Special Issue on Complex Analysis: Theory and Applications dedicated to Professor Hari M. Srivastava, on the occasion of his $70^{\text {th }}$ birthday
 Boundary-value Problems with Non-Local Initial Condition for Parabolic Equations with Parameter

John Michael Rassias ${ }^{1}$, Erkinjon Tulkinovich Karimov ${ }^{2, *}$
${ }^{1}$ Pedagogical department, Mathematics and Informatics section, National and Capodistrian University of Athens, Athens, Greece
${ }^{2}$ Institute of Mathematics and Information Technologies, Uzbek Academy of Sciences, Tashkent, Uzbekistan

Abstract

In 2002, J.M.Rassias [14] imposed and investigated the bi-parabolic elliptic bi-hyperbolic mixed type partial differential equation of second order. In the present paper some boundary-value problems with non-local initial condition for model and degenerate parabolic equations with parameter were considered. Also uniqueness theorems are proved and non-trivial solutions of certain non-local problems for forward-backward parabolic equation with parameter are investigated at specific values of this parameter by employing the classical "a-b-c" method. Classical references in this field of mixed type partial differential equations are given by: J.M.Rassias [16] and M.M.Smirnov [25]. Other investigations are achieved by G.C.Wen et al. (in period 1990-2007).

2000 Mathematics Subject Classifications: 35K20, 35K65
Key Words and Phrases: Degenerate parabolic equation, forward-backward parabolic equation with a parameter, boundary-value problems with non-local initial conditions, classical "a-b-c" method.

1. Introduction

Degenerate partial differential equations have numerous applications in Aerodynamics and Hydrodynamics. For example, problems for mixed subsonic and supersonic flows were considered by F.I.Frankl [2]. Reviews of interesting results on degenerated elliptic and hyperbolic equations up to 1965, one can find in the book by M.M.Smirnov [24]. Among other

[^0]research results on this kind of equations were investigated by J.M.Rassias [14, 15, 16, 17, 18, $19,20,21$], G.C.Wen [26, 27, 28, 7, 29], A.Hasanov [6] and references therein. Also works by M.Gevrey [4], A.Friedman [3], Yu.Gorkov [5] are well-known on construction fundamental solutions for degenerated parabolic equations. Boundary-value problems with initial non-local condition for model parabolic equations were studied by N.N.Shopolov, for example see [23]. Various non-local problems for mixed type equations containing parabolic type equation were studied by many authors, for instance, see works by Kerefov [12], Sabytov [22], Berdyshev [1], Karimov [10, 11]. However, in 2002, J.M.Rassias [14] imposed and investigated the bi-parabolic elliptic bi-hyperbolic mixed type partial differential equation of second order.

In the present paper some boundary-value problems with non-local initial condition for model and degenerate parabolic equations with parameter were considered. Also uniqueness theorems are proved and non-trivial solutions of certain non-local problems for forwardbackward parabolic equation with parameter are investigated at specific values of this parameter by employing the classical "a-b-c" method. Classical references in this field of mixed type partial differential equations are given by: J.M.Rassias [16] and M.M.Smirnov [25]. Other investigations are achieved by G.C.Wen et al. (in period 1990-2007).

2. Non-local Problems for Degenerate Parabolic Equations with Parameter.

Let us consider a parabolic equation

$$
\begin{equation*}
y^{m} u_{x x}-x^{n} u_{y}-\lambda x^{n} y^{m} u=0, \tag{1}
\end{equation*}
$$

with two lines of degeneration in the domain $\Phi=\{(x, y): 0<x<1,0<y<1\}$, where $m, n>0, \lambda \in C$.
The problem 1. To find a regular solution of the equation (1) satisfying boundary conditions

$$
\begin{equation*}
u(0, y)=0, \quad u(1, y)=0, \quad 0 \leq y \leq 1, \tag{2}
\end{equation*}
$$

and non-local initial condition

$$
\begin{equation*}
u(x, 0)=\alpha u(x, 1), 0 \leq x \leq 1, \tag{3}
\end{equation*}
$$

where α is non-zero real number.
The following statements are true:
Theorem 1. Let $\alpha \in[-1,0) \cup(0,1], \operatorname{Re} \lambda \geq 0$. If there exists a solution of the problem 1 , then it is unique.

