}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, y_{1}, y_{2} ; 2.1=0, x_{1}^{2}=y_{1}, x_{2}^{2}=y_{1}+y_{2}, x_{1} x_{2}=y_{2}, x_{i} y_{i}=y_{i} y_{j}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, y ; p 1=0, x_{1}{ }^{2}=y, x_{2}{ }^{2}=x_{3}{ }^{2}=x_{i} x_{j}=x_{i} y=y^{2}=0\right.$, for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, y ; p 1=0, x_{1}{ }^{2}=x_{2}{ }^{2}=y, x_{3}{ }^{2}=x_{i} x_{j}=x_{i} y=y^{2}=0\right.$, for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, y ; p 1=0, x_{i}^{2}=y, x_{i} x_{j}=x_{i} y=y^{2}=0\right.$, for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, y ; p 1=0, x_{1}{ }^{2}=y, x_{2}^{2}=\epsilon y, x_{3}{ }^{2}=x_{i} x_{j}=x_{i} y=y^{2}=0\right.$, for $\left.i \neq j\right\rangle$ where $p \neq 2$ and ϵ is a non-square in F_{p},
$\left\langle 1, x_{1}, x_{2}, x_{3}, y ; 2.1=0, x_{i}^{2}=x_{1} x_{2}=x_{1} x_{3}=x_{i} y=y^{2}=0, x_{2} x_{3}=y\right\rangle$,
$\left\langle 1, x, y, z, p ; p^{2} 1=0, x^{2}=\alpha z, x z=p, y^{2}=\delta p, z^{2}=x y=y z=0\right\rangle$ where $\alpha \in \Sigma_{3}$ and $\delta \in \Sigma_{2}^{0}$,
$\left\langle 1, x, y ; p^{2} 1=p^{2} x=p y=0, x^{2}=\alpha p, y^{2}=\delta p x, x y=0\right\rangle$ where $p \neq 2, \alpha \in \Sigma_{2}$ and $\delta=0$ or $\alpha \in \Sigma_{4}$ and $\delta=1$,
$\left\langle 1, x, y ; 4.1=4 x=2 y=0, x^{2}=2, y^{2}=x y=0\right\rangle$,
$\left\langle 1, x, y ; 4.1=4 x=2 y=0, x^{2}=2+2 x, y^{2}=x y=0\right\rangle$,
$\left\langle 1, x, y ; 4.1=4 x=2 y=0, x^{2}=2, y^{2}=2 x, x y=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, p ; p^{2} 1=p x_{i}=0, x_{1}{ }^{2}=v p, x_{2}{ }^{2}=x_{3}{ }^{2}=0, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$ where $p \neq 2, \epsilon$ is a non-square in F_{p} and $v \in\{1, \epsilon\}$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, p ; p^{2} 1=p x_{i}=0, x_{1}{ }^{2}=1, x_{2}{ }^{2}=v p, x_{3}{ }^{2}=0, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$ where $p \neq 2$, ϵ is a non-square in F_{p} and $v \in\{1, \epsilon\}$,
$\left\langle 1, x_{1}, x_{2}, x_{3}, p ; p^{2} 1=p x_{i}=0, x_{1}{ }^{2}=x_{2}{ }^{2}=1, x_{3}{ }^{2}=v p, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$ where $p \neq 2, \epsilon$ is a non-square in F_{p} and $v \in\{1, \epsilon\}$,
