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1. Introduction

The concepts of statistical convergence was introduced (independently) by Fast
[7] and Steinhause [25]. In their studies, the concept of ordinary convergence of
sequence of real numbers was extended to statistical convergence in the following
way: a sequence {x,} C R is said to be statistically convergent to the real number
X, € R provided that each € neighborhood A.(x,) of x,, the set consisting of all
elements not contained by A4.(x,) has natural density zero for any ¢ > 0. The no-
tion of natural density here can be described as a function 6: 2% — [0,1] and given

by 8(K) := lim, .. n"!|{k € K : k < n}| where K C N, and |A| denotes the car-

n—00
dinality of the set A. The concept of statistical convergence was further discussed
and developed by many authors including [1,4,8-11,19,21]. Statistical convergence
has also been discussed in more general abstract spaces such as the fuzzy number
spaces [22], locally convex spaces [18], Banach spaces [15] and characterization
of Banach spaces [5]. Recently, Karakus [13] has extended the concept of statisti-
cal convergence for sequences in probabilistic normed spaces (PN space) and proved
several interesting results. In another paper, Karakus and Demirci [14] studied the
concept of statistical convergence of double sequences on PN spaces. The idea of .
-convergence for sequences, was inspired by the concept of statistical convergence
introduced in [7], see Kostyrko et al. [16] for a comprehensive bibliography. It is a
natural generalization of the concept of statistical convergence. The .#¢ -convergence
is based on the notion of the ideal .# of subsets of N, the set of positive integers. Here,
a sequence {x,} C R is said to be .# -convergent to the real number x, € R provided
that each e neighborhood A.(x,) of x,, the set consisting of all elements not con-
tained by A.(x,) belongs to .#¢ for any € > 0. Further works on ideal convergence

can be found in [2,3,6,12,17,20] The work of Karakus [13] inspired us to study the

# -convergence and other related properties in PN spaces. In this context, we obtain
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some results that parallel to the one given in [3,12,20,24].

Now we recall some notation and definitions used in this paper (see [26]).

Definition 1.1. A function f: R — RY is called a distribution function if it is non-
decreasing and left-continuous with inf, . f (t) = 0 and sup, f (t) = 1. We denote the

set of all distribution function by A™.

Definition 1.2. A t-norm T is a continuous mapping T: [0,1] x [0,1] — [0, 1] such
that for all a, b,c,d € [0,1]

() T(a,b) =T(b,a);

(ii)T(a,T(b,c))=T(T(a,b),c);

(iv) T(a,b) < T(c,d) whenevera <cand b <d;

v) T(a,1) =a.

Example 1.1. The operation T(a,b) = ab, T(a,b) =max(a+b—1,0) and T(a,b) =

min(a, b) on [0,1] are t-norms.
The following definition is due to A. N. Serstnev [23].

Definition 1.3. A probabilistic normed space (briefly, a PN space) is a triplet (X,F,T),
where X is a real linear space, T is a continuous t-norm, and F (called probabilistic
norm) is a mapping from X into A" (writing F(x) as F,), the following conditions hold
for every x,y € X and every s,t > 0:

(N1) F.(t) =1 if and only if x = 0 (the null vector of X);

(N2) Foue(£) = F,(5) for a # 0;

(N3) Fyyy(s+1t) = T(F,(s),F,(t));

Example 1.2. Let (X, || - ||) is a normed space and T(a, b) = ab (or T(a,b) =min(a,b)).
Define
F.(t)

e+l
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where x € X and t > 0. Then (X, F, T) is a PN space.

Let (X,F,T) be a PN space. Since T is a continuous t-norm, the system of (€, A)-

neighborhoods of 6 (the null vector in X)
{Ap(e,A): €>0,1€(0,1)}, (1.1)
where
Np(e,A)={xeX:F.(e)>1—-A} (1.2)

determines a first countable Hausdorff topology on X, called the F-topology. Thus,
the F-topology can be completely specified by means of F-convergence of sequences.