Corollary 1. The problem 1 can have non-trivial solutions only when parameter λ lies outside of the sector $\Delta=\{\lambda: \operatorname{Re} \lambda \geq 0\}$. These non-trivial solutions represented by

$$
\begin{equation*}
u_{p k}(x, y)=C_{p k}\left(\frac{2}{n+2}\right)^{\frac{1}{n+2}} \mu_{k}^{\frac{1}{2(n+2)}} x^{\frac{1}{2}} I_{\frac{1}{n+2}}\left(\frac{2 \sqrt{\mu_{k}}}{n+2} x^{\frac{n+2}{2}}\right) e^{(-\ln |\alpha|-i p \pi) y^{m+1}}, \tag{4}
\end{equation*}
$$

where $C_{p k}$ are constants, p, k are natural numbers. Eigenvalues defined as

$$
\lambda_{p k}=\mu_{k}+(m+1) \ln |\alpha|+i(m+1) p \pi .
$$

Here μ_{k} are roots of the equation

$$
I_{\frac{1}{n+2}}\left(\frac{2 \sqrt{\mu}}{n+2}\right)=0
$$

where $I_{s}()$ is the first kind modified Bessel function of s-th order.
We will omit the proof, because further we consider similar problem in three-dimensional domain in a full detail.

Let Ω be a simple-connected bounded domain in R^{3} with boundaries $S_{i}(i=\overline{1,6})$. Here

$$
\begin{aligned}
& S_{1}=\{(x, y, t): t=0,0<x<1,0<y<1\}, \\
& S_{2}=\{(x, y, t): x=1,0<y<1,0<t<1\}, \\
& S_{3}=\{(x, y, t): y=0,0<x<1,0<t<1\}, \\
& S_{4}=\{(x, y, t): x=0,0<y<1,0<t<1\}, \\
& S_{5}=\{(x, y, t): y=1,0<x<1,0<t<1\}, \\
& S_{6}=\{(x, y, t): t=1,0<x<1,0<y<1\} .
\end{aligned}
$$

We consider the following degenerate parabolic equation

$$
\begin{equation*}
x^{n} y^{m} u_{t}=y^{m} u_{x x}+x^{n} u_{y y}-\lambda x^{n} y^{m} u \tag{5}
\end{equation*}
$$

in the domain Ω. Here $m>0, n>0, \lambda=\lambda_{1}+i \lambda_{2}, \lambda_{1}, \lambda_{2} \in R$.
The problem 2. To find a function $u(x, y, t)$ satisfying the following conditions:

1. $u(x, y, t) \in C(\bar{\Omega}) \cap C_{x, y, t}^{2,2,1}(\Omega)$;
2. $u(x, y, t)$ satisfies the equation 5 in Ω;
3. $u(x, y, t)$ satisfies boundary conditions

$$
\begin{equation*}
\left.u(x, y, t)\right|_{S_{2} \cup S_{3} \cup S_{4} \cup S_{5}}=0 \tag{6}
\end{equation*}
$$

4. and non-local initial condition

$$
\begin{equation*}
u(x, y, 0)=\alpha u(x, y, 1) \tag{7}
\end{equation*}
$$

Here $\alpha=\alpha_{1}+i \alpha_{2}, \alpha_{1}, \alpha_{2}$ are real numbers, moreover $\alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$.
Theorem 2. If $\alpha_{1}^{2}+\alpha_{2}^{2}<1, \lambda_{1} \geq 0$ and exists a solution of the problem 2 , then it is unique.

Proof. Let us suppose that the problem 2 has two u_{1}, u_{2} solutions. Denoting $u=u_{1}-u_{2}$ we claim that $u \equiv 0$ in Ω.