$\left\langle 1, x_{1}, x_{2}, x_{3} ; 4.1=2 x_{i}=0, x_{1}{ }^{2}=2, x_{2}^{2}=x_{3}{ }^{2}=0, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3} ; 4.1=2 x_{i}=0, x_{1}^{2}=1, x_{2}^{2}=2, x_{3}{ }^{2}=0, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, x_{3} ; 4.1=2 x_{i}=0, x_{1}{ }^{2}=x_{2}{ }^{2}=1, x_{3}{ }^{2}=2, x_{i} x_{j}=0\right.$ for $\left.i \neq j\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, y ; p^{2} 1=p x_{i}=p y=0, x_{1}^{2}=1, x_{2}^{2}=0, x_{1} x_{2}=x_{1} y=x_{2} y=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, y ; p^{2} 1=p x_{i}=p y=0, x_{1}^{2}=1, x_{2}^{2}=y, x_{1} x_{2}=x_{1} y=x_{2} y=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2}, y ; p^{2} 1=p x_{i}=p y=0, x_{1}{ }^{2}=1, x_{2}{ }^{2}=\xi y, x_{1} x_{2}=x_{1} y=x_{2} y=0\right\rangle$ where $p \neq 2$, ξ is a non-square in F_{p},
$\left\langle 1, x_{1}, x_{2}, y ; 4.1=2 x_{i}=2 y=0, x_{1}^{2}=x_{2}^{2}=x_{1} y=x_{2} y=0, x_{1} x_{2}=y\right\rangle$,
$\left\langle 1, x, y, p ; p^{2} 1=p^{2} x=p y=0, x^{2}=0, y^{2}=\delta p x, x y=0\right\rangle$ where $\delta \in\{0,1\}$ and $p \neq 2$,
$\left\langle 1, x, y ; 4.1=4 x=2 y=0, x^{2}=\alpha 2 x, y^{2}=\delta 2 x, x y=0\right\rangle$ where $(\alpha, \delta) \in\{(0,0),(1,0),(1,1)\}$, $\left\langle 1, x_{1}, x_{2} ; p^{3} 1=p x_{i}=0, x_{1}^{2}=x_{2}^{2}=0, x_{1} x_{2}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2} ; p^{3} 1=p x_{i}=0, x_{1}^{2}=p^{2}, x_{2}^{2}=x_{1} x_{2}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2} ; p^{3} 1=p x_{i}=0, x_{1}{ }^{2}=\epsilon p^{2}, x_{2}{ }^{2}=x_{1} x_{2}=0\right\rangle$ where $p \neq 2$,
$\left\langle 1, x_{1}, x_{2} ; p^{3} 1=p x_{i}=0, x_{1}^{2}=x_{2}^{2}=p^{2}, x_{1} x_{2}=0\right\rangle$,
$\left\langle 1, x_{1}, x_{2} ; p^{3} 1=p x_{i}=0, x_{1}^{2}=p^{2}, x_{2}^{2}=\epsilon p^{2}, x_{1} x_{2}=0\right\rangle$ where $p \neq 2$ and ϵ is a non-square in F_{p},
$\left\langle 1, x_{1}, x_{2} ; 8.1=2 x_{i}=0, x_{1}^{2}=x_{2}^{2}=0, x_{1} x_{2}=4\right\rangle$ or
one of the rings given in full in [9]. The number of these rings is 10 or 6 according to whether $p \neq 2$ or $p=2$.