It is clear that x — y € A4} means y € 4, and vice-versa.

A sequence (x,,) is said to be F-convergent to & € X if for every € > 0, and for

every A € (0, 1) there exists a number N € N such that
x,—&e€MN(e,A) forall n>N.

or equivalently,

x, € N(e,A) forall n>N.

In this case we write F — limx, = &.

Lemma 1.1. Let (X, ||-||) be a real normed space and (X, F, T) be a PN space induced by

t

the probabilistic norm F (t) = I’

where x € X and t > 0. Then for every {x,} in X
limx, =& =93 —limx,=¢.

Proof. Let suppose that limx, = £. Then for every t > 0 there exists a positive

integer N = N(t) such that
|Ix,—&|l<t forall n>N.

We observe that for any given € > 0,
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e+|lx, =&l e+t
<
€ €

which is equivalent to

€ € t
> =1- .
e+|lx,—&|l e+t €+t

Therefore, by letting A = jt € (0,1) we have
F, _(e)>1—-24 forall n>N.
This implies that x, € Az(e,A) for all n > N as required.
We recall the definition and notations of ideal.

Definition 1.4. A non-empty subset .# of 2" is called an ideal on N if
(i) B € .# whenever B C A for some A € ¢ (closed under subsets),

(i)AU B € # whenever A,B € £ (closed under unions).

199

An ideal called proper if N ¢ .#. An ideal called admissible if its proper and contains

all finite subsets.

Filter & is a dual notion to ideal .#-it is closed under supersets and intersections.

It holds that {N\A: A € .4} is a filter if and only if .# is ideal. The filter #(.#) is called

the filter associated with the ideal .#. Thus, one can write

Ae ¥ S A € F(F).

where A° denotes the complement of A.

Ideal can be viewed as a way to describe which sets will be considered "small",

i.e., finite. Filter is collection of all "large" sets.
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2. .# -Convergence for Sequences in PN Spaces

In this section we define the ideal convergence of a sequence in (X, F, T) and prove

some important results.

Definition 2.1. Let .# C 2" be a proper ideal in N and (X,F,T) be a PN space. The
sequence (x,) in X is said to be $F — convergent to x €X (¥ — convergent to x €X

with respect to F-topology) if for each € >0, and A € (0,1)
fneN:x, ¢ AN.(e, M)} .o

The vector x is called the #* —limit of the sequence {x,} and we write #¥ —lim x,, = x.

Definition 2.2. Let (X,F, T) be a PN space and .¢ be an admissible ideal in N. The
sequence {x,} in X is said to be .#** -convergent to £ € X (i.e., #'* —limx, = &) if and

only if there exists a set M = {m; <m, <---} € F(F) such that 3 —limx,, =¢.

Lemma 2.1. Let (X, F, T) be a PN space. .#F — limit of any sequence if exists is unique.

Proof. Let {x,} be any sequence and suppose that #* —limx, = &, #f —limx, =7
where £ # 7). Since £ # 1), select € > 0 and A € (0, 1) such that A:(e,A) and A, (€, A)
are disjoint neighborhoods of £ and 7. Since £ and 7 both are ¢ — limit of the
sequence {x,}, we have A= {n € N: x,, ¢ Az(e,A)} and B = {n € N: x,, & A, (€,A)}
are both belongs to .#. This implies that the sets A° = {n € N: x,, € Az(e,A)} and
B = {n € N: x, € A, (€, A)} belongs to Z(F). Since F(#) is a filter in N, we have
A°N B¢ is a nonempty in & (.#). In this way we obtain a contradiction to the fact that
the neighborhoods Az(€,4) and A;(€,A) of £ and n are disjoints. Hence we have
& = . This completes the proof.
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Lemma 2.2. Let (X,F, T) be a PN space and .#;, be Fréchet ideal (finite subsets on N).