First we multiply equation (5) to the function $\bar{u}(x, y, t)$, which is complex conjugate function of $u(x, y, t)$. Then integrate it along the domain Ω_{ε} with boundaries

$$
\begin{aligned}
& S_{1 \varepsilon}=\{(x, y, t): t=\varepsilon, \varepsilon<x<1-\varepsilon, \varepsilon<y<1-\varepsilon\}, \\
& S_{2 \varepsilon}=\{(x, y, t): x=1-\varepsilon, \varepsilon<y<1-\varepsilon, \varepsilon<t<1-\varepsilon\}, \\
& S_{3 \varepsilon}=\{(x, y, t): y=\varepsilon, \varepsilon<x<1-\varepsilon, \varepsilon<t<1-\varepsilon\}, \\
& S_{4 \varepsilon}=\{(x, y, t): x=\varepsilon, \varepsilon<y<1-\varepsilon, \varepsilon<t<1-\varepsilon\}, \\
& S_{5 \varepsilon}=\{(x, y, t): y=1-\varepsilon, \varepsilon<x<1-\varepsilon, \varepsilon<t<1-\varepsilon\}, \\
& S_{6 \varepsilon}=\{(x, y, t): t=1-\varepsilon, \varepsilon<x<1-\varepsilon, \varepsilon<y<1-\varepsilon\} .
\end{aligned}
$$

Then taking real part of the obtained equality and considering

$$
\begin{gathered}
\operatorname{Re}\left(y^{m} \bar{u} u_{x x}\right)=\operatorname{Re}\left(y^{m} \bar{u} u_{x}\right)_{x}-y^{m}\left|u_{x}\right|^{2}, \operatorname{Re}\left(x^{n} \bar{u} u_{y y}\right)=\operatorname{Re}\left(x^{n} \bar{u} u_{y}\right)_{y}-x^{n}\left|u_{y}\right|^{2}, \\
\operatorname{Re}\left(x^{n} y^{m} \bar{u} u_{t}\right)=\left(\frac{1}{2} x^{n} y^{m}|u|^{2}\right)_{t},
\end{gathered}
$$

after using Green's formula we pass to the limit at $\varepsilon \rightarrow 0$. Then we get

$$
\begin{aligned}
& \int_{\partial \Omega} \int_{\Omega} \operatorname{Re}\left[y^{m} \bar{u} u_{x} \cos (v, x)+x^{n} \bar{u} u_{y} \cos (v, y)-\frac{1}{2} x^{n} y^{m}|u|^{2} \cos (v, t)\right] d \tau \\
& =\iiint\left(y^{m}\left|u_{x}\right|^{2}+x^{n}\left|u_{y}\right|^{2}+\lambda_{1} x^{n} y^{m}|u|\right) d \sigma
\end{aligned}
$$

where v is outer normal. Considering $\operatorname{Re}\left[\bar{u} u_{x}\right]=\operatorname{Re}\left[u \bar{u}_{x}\right], \operatorname{Re}\left[\bar{u} u_{y}\right]=\operatorname{Re}\left[u \bar{u}_{y}\right]$ we obtain

$$
\begin{align*}
\operatorname{Re} \iint_{S_{1}} \frac{1}{2} x^{n} y^{m}|u|^{2} d \tau_{1} & +\iint_{S_{2}} y^{m} \operatorname{Re}\left[u \bar{u}_{x}\right] d \tau_{2}-\iint_{S_{3}} x^{n} \operatorname{Re}\left[u \bar{u}_{y}\right] d \tau_{3}-\iint_{S_{4}} y^{m} \operatorname{Re}\left[u \bar{u}_{x}\right] d \tau_{4} \\
& +\iint_{S_{5}} x^{n} \operatorname{Re}\left[u \bar{u}_{y}\right] d \tau_{5}-\operatorname{Re} \iint_{S_{6}} \frac{1}{2} x^{n} y^{m}|u|^{2} d \tau_{6} \tag{8}\\
& =\iiint\left(y^{m}\left|u_{x}\right|^{2}+x^{n}\left|u_{y}\right|^{2}+\lambda_{1} x^{n} y^{m}|u|\right) d \sigma
\end{align*}
$$

From (8) and by using conditions (6), (8), we find

$$
\begin{align*}
& \frac{1}{2}\left[1-\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)\right] \int_{0}^{1} \int_{0}^{1} x^{n} y^{m}|u(x, y, 1)| d x d y \\
+ & \iiint_{\Omega} \int\left(y^{m}\left|u_{x}\right|^{2}+x^{n}\left|u_{y}\right|^{2}+\lambda_{1} x^{n} y^{m}|u|\right) d \sigma=0 . \tag{9}
\end{align*}
$$

Setting $\alpha_{1}^{2}+\alpha_{2}^{2}<1, \lambda_{1} \geq 0$, from (9) we have $u(x, y, t) \equiv 0$ in $\bar{\Omega}$.
We find below non-trivial solutions of the problem 2 at some values of parameter λ for which the uniqueness condition $\operatorname{Re} \lambda=\lambda_{1} \geq 0$ is not fulfilled.