Proof. By using [5] and [9] one can check that R is isomorphic to one of the above rings.
Theorem 1. Let R be a ring with $|Z(R)|=p^{4}$, where p is a prime number. Then R is isomorphic to one of the rings described in Proposition 1, Proposition 2, the Galois ring $\operatorname{GR}\left(p^{8}, p^{2}\right)$, $F_{p^{4}}[x] /\left(x^{2}\right), \mathbb{Z}_{p^{2}} \times F_{q_{1}} \times \ldots \times F_{q_{t}}, \mathbb{Z}_{p}[x] /\left(x^{2}\right) \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $p^{3}=p^{2} q_{1} \ldots q_{t}-\left(p^{2}-\right.$ $p)\left(q_{1}-1\right) \ldots\left(q_{t}-1\right), F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $p^{4}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$ or $R_{1} \times F_{q}$ with $p^{2}=p+q-1$ where R_{1} is isomorphic to one of the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}$, $F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$.

Proof. Suppose that R is a local ring. Then by Lemma $1,|R|=p^{5}, p^{6}$ or p^{8}. If $|R|=p^{5}$ or p^{6}, then R is isomorphic to one of the rings described in Proposition 1 or Proposition 2. If $|R|=p^{8}$, then by [8, Theorem 12], R is isomorphic to the Galois ring $G R\left(p^{8}, p^{2}\right)$ or $F_{p^{4}}[x] /\left(x^{2}\right)$. Now suppose R is a nonlocal ring. If R is reduced, then we are down. Otherwise by Lemma 2, $1 \leq \sum_{i=1}^{s} t_{i} \leq 2$ and hence $1 \leq s \leq 2$. Thus we proceed by cases.

Case 1: $s=1$. Then $t_{1}=1$ or 2 . If $t_{1}=1$, then $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is a local ring of order p^{2} with p zero-divisors. By [4, p.687], R_{1} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$. If $t_{1}=2$, then by Lemma $2, R \cong R_{1} \times F_{q}$, where R_{1} is a local ring of order p^{3} with p^{2} zero-divisors and $p^{2}=p+q-1$. Moreover by [4, p.687], R_{1} is isomorphic to $\mathbb{Z}_{p^{3}}$, $F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$.

Case 2: $s=2$, i.e., $t_{1}=t_{2}=1$. Then $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each R_{i} is a local ring with $\left|Z\left(R_{i}\right)\right|=p$. Now by Lemma $1,\left|R_{1}\right|=\left|R_{2}\right|=p^{2}$. If $t>1$, then clearly $|Z(R)|>p^{4}$, a contradiction. Therefore $t=1$ and hence by relation (1) in Lemma 2, p^{2} is a divisor of $q_{1}-1$. Thus $q_{1}>p^{2}$ and so $|Z(R)|>\left|Z\left(R_{1}\right)\right|\left|R_{2}\right|\left|F_{q_{1}}\right| \geq p^{5}$, a contradiction.

Corollary 1. Let R be a ring with $|Z(R)|=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$, where $n \geq 1,1 \leq k_{i} \leq 4$ and p_{i} 's are distinct prime numbers. Then there exist $0 \leq s \leq \Sigma_{i=1}^{n} k_{i}$ and $t \geq 0$ such that

$$
R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}}
$$

where $F_{q_{i}}$'s are finite fields and each R_{i} is local ring with $\left|Z\left(R_{i}\right)\right|=p_{j}^{t_{j}}$ for some $p_{j}(1 \leq j \leq n)$ and $1 \leq t_{j} \leq k_{j}$. Consequently, each R_{i} is isomorphic to one of the local rings described in [2, Theorem 5] or Theorem 1.

Proof. We put

$$
R \cong R_{1} \times \ldots \times R_{s} \times F_{q_{1}} \times \ldots \times F_{q_{t}},
$$

where $F_{q_{1}}, \ldots, F_{q_{t}}$ are finite fields and each R_{i} is a commutative finite local ring with identity that is not a field. By Lemma 2, for each $i,\left|Z\left(R_{i}\right)\right|=p^{k}$ for some prime number p and $k \geq 1$ such that p^{k} is a divisor of $|Z(R)|$ and also $0 \leq s \leq \Sigma_{i=1}^{n} k_{i}$. Thus $\left|Z\left(R_{i}\right)\right|=p_{j}^{t_{j}}$ where $1 \leq t_{j} \leq k_{j}, 1 \leq j \leq n$ and $1 \leq i \leq s$. Hence for each $1 \leq i \leq s, t_{i}=1,2,3$ or 4 and so each R_{i} is isomorphic to one of the local rings described in [2, Theorem 5] or Theorem 1.