Then F — convergence implies .#f — convergence.
fin

Proof Let € >0 and A € (0,1). Suppose that {x,} is F — convergent to &. Then,
there exists a number N € N such that x, € Az(e, A) for every n > N. This implies
that the set A= {n € N: x, & A:(e,A)} € {1,2,--- ,N — 1}. Since the right hand side
belongs to .#;, we have A € %;,. This shows that {x,} is S —convergent to &.

The following example shows that the converse of above theorem is not valid.
Example 2.1. By letting X = R in Example 1, we have (R, F, T) is a PN space induced

€
e+l

by the probabilistic norm F (€) = Let us suppose that A € %;,. Define a sequence

{x,} in R via
1, ifn€A

0, otherwise.

Then, for every € > 0 and A € (0,1), let K = {n € N: x,, ¢ A,(e,A)}. We observe
that
xn¢=/‘/9(€ak) = FXH(G)S 1-2
<1-A

Hence, we have
K = {neN:|x,||>0}
= {neN:x,=1}
= Ac g,

Therefore ,ﬂffn —lim x, = 0. But the sequence {x,} is not convergent to 6 in (R, ||-|]). By

Lemma 1, this implies that F — lim x, # 6.
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Lemma 2.3. Let (X,F, T) be a PN space and .# is an admissible ideal on X. Then ﬂﬁi

-convergence implies #* -convergence.

Proof. For .# be an admissible ideal, we have | | .# = N. This implies that .%;, C .#.

So, .#. -convergence implies .#" -convergence.

The following lemma is an immediate consequence of definition of statistical con-

vergence sequence.

Lemma 2.4. Let (X,F, T) be a PN space. If 5 = {A C N: 6(A) = 0} where 6(A) be the

density of A, then #; -convergence coincide with statistical convergence.

Lemma 2.5. If {x,} and {y,} are two sequences in (X, F, T) with T(a,a) > a for every
a€(0,1), then

) If ¥ —limx, =& and .#F —limy, = 7, then #¥ —lim(x,+ y,) =& + .

(i)If #¥ —limx, =& and a € R, then #F —limax, = aé.

(iii) If #¥ —limx, = & and #* —limy, =, then #F —lim(x, —y,) =& — .

Proof. (i) Let e >0 and A € (0,1). Since #* —limx, = & and .#" —limy, = 7, the
sets A={neN:x, ¢ Jﬂ{g(g,k)} and B={neN:x, ¢ %(g,k)} are belongs to .#.
Let C ={n€N: x,+y, & A.,(€,A)}. Since £ is an ideal it is sufficient to show that
C C AUB. This is equivalent to show that C® D A° N B¢ where A° and B¢ are belongs
to Z(#). Letn € AN B, i.e.,, n € A° and n € B° then by (N4) we have

Fiorty-crm(€) = 1r(Fy &, Fy )(€)

T (e SLR(3)
> T(1-A,1—2A)

Y

1-A.

\Y

Hence, n € C° D A°N B¢ € Z(.#) which implies C C AUB € .¢ and the result follows.
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(ii)Let € > 0 and A € (0,1). Since .#¥ —limx, = &, we have A= {n € N: x,, ¢
Ne(e,A)} € #. This implies that A° = {n € N: x,, € A:(e,A)} € F(F). Let n € A°.

For the case oo = 0, We have

and for the case a # 0, we have

Fox,— af(e) = Fxn_g(ﬁ)
> 7 (Fx () Fo — e))
: al
> T(1-2,,1)

= 1-A.

This shows that {n € N: ax, ¢ A,:(e,A)} € # and consequently we have I3 —
limax, =aé.

(iii) The proof is obvious from (i) and (ii).

Definition 2.3. Let (X,F, T) be a PN space. A subset A= {x,} of X is said to be .#*-

bounded on PN spaces if for every A € (0, 1), there exists € > 0 such that
{fneN:x, & H(e,\)} e.4.