We search the solution of Problem 2 as follows

$$
\begin{equation*}
u(x, y, t)=X(x) \cdot Y(y) \cdot T(t) \tag{10}
\end{equation*}
$$

After some evaluations we obtain the following eigenvalue problems:

$$
\begin{align*}
& \left\{\begin{array}{l}
X^{\prime \prime}(x)+\mu_{1} x^{n} X(x)=0 \\
X(0)=0, X(1)=0 ;
\end{array}\right. \tag{11}\\
& \left\{\begin{array}{l}
Y^{\prime \prime}(y)+\mu_{2} y^{m} Y(y)=0 \\
Y(0)=0, Y(1)=0 ;
\end{array}\right. \tag{12}\\
& \left\{\begin{array}{l}
T^{\prime}(t)+(\lambda+\mu) T(t)=0 \\
T(0)=\alpha T(1) .
\end{array}\right. \tag{13}
\end{align*}
$$

Here $\mu=\mu_{1}+\mu_{2}$ is a Fourier constant.
Solving eigenvalue problems (11), (12) we find

$$
\begin{gather*}
\mu_{1 k}=\left(\frac{n+2}{2} \widetilde{\mu_{1 k}}\right)^{2}, \mu_{2 p}=\left(\frac{m+2}{2} \widetilde{\mu_{2 p}}\right)^{2}, \tag{14}\\
X_{k}(x)=A_{k}\left(\frac{2}{n+2}\right)^{\frac{1}{n+2}} \mu_{1 k}^{\frac{1}{2(n+2)}} x^{\frac{1}{2}} J_{\frac{1}{n+2}}^{n+2}\left(\frac{2 \sqrt{\mu_{1 k}}}{n+\frac{n+2}{2}}\right), \tag{15}\\
Y_{p}(y)=B_{p}\left(\frac{2}{m+2}\right)^{\frac{1}{m+2}} \mu_{2 p}^{\frac{1}{2(m+2)}} y^{\frac{1}{2}} J_{\frac{1}{m+2}}\left(\frac{2 \sqrt{\mu_{2 p}}}{m+2} x^{\frac{m+2}{2}}\right), \tag{16}
\end{gather*}
$$

where $k, p=1,2, \ldots, \widetilde{\mu_{1 k}}$ and $\widetilde{\mu_{2 p}}$ are roots of equations $J_{\frac{1}{n+2}}(x)=0$ and $J_{\frac{1}{m+2}}(y)=0$, respectively.

The eigenvalue problem (13) has non-trivial solution only when $\left\{\begin{array}{l}\alpha_{1}=e^{\lambda_{1}+\mu_{k p}} \cos \lambda_{2} \\ \alpha_{2}=e^{\lambda_{1}+\mu_{k p}} \sin \lambda_{2} .\end{array}\right.$
Here $\lambda=\lambda_{1}+i \lambda_{2}, \alpha=\alpha_{1}+i \alpha_{2}, \mu_{k p}=\mu_{1 k}+\mu_{2 p}$. After elementary calculations, we get

$$
\begin{equation*}
\lambda_{1}=-\mu_{k p}+\ln \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}, \quad \lambda_{2}=\arctan \frac{\alpha_{2}}{\alpha_{1}}+s \pi, s \in Z^{+} \tag{17}
\end{equation*}
$$

Corresponding eigenfunctions have the form

$$
\begin{equation*}
T_{k p}(t)=C_{k p} e^{\left[\mu_{k p}-\ln \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}-i\left(\arctan \frac{\alpha_{2}}{\alpha_{1}}+s \pi\right)\right] t} . \tag{18}
\end{equation*}
$$