Theorem 2. Let R be a commutative nonlocal ring with $|Z(R)|=p^{6}$ where p is a prime number. Then R is isomorphic to one of the rings $F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{6}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-\right.$ 1) $\ldots\left(q_{t}-1\right), \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times F_{5}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{4} \times F_{5}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times F_{5}, R_{1} \times$ $F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and $p^{5}=p q_{1} q_{2} \ldots q_{t}-(p-$ 1) $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where R_{1} is isomorphic to one the rings $\mathbb{Z}_{p^{3}}$, $F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ and $p^{4}=p q_{1} q_{2} \ldots q_{t}-$ $(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is isomorphic to $F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$ and $p^{4}=p^{2} q_{1} q_{2} \ldots q_{t}-\left(p^{2}-1\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$,
where R_{1} is isomorphic to one of the local rings of order p^{4} described in [2, corollary 3] and $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$ or $R_{1} \times F_{q}$ where R_{1} is isomorphic to one of the rings described in Proposition 2, and $p^{2}=p+q-1$.

Proof. If R is reduced, then we are down. Now suppose that R is not reduced. Then by [2, Theorem 4], either R is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times F_{5}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{4} \times F_{5}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times$ $\mathbb{Z}_{2}[x] /\left(x^{2}\right) \times F_{5}$ or $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{k}$ $(1 \leq k \leq 4)$ and $t \geq 1$. Thus we proceed by cases.

Case 1: $\left|Z\left(R_{1}\right)\right|=p$. Then by [4, p.687], R_{1} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and $p^{5}=$ $p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.
Case 2: $\left|Z\left(R_{1}\right)\right|=p^{2}$. Then by Lemma $1,\left|R_{1}\right|=p^{3}$ or p^{4}. If $\left|R_{1}\right|=p^{3}$, then by [4, p.687], R_{1} is isomorphic to one the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ and $p^{4}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$. If $\left|R_{1}\right|=p^{4}$, then by [8, Theorem 12], R_{1} is isomorphic to $F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$ and $p^{4}=$ $p^{2} q_{1} q_{2} \ldots q_{t}-\left(p^{2}-1\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.
Case 3: $\left|Z\left(R_{1}\right)\right|=p^{3}$. Then by Lemma $1,\left|R_{1}\right|=p^{4}$ or p^{6}. If $\left|R_{1}\right|=p^{6}$, then $|Z(R)|>\left|R_{1}\right|$ which is impossible. Thus $\left|R_{1}\right|=p^{4}$ and so R_{1} is isomorphic to one of the local rings of order p^{4} described in [2, corollary 3] and $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$.

Case 4: $\left|Z\left(R_{1}\right)\right|=p^{4}$. Then by Lemma $1,\left|R_{1}\right|=p^{5}, p^{6}$ or p^{8}. If $\left|R_{1}\right|=p^{6}$ or p^{8}, then $|Z(R)|>\left|R_{1}\right|$ which is impossible. Thus $\left|R_{1}\right|=p^{5}$ and so R_{1} is isomorphic to one of the rings described in Proposition 2. Also by Lemma $2, R \cong R_{1} \times F_{q}$ and $p^{2}=p+q-1$.

Theorem 3. Let R be a commutative nonlocal ring with $|Z(R)|=p^{7}$ where p is a prime number. Then R is isomorphic to one of the rings $F_{q_{1}} \times \ldots \times F_{q_{t}}$ with $p^{7}=q_{1} q_{2} \ldots q_{t}-\left(q_{1}-1\right)\left(q_{2}-\right.$ 1) $\ldots\left(q_{t}-1\right), \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times F_{3} \times F_{3}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{4} \times F_{3} \times F_{3}, \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times \mathbb{Z}_{2}[x] /\left(x^{2}\right) \times F_{3} \times F_{3}$, $R_{1} \times R_{2} \times F_{5}$ where R_{1} is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and R_{2} is isomorphic to one of the rings $\mathbb{Z}_{8}, \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2 \varepsilon\right)$ where $\varepsilon \in \Sigma_{2}^{0}, R_{1} \times R_{2} \times F_{q_{1}} \times$ $\ldots \times F_{q_{t}}$, where p is an odd prime number, each R_{i} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and $p^{5}=$ $p^{2} q_{1} q_{2} \ldots q_{t}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where R_{1} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ with $p^{6}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where R_{1} is isomorphic to one the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ with $p^{5}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where $R_{1} \cong F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$ with $p^{5}=p^{2} q_{1} q_{2} \ldots q_{t}-\left(p^{2}-1\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$, $R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where R_{1} is isomorphic to one of the local rings of order p^{4} described in [2, Corollary 3] and $p^{4}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q}$ where $R_{1} \cong$ $F_{p^{3}}[x] /\left(x^{2}\right)$ or $G R\left(p^{6}, p^{2}\right)$ with $p^{4}=p^{3}+p-1, R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$ where R_{1} is isomorphic to one of the rings described in Proposition 2, with $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$, $R_{1} \times F_{q}$ where R_{1} is isomorphic to one of the rings described in Proposition 1, with $p^{3}=p^{2}+q-1$ or $R_{1} \times F_{q}$, where R_{1} is a local ring of order p^{6} with p^{5} zero-divisors and $p^{2}=p+q-1$.