Let (X,F,T). We denote .#/(X) the set of all .#"-bounded I" — convergent se-

quences on X and I’ (X) the set of all .#" -bounded sequences on X.

Theorem 2.1. Let (X, F, T) be a PN space such that T(a,a) > a for every a € (0,1). Let
# C 2N be an admissible ideal in N. Then ﬂlf (X) is a closed linear subspace of the set

¥ (X).

Proof. In view of Lemma (), it is clear that the set %] (X) is a linear subspace of

the set lfo(X ). So to prove the result it is sufficient to prove that ,ﬂlf X)=2/(X). It
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is clear that 4] (X) C .#](X). Now we show that #/™(X) C .#](X). Let y € 4] (X).
We notice that since A} (e, A) N ﬂlf (X) #0 for every e > 0 and A € (0, 1), there exists
an x € A,(e,A)N ,ﬂlf(X) such that the set K = {n € N: x ¢ J&fy(g,k)} belongs to .£.
This implies that K ={n € N: x € A@(%,A)} € Z(#). Now let n € K¢, then by (N4),

we have

Fy(€) = Fyxx,(€)
€ €

> 1(F (GG

> T(1-2A,1-2)

> 1-—A.

Thus, we have {n € K°: y, € Ay(e) > 1—A} € Z(£) which implies that {n e N: y, ¢
No(e)>1—A} € 4. Thus y € ¢} (X) and this completes the proof.

Lemma 2.6. If a sequence in a PN space (X,F,T) is #™ -convergent, then it is ,ﬂfF

-convergent to the same limit.

Proof. Let #%* —limx, = &, then by definition, there exists M = {m; < m, <
-} € Z(F) such that F —limx,, = &. Lete > 0 and A € (0,1) be given. Since
F —limx,, = &, there exists N € N such that x,, € Az(e,A) for every k > N. Let
A= {k € N: x,, ¢ A:(e,A)}. Then it is clear that A C {1,2,---,N — 1} € .

Therefore, the sequence {x,} is .#¥ —limx, = &.

3. .¢ -Convergence for Continuous Functions in PN Spaces

In this short section, we extend the study of ideal convergence to a sequence of
function f,, in (X, F, T) and prove a theorem about ideal convergence. We begin with

the following definition.



M. Rahmat and Harikrishnan K. / Eur. J. Pure Appl. Math, 2 (2009), (195-212) 205
Definition 3.1. Let (X,F,T) be a PN spaces and .#¢ be an arbitrary admissible ideal
in N. We say that a sequence of functions f,: X — X is .#¥-convergent to a function

f:X — X) denoted .#F —limf, = f, if for every x €X, € > 0 and A € (0, 1) the set
fneN: f(x)— f(x)¢& Ay(e,A)} belongsto £.

Theorem 3.1. Let (X, F, T) be a PN spaces such that sup,_, T(a,a) =1 and let . be an
arbitrary admissible ideal in N. Let #¥ —limf, = f (on X) where f,: X —> X, n € N,

are equi-continuous (on X) and f : X — X. Then f is F -continuous (on X).

Proof. Let x, € X and x — x, € A;(€,A) be fixed. By equi-continuity of f,’s, for

every € > 0, there exists a y € (0,1) with ¥ < A such that

£, = £ulx0) € A 5. 7)

for every n € N. Since .47 —lim f, = f, the set

K = {n e N: £,0e0) = £ (xo) € Ao (5, Ui € N: £,60) = F0) & Ao (5,1}

is in .# and different from N. Hence, there exists n € #(K) such that

fulx0) = F(x) € Hp(5,7)) and f,(x) = F(0) € A (5,7

It follows that

Fra-rol€) = T (Ff(xo)—fn(xo)(g)’ T(an(xo)—fn(x)(g): an(X)—f(X)(g))
> TA-7,T(1—v,1-7))
> T(1-v,1-7)
> 1—v

> 1-—A.