Considering (10), (15), (16) and (18) we can write non-trivial solutions of the problem 2 in the following form:

$$
\begin{aligned}
u_{k p}(x, y, t) & =D_{k p}\left(\frac{2}{n+2}\right)^{\frac{1}{n+2}}\left(\frac{2}{m+2}\right)^{\frac{1}{m+2}} \mu_{1 k}^{\frac{1}{2(n+2)}} \mu_{2 p}^{\frac{1}{2(m+2)}} \sqrt{x y} J_{\frac{1}{n+2}}\left(\frac{2 \sqrt{\mu_{1 k}}}{n+2} x^{\frac{n+2}{2}}\right) \\
& \times J_{\frac{1}{m+2}}\left(\frac{2 \sqrt{\mu_{2 p}}}{m+2} y^{\frac{m+2}{2}}\right) e^{\left[\mu_{k p}-\ln \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}-i\left(\arctan \frac{\alpha_{2}}{\alpha_{1}}+s \pi\right)\right] t},
\end{aligned}
$$

where $D_{k p}=A_{k} \cdot B_{p} \cdot C_{k p}$ are constants.
Remark 1. One can easily see that $\lambda_{1}<0$ in (17), which contradicts to condition $\operatorname{Re} \lambda=\lambda_{1} \geq 0$ of the theorem 2.

Remark 2. The following problems can be studied by similar way. Instead of condition (6) we put conditions as follows:

Problem's name	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}	P_{9}	P_{10}
S_{2}	u_{x}	u	u	u_{x}	u	u	u_{x}	u
S_{3}	u_{y}	u	u_{y}	u	u_{y}	u	u	u
S_{4}	u	u_{x}	u	u_{x}	u	u_{x}	u	u
S_{5}	u	u_{y}	u_{y}	u	u	u	u	u_{y}

3. Non-local Problem for "Forward-backward" Parabolic Equation with Parameter.

In this section we prove the uniqueness of solution of a non-local problem for "forwardbackward" parabolic equation with parameter. We have to note work by C.D.Pagani and G.Talenti [13], where boundary-value problems for equation

$$
\operatorname{sgn}(x) u_{y}-u_{x x}+k u=f(x, y)
$$

were investigated. Existence theorems are proved, with an integral equations technique with the developing of Wiener-Hopf integral equations of the first kind with solutions belonging to Sobolev spaces.

In the domain $D=D_{1} \cup D_{2} \cup I_{0}, D_{1}=\{(x, y):-1 \leq x \leq 0,0 \leq y \leq 1\}$, $I_{0}=\{(x, y): x=0,0 \leq y \leq 1\}, D_{2}=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$ let us consider equation

$$
\begin{equation*}
L u=\lambda u, \tag{19}
\end{equation*}
$$

where $\lambda \in R, L u=u_{x x}-\operatorname{sign}(x) u_{y}$.
The problem 3. To find a regular solution of the equation (19) from the class of functions $u(x, y) \in C(\bar{D}) \cap C^{1}\left(D \cup I_{1} \cup I_{2}\right)$, satisfying non-local conditions

$$
\begin{equation*}
k_{1} u_{x}(-1, y)+k_{2} u(-1, y)=k_{3} u_{x}(1, y), 0 \leq y \leq 1, \tag{20}
\end{equation*}
$$

$$
\begin{gather*}
k_{4} u_{x}(1, y)+k_{5} u(1, y)=k_{6} u_{x}(-1, y), 0 \leq y \leq 1 \tag{21}\\
u(x, 0)=\alpha u(x, 1),-1 \leq x \leq 1 \tag{22}
\end{gather*}
$$

Here $k_{i}(i=\overline{1,6}), \alpha$ is given non-zero constant, $I_{1}=\{(x, y): x=-1,0 \leq y \leq 1\}$, $I_{2}=\{(x, y): x=1,0 \leq y \leq 1\}$.

Note, non-local conditions (20), (21) were used for the first time by N.I.Ionkin and E.I.Moiseev [9, 8].

Theorem 3. If

$$
\begin{equation*}
|\alpha|=1, \lambda>0, k_{3} k_{5}=k_{2} k_{6}, k_{1} k_{2}<0, k_{4} k_{5}>0 \tag{23}
\end{equation*}
$$

and exists a solution of the problem 3, then it is unique.
Proof. We multiply equation (19) to the function $u(x, y)$ and integrate along the domains D_{1} and D_{2}. Using Green's formula and condition (22), we get

$$
\begin{aligned}
& \int_{0}^{1} u(-0, y) u_{x}(-0, y) d y=\int_{-1}^{0} \frac{\alpha^{2}-1}{2} u^{2}(x, 1) d x \\
& +\int_{0}^{1} u(-1, y) u_{x}(-1, y) d y+\int_{0}\left(u_{x}^{2}+\lambda u^{2}\right) d x d y \\
& \int_{0}^{1} u(+0, y) u_{x}(+0, y) d y=\int_{0}^{1} \frac{\alpha^{2}-1}{2} u^{2}(x, 1) d x \\
& +\int_{0}^{1} u(1, y) u_{x}(1, y) d y-\iint_{D_{2}}\left(u_{x}^{2}+\lambda u^{2}\right) d x d y
\end{aligned}
$$

