(α, β, δ) - Neighborhood for Certain Analytic Functions with Negative Coefficients

B.A. Frasin

Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

Abstract

In this paper, we introduce (α, β, δ)-neighborhoods of analytic functions with negative coefficients. Furthermore, we obtain some interesting results for functions belonging to this neighborhoods. 2000 Mathematics Subject Classifications: 30C45 Key Words and Phrases: Analytic functions, Neighborhood

1. Introduction and definitions

Let \mathscr{T} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathscr{U}=\{z:|z|<1\}$. For a function $f(z) \in \mathscr{T}$, we define

$$
\begin{gathered}
D^{0} f(z)=f(z), \\
D^{1} f(z)=D f(z)=z f^{\prime}(z),
\end{gathered}
$$

and

$$
\begin{aligned}
D^{k} f(z) & =D\left(D^{k-1} f(z)\right) \\
& =z-\sum_{n=2}^{\infty} n^{k} a_{n} z^{n} \quad\left(k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) .
\end{aligned}
$$

The differential operator D^{k} was introduced by Sălăgean [12].

Email address: bafrasin@yahoo.com

Following a recent investigation by Frasin and Darus [6] [see also 1], if $f(z) \in \mathscr{T}$ and $\mu \geq 0$, then we define the (k, μ)-neighborhood for the function $f(z)$ by

$$
\begin{equation*}
\mathscr{N}_{\mu}^{k}(f)=\left\{g \in \mathscr{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{k+1}\left|a_{n}-b_{n}\right| \leq \mu\right\} \tag{2}
\end{equation*}
$$

In particular, for the identity function $e(z)=z$, we immediately have

$$
\begin{equation*}
\mathscr{N}_{\mu}^{k}(e)=\left\{g \in \mathscr{T}: g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}, \sum_{n=2}^{\infty} n^{k+1}\left|b_{n}\right| \leq \mu\right\}, \tag{3}
\end{equation*}
$$

We observe that $\mathscr{N}_{\mu}^{0}(f) \equiv \mathscr{N}_{\mu}(f)$ and $\mathscr{N}_{\mu}^{1}(f) \equiv \mathscr{M}_{\mu}(f)$, where $\mathscr{N}_{\mu}^{k}(f)$ and $\mathscr{M}_{\mu}(f)$ denote, respectively, the μ-neighborhoods of f as defined by Ruscheweyh [11] and Silverman [13]. For further details about the neighborhood of analytic functions see (as examples) the papers in $[2,3,4,7,5,8,9]$.

Very recently, Orhan et al. [10], introduced new definition of (α, δ)-neighborhood for analytic function $f(z)$ in the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{4}
\end{equation*}
$$

In this paper, we introduce the following new definition of (α, β, δ)-neighborhood for a function given by 1.

Definition 1. A function $f(z) \in \mathscr{T}$ is said to be (α, β, δ)-neighborhood for $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathscr{T}$ if it satisfies

$$
\begin{equation*}
\left|e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}-e^{i \beta}\left(D^{k} g(z)\right)^{\prime}\right|<\delta \quad(z \in \mathscr{U}) \tag{5}
\end{equation*}
$$

for some $-\pi \leq \alpha, \beta \leq \pi$ and $\delta>\sqrt{2(1-\cos (\alpha-\beta))}$.
We denote this neighborhood by $(\alpha, \beta, \delta)-\mathcal{N}(g)$.
Now we show some results for functions belonging to $(\alpha, \beta, \delta)-\mathscr{N}(g)$.

2. Main results

In our first theorem, we introduce a sufficient condition to be in $(\alpha, \beta, \delta)-\mathcal{N}(g)$.
Theorem 1. If $f(z) \in \mathscr{T}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right| \leq \delta-\sqrt{2(1-\cos (\alpha-\beta))} \tag{6}
\end{equation*}
$$

for some $-\pi \leq \alpha, \beta \leq \pi$ and $\delta>\sqrt{2(1-\cos (\alpha-\beta))}$ then $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$.

Proof. We observe that

$$
\begin{aligned}
\left|e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}-e^{i \beta}\left(D^{k} g(z)\right)^{\prime}\right| & =\left|e^{i \alpha}-e^{i \beta}-\sum_{n=2}^{\infty} n^{k+1}\left(e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right) z^{n-1}\right| \\
& \leq\left|e^{i \alpha}-e^{i \beta}\right|+\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right||z|^{n-1} \\
& \leq \sqrt{2(1-\cos (\alpha-\beta))}+\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|
\end{aligned}
$$

If

$$
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right| \leq \delta-\sqrt{2(1-\cos (\alpha-\beta))}
$$

then we have $\left|e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}-e^{i \beta}\left(D^{k} g(z)\right)^{\prime}\right|<\delta(z \in \mathscr{U})$. This shows that $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$.

Corollary 1. Let $f(z) \in \mathscr{T}$. Then for $0<\mu \leq \delta$, we have $\mathscr{N}_{\mu}^{k}(g) \subseteq(\alpha, \alpha, \delta)-\mathscr{N}_{\delta}^{k}(g)$.
Proof. Assuming that $f(z) \in \mathscr{N}_{\mu}^{k}(g)$. We find from the definition (2) that

$$
\sum_{n=2}^{\infty} n^{k+1}\left|a_{n}-b_{n}\right| \leq \mu
$$

Now

$$
\begin{aligned}
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \alpha} b_{n}\right| & =\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha}\right|\left|a_{n}-b_{n}\right| \\
& =\sum