Proof. If R is reduced or $R \cong R_{1} \times R_{2} \times F_{5}$ where R_{1} is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and R_{2} is isomorphic to one of the rings $\mathbb{Z}_{8}, \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2 \varepsilon\right)$ where $\varepsilon \in \Sigma_{2}^{0}$, then we are done. Otherwise by [2, Theorem 4], we have the following two cases.

Case 1: $R \cong R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field and R_{1} is a local ring with $\left|Z\left(R_{1}\right)\right|=p^{m},\left|R_{1}\right|=p^{n}$ such that $0<m<n \leq 6$ and

$$
p^{7}=p^{n} q_{1} q_{2} \ldots q_{t}-\left(p^{n}-p^{m}\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right) .
$$

Case 2: $R \cong R_{1} \times R_{2} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where each $F_{q_{i}}(1 \leq i \leq t)$ is a finite field, each R_{i} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ and

$$
\begin{equation*}
p^{5}=p^{2} q_{1} q_{2} \ldots q_{t}-(p-1)^{2}\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right) \tag{2}
\end{equation*}
$$

In case 1 , as in the proof of Theorem $2, R$ is isomorphic to one of the rings $R_{1} \times F_{q_{1}} \times$ $\ldots \times F_{q_{t}}$ where R_{1} is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p}[x] /\left(x^{2}\right)$ with $p^{6}=p q_{1} q_{2} \ldots q_{t}-(p-$ 1) $\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is isomorphic to one the rings $\mathbb{Z}_{p^{3}}, F_{p}[x, y] /(x, y)^{2}, F_{p}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{p^{2}}[x] /\left(p x, x^{2}-\varepsilon p\right)$ where $\varepsilon \in \Sigma_{2}^{0}$ with $p^{5}=$ $p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is isomorphic to $F_{p^{2}}[x] /\left(x^{2}\right)$ or $G R\left(p^{4}, p^{2}\right)$ with $p^{5}=p^{2} q_{1} q_{2} \ldots q_{t}-\left(p^{2}-1\right)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right)$, $R_{1} \times F_{q_{1}} \times \ldots \times F_{q_{t}}$, where R_{1} is isomorphic to one of the local rings of order p^{4} described in [2, Corollary 3] with $p^{4}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q}$ where R_{1} is isomorphic to $F_{p^{3}}[x] /\left(x^{2}\right)$ or $G R\left(p^{6}, p^{2}\right)$ with $p^{4}=p^{3}+p-1, R_{1} \times F_{q_{1}} \times$ $\ldots \times F_{q_{t}}$ where R_{1} is isomorphic to one of the rings described in Proposition 2, with $p^{3}=p q_{1} q_{2} \ldots q_{t}-(p-1)\left(q_{1}-1\right)\left(q_{2}-1\right) \ldots\left(q_{t}-1\right), R_{1} \times F_{q}$ where R_{1} is isomorphic to one of the rings described in Proposition 1, with $p^{3}=p^{2}+q-1$ or $R_{1} \times F_{q}$, where R_{1} is a local ring of order p^{6} with p^{5} zero-divisors.
In case 2 , If $p=2$, then Since $|Z(R)|>\left|R_{1}\right|\left|R_{2}\right| q_{1} \ldots q_{t-1}, t \leq 3$. We claim that $t=2$. If $t=1$, then the relation (2) implies that $q_{1}=31 / 3$, a contradiction. If $t=3$, then the relation (2) implies that 4 is a divisor of $\left(q_{1}-1\right)\left(q_{2}-1\right)\left(q_{3}-1\right)$. Without loss of generality we can assume that either 4 is a divisor of $\left(q_{1}-1\right)$ or 2 is a divisor of both $\left(q_{1}-1\right)$ and $\left(q_{2}-1\right)$. Therefore either $q_{1} \geq 5$ or $q_{1} \geq 3$ and $q_{2} \geq 3$. This implies that either $2^{7}=|Z(R)|>5\left|R_{1}\right|\left|R_{2}\right| q_{2}=80 q_{2}$ or $2^{7}=|Z(R)|>9\left|R_{1}\right|\left|R_{2}\right|=144$. But it is impossible in any case. Thus $t=2$ and by the relation (2) we have