This implies that f is F-continuous (on X).
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4. ¢ -Continuity of a Function in PN Spaces

We begin with the definition of continuity an important type of sequential conti-

nuity in PN space.

Definition 4.1. Let .¢ be an ideal and (X,F,T) be a PN space. Amap f:X — X is

called F — continuous at a point £ € X, if

F—limx, =& = F—limf(x,)=f(&).

This means for every € > 0 and A € (0, 1), there exists a number N € N such that for

n > N, we have x,, — & € A,(e, A) implies f(x,) — f(&) € (€, A).

Definition 4.2. Let .¢ be an ideal and (X,F,T) be a PN space. Amap f:X — X is

called #¥ — continuous at a point £ € X, if
SF —limx, =& = #F —limf(x,)=f(&).

Theorem 4.1. Let (X, F, T) be a PN space and .¢ be an arbitrary ideal in N. If f : X —» X

is F -continuous then it is .#¥-continuous.

Proof Let {x,} € X and .#F —limx, = £. Then by F -continuity of f at £ € X we
means for every e > 0and A € (0,1), we have x,,—& € A (e, A) implies f (x,)—f (&) €
Hy(e,2). Thus {n € N: £(x,) = F(E) & Hp(e, M)} € fn € N: x, — & & (e, M)}
Since .#f —limx, = &, we have {n € N: x, — £ ¢ A,(e,A)} € #. This implies that
fneN: f(x,)— f(&) ¢ A,(e,A)} € £ which means .47 —lim f(x,) = f(&). Hence,

f is an ¥ -continuous.

Theorem 4.2. Let (X, F, T) be a PN space and .¢ be an arbitrary admissible ideal in N.

If f: X > X is #F -continuous then f is ,ﬂﬁi -continuous.
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Proof Let f is .#F -continuous at £ € X. Suppose that f is not ,ﬂfF -continuous,
then the set A= {n € N: f(x,) — f(&) & Ap(e,A)} €1, i.e., Ais infinite set whenever
fneN:x,—& ¢ AM(e,A)} € F. Let {y,} be the subsequence of {x,} given by the
subset A of N. Then {n € N: f(y,) — f(&§) ¢ A,(e,A)} = N. Also, the subsequence
{y,} holds ﬂfF —limy, = £. By Lemma 4, this implies ./ —limy, = £. Thus, by
#F continuity of f, we have .4 —limf(y,) = f(&). Hence {n € N: f(y,) — f(&) ¢

Np(e,A)} =N € ¢, a contradiction. Therefore f is ﬂfF -continuous.

From theorem 4.3 and 4.4, we can easily prove the following lemma.

Lemma 4.1. Let (X, F, T) be a PN space and .# be an arbitrary admissible ideal in N. If

f: X — X is a map, then the following implication hold:

F — continuous = ¥ — continuous = Sn — continuous

5. #-Cauchy Sequences in PN Spaces

Definition 5.1. Let (X, F, T) be a PN space. A sequence {x,} in X is said to be F -Cauchy,
if for every € > 0 and A € (0, 1), there exists a number N = N(€,A) € N such that

X, — X, € Ny(€,A) forevery n,m=>N.

Definition 5.2. Let (X,F,T) be a PN space and ¢ be an admissible ideal. Then a
sequence (x,,) in X is called #* —Cauchy sequence in X if for every € > 0 and A € (0, 1),
there exists M = M (e, A) € N such that

{fneN:x, —x, & A(e, )} e s

Definition 5.3. Let (X,F,T) be a PN space and ¢ be an admissible ideal. Then a

sequence (x,,) in X is called #**—Cauchy sequence in X if for every € > 0 and A € (0, 1),
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there exists a set M = {m; < my, < -+- < my,---} € Z(F£) such that the subsequence

xy = (xy,) s F— Cauchy in X, i.e. there exists a number k, € N such that
Xy = X € Np(e,A) forevery k,p > k.