From conditions (20), (21), we find

$$
\begin{gathered}
u(1, y) u_{x}(1, y)=\frac{k_{6}}{k_{5}} u_{x}(-1, y) u_{x}(1, y)-\frac{k_{4}}{k_{5}} u_{x}^{2}(1, y) \\
u(-1, y) u_{x}(-1, y)=\frac{k_{3}}{k_{2}} u_{x}(-1, y) u_{x}(1, y)-\frac{k_{1}}{k_{2}} u_{x}^{2}(-1, y)
\end{gathered}
$$

Taking above identities into account, we establish

$$
\begin{aligned}
& \int_{-1}^{0} \frac{\alpha^{2}-1}{2} u^{2}(x, 1) d x+\int_{0}^{1} \frac{1-\alpha^{2}}{2} u^{2}(x, 1) d x+\int_{0}^{1}\left[\frac{k_{4}}{k_{5}} u_{x}^{2}(1, y)-\frac{k_{1}}{k_{2}} u_{x}^{2}(-1, y)\right] d y+ \\
& +\int_{0}^{1}\left[\frac{k_{3}}{k_{2}}-\frac{k_{6}}{k_{5}}\right] u(-1, y) u_{x}(1, y) d y+\iint_{D_{1}}\left(u_{x}^{2}+\lambda u^{2}\right) d x d y+\iint_{D_{2}}\left(u_{x}^{2}+\lambda u^{2}\right) d x d y
\end{aligned}
$$

Considering condition (23), we get $u(x, y) \equiv 0$ in D and the proof of Theorem 3 is complete.

Remark 3. By similar method one can prove the uniqueness of solution of boundary-value problem with non-local initial condition for equation

$$
0=\left\{\begin{array}{l}
y^{m} u_{x x}+(-x)^{n} u_{y}-\lambda(-x)^{n} y^{m} u=0, x<0 \\
y^{m} u_{x x}-x^{n} u_{y}-\lambda x^{n} y^{m} u=0, x>0 .
\end{array}\right.
$$

Open question. A question is still open, on the unique solvability of boundary value problems for the following equation:

$$
0=\left\{\begin{array}{l}
y^{m_{1}}(-x)^{n_{2}} u_{x x}+(-x)^{n_{1}} y^{m_{2}} u_{y}-\lambda_{1} u=0, x<0 \\
y^{m_{1}} x^{n_{2}} u_{x x}-x^{n_{1}} y^{m_{2}} u_{y}-\lambda_{2} u=0, x>0,
\end{array}\right.
$$

where λ_{1}, λ_{2} are given complex numbers and $m_{i}, n_{i}=$ const $>0(i=1,2)$.