$$
\begin{equation*}
2^{5}=2^{2} q_{1} q_{2}-\left(q_{1}-1\right)\left(q_{2}-1\right) \tag{3}
\end{equation*}
$$

If 4 is a divisor of $\left(q_{i}-1\right)$ for some i, then $q_{i} \geq 5$ and hence $2^{5}=3 q_{1} q_{2}+q_{1}+q_{2}-1 \geq$ $30+7-1=36$, a contradiction. Thus 2 is a divisor of both $\left(q_{1}-1\right)$ and $\left(q_{2}-1\right)$. Then $q_{1}-1=2 k_{1}, q_{2}-1=2 k_{2}$ for some positive integers k_{1}, k_{2} and put them into (3). Then we obtain $8=3 k_{1} k_{2}+2 k_{1}+2 k_{2}+1$. It yields $k_{1}=k_{2}=1$ and hence $q_{1}=q_{2}=3$. Thus $R \cong R_{1} \times R_{2} \times F_{3} \times F_{3}$ where R_{1} and R_{2} are isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$.

ACKNOWLEDGEMENTS This work was partially supported by IUT (CEAMA). The research of the first author was in part supported by a grant from IPM (No. 87160026).

References

[1] Y. Al-Khamees, Finite rings in which the multiplication of any two zero-divisors is zero, Arch. Math, 37 (1981), 144-149. 1981.
[2] M. Behboodi, R. Beyranvand, On the structure of commutative rings with $p_{1}{ }^{k_{1}} \ldots p_{n}{ }^{k_{n}}\left(1 \leq k_{i} \leq 7\right)$ zero-divisors, Euro. J. Pure and Appl. Math. 3(2), 303-316. 2010.
[3] C.J. Chikunji, On a class of finite rings, Comm. Algebra 27(10), 5049-5081. 1999
[4] B. Corbas and G.D. Williams, Rings of order p^{5} Part I. Nonlocal rings, J. Algebra, 231 677-690. 2000
[5] B. Corbas and G.D. Williams, Rings of order p^{5} Part II. Local rings, J. Algebra, 231 691-704. 2000.
[6] R. Gilmer, Zero-divisors in commutative rings. The American Mathematical Monthly, 93(5), 382-387. 1986.
[7] B.R. McDonald, Finite rings with identity (Marcell Dekker, New York). 1974.
[8] R. Raghavendran, Finite associative rings, Compositio Math. 21, 195-229. 1969.
[9] G.D. Williams, On a class of finite rings of characteristic p^{2}, Result. Math, 38, 377-390. 2000.

[^0]: *Corresponding author.
 Email addresses: mbehbood@cc.iut.ac.ir (M. Behboodi), beyranvand.r@lu.ac.ir (R. Beyranvand)