Theorem 5.1. Let (X, F, T) be a PN space and .# in N is an admissible ideal. If {x,} in
X is #™ — Cauchy then it is #F — Cauchy.

Proof. Let {x,} be a #* — Cauchy sequence. Then for every € > 0 and A € (0, 1)
there exists aset M = {m; <m, < --- <my, -} € Z(#£) and a number k, € N such
that x,, — x, € Ap(€,A) for every k,p > ky. Now, fix N = my ;. Then for every
€ >0and A € (0,1), we have x,, —xy € Ay(€,A) forevery k =k, Let H=N\M.
It is obvious that H € .#¢ and A(e,A) = {n € N: x, —xy & Hp(e,A)} CHU{m; <
my < --- < my}. Clearly, the right hand side of the last argument is belongs to .#.
Therefore, for every € > 0 and A € (0,1) we can find N = N(e,A) € N such that
A(e, L) € #,i.e., {x,}is #F — Cauchy sequence in X.

Theorem 5.2. Let (X, F, T) be a PN space such that T(a,a) > a for every a € (0,1) and
# be an admissible ideal. A sequence {x,} in X is #¥ -convergent if and only if it is #*
-Cauchy.

Proof: Necessity: Suppose that {x,} is #* -convergent to £ € X. Let € > 0and A € (0,1)
be given. Since #¥ —limx, =&, we have A={n€N: x, ¢ ,/Vg(g,k)} € #. This implies
that AA={neN: x, € JVg(%, A} € Z(£). Now, by (N4), for every n,m € AS,

€ €
vaen(@ 2 T (v 3)
> T(1-2,1-2)
> 1-A

Hence, {n e N: x,, — x,, € Ny(€,A)} € Z(F#). This implies that {n € N: x,, — x,, ¢
No(e, M)} € %, ie, {x,}is a #F -Cauchy sequence.
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Proof. Sufficiency: Assume that {x,} is a #" -Cauchy sequence. We shall prove that
{x,} is #" -convergent sequence. For this, let {€,} be a strictly decreasing sequence
of positive real numbers such that €, — 0 as p — oco. Since {x,} is a #F -Cauchy
sequence, there exists a strictly increasing sequence {m,} of positive integers such
that

Ap={n€N:xn—me¢%(ep,k)}€ﬂ p=1,2,3,---.

This implies that
0#{neN:x, — X, € Mple,, M} e F(F) p=1,23,---. (5.1)

Let p and q be two positive integers such that p # q. Then by (3), both the sets
fn e N: x, — X, € No(€,,A)} and {n € N: x,, — X, € No(€4,A)} are nonempty

elements of Z(.#). Since Z(#) is a filter on N, therefore
0#{neN: Xp = X, € Mp(e,, Min{neN: Xp = X, € My(eq, M)} € F(H).

Thus, for each p and q with p # g, we can select n,,n, € N such that Xn, = Xy €

Np(€,,A) and Xp, = Xp, € Ng(€,, A). Let € = €, + €,. Then by (N4), we have

Vi~ (€ 2 T(Vy, s, (€,),v5, s, (€4))
> T(1—-1,1-2)

> 1-—A.

This implies that {xmp} isa F—Cauchy sequence and satisfies the Cauchy criterion.
Say lirnxmp = &. Also we have € — 0 as p — 00, so for each € > 0 we can choose

Po € N such that €, < - and
€
Xpn, € JVE(E,?L) for p > p,.

Next we prove that A = {n € N: x, &€ A:(e,A)} C A, = {n € N:x, — X, ¢

Ny(€e,,,A)}. Since A and A, are both in .#, it is sufficient to show that A° D A;O.
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Letn EA;O, then we have

€ €
V@) = T (v Gl o(3)
> T(1-A1-2)
> 1-A

This implies that n € A°. Therefore ACA, . Since A, C .#, we conclude that A C 4.

This proves that the sequence (x,) is .#¥ -convergent to &.
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