References

[1] A.S.Berdyshev and E.T.Karimov. Some non-local problems for the parabolic-hyperbolic type equation with non-characteristic line of changing type. CEJM, 4(2): 183-193, 2006.
[2] F.I.Frankl. On the problems of Chaplygin for mixed subsonic and supersonic flows. Izv.Akad. Nauk SSSR Ser. Mat., 9:121-143, 1945.
[3] A.Friedman. Fundamental solutions for degenerate parabolic equations. Acta Mathematica, 133:171-217, 1975.
[4] M.Gevrey. Sur les equations aux derivees partielles du type parabolique. J.Math.Appl., 4:105-137, 1914.
[5] Yu.P.Gorkov. Construction of a fundamental solution of parabolic equation with degeneration. Calcul. methods and programming, 6:66-70, 2005.
[6] A.Hasanov. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Variables and Elliptic Equations, 52(8):673-683, 2007.
[7] S.Huang, Y.Y.Qiao and G.C.Wen. Real and complex Clifford analysis. Advances in Complex Analysis and its Applications, 5. Springer, New York, 2006.
[8] N.I.Ionkin. The stability of a problem in the theory of heat condition with non-classical boundary conditions. (Russian). Differencial'nye Uravnenija, 15(7):1279-1283, 1979.
[9] N.I.Ionkin and E.I.Moiseev. A problem for a heat equation with two-point boundary conditions. (Russian). Differencial'nye Uravnenija 15(7):1284-1295, 1979.
[10] E.T.Karimov. About the Tricomi problem for the mixed parabolic-hyperbolic type equation with complex spectral parameter. Complex Variables and Elliptic Equations, 56(6):433-440, 2005.
[11] E.T.Karimov. Some non-local problems for the parabolic-hyperbolic type equation with complex spectral parameter. Mathematische Nachrichten, 281(7):959-970, 2008.
[12] A.A.Kerefov. The Gevrey problem for a certain mixed-parabolic equation. (Russian) Differencial'nye Uravnenija ,13(1):76U゙83, 1977.
[13] C.D.Pagani and G.Talenti. On a forward-backward parabolic equation. Annali di Matematica Pura ed Applicata, 90(1):1-57, 1971.
[14] J.M.Rassias. Uniqueness of Quasi-Regular Solutions for a Bi-Parabolic Elliptic BiHyperbolic Tricomi Problem. Complex Variables and Elliptic Equations, 47(8):707-718, 2002.
[15] J.M.Rassias. Mixed Type Partial Differential Equations in R^{n}, Ph.D. Thesis, University of California, Berkeley, USA, 1977.
[16] J.M.Rassias. Lecture Notes on Mixed Type Partial Differential Equations. World Scientific, 1990.
[17] J.M.Rassias. Mixed type partial differential equations with initial and boundary values in fluid mechanics. Int.J.Appl.Math.Stat., 13(J08):77-107, 2008.
[18] J.M.Rassias, A.Hasanov. Fundamental solutions of two degenerated elliptic equations and solutions of boundary value problems in infinite area. Int.J.Appl.Math.Stat., 8(M07):87-95, 2007.
[19] J.M.Rassias. Tricomi-Protter problem of nD mixed type equations. Int.J.Appl.Math.Stat. 8(M07):76-86, 2007.
[20] J.M.Rassias. Existence of weak solutions for a parabolic elliptic-hyperbolic Tricomi problem. Tsukuba J.Math., 23(1):37-54, 1999.
[21] J.M.Rassias. Uniqueness of quasi-regular solutions for a parabolic elliptic-hyperbolic Tricomi problem. Bull.Inst.Math.Acad.Sinica, 25(4):277-287, 1997.
[22] K.B.Sabitov. To the theory of mixed parabolic-hyperbolic type equations with spectral parameter. Differencial'nye Uravnenija, 25(1):117-126, 1989.
[23] N.N.Shopolov. Mixed problem with non-local initial condition for a heat conduction equation. Reports of Bulgarian Academy of Sciences, 3(7):935-936, 1981.
[24] M.M.Smirnov. Degenerate elliptic and hyperbolic equations. Nauka, Moscow, 1966.
[25] M.M.Smirnov Equations of Mixed Type, Translations of Mathematical Monographies, 51, American Mathematical Society, Providence, R.I. pp.1-232. 1978.
[26] G.C.Wen. The Exterior Tricomi Problem for Generalized Mixed Equations with Parabolic Degeneracy. Acta Mathematics Sinica, English Series, 22(5):1385-1398, 2006.
[27] G.C.Wen and D.Chen. Discontinuous Riemann-Hilbert problems for quasilinear degenerate elliptic complex equations of first order. Complex Variables and Elliptic Equations 50(7-11):707-718, 2005.
[28] G.C.Wen. The mixed boundary-value problem for second order elliptic equations with degenerate curve on the sides of an angle. Mathematische Nachrichten, 279(13-14):1602-1613, 2006.
[29] G.C.Wen and H.G.W.Begehr. Boundary value problems for elliptic equations and systems. Pitman Monographs and Surveys in Pure and Applied Mathematics, 46. Longman Scientific and Tech., Harlow; John Wiley and Sons, Inc.,N.Y., 1990.

[^0]: *Corresponding author.
 Email addresses: jrassias@primedu.uoa.gr (J. Rassias), erkinjon@gmail.com (E. Karimov)
 (c) 2010 EJPAM All rights reserved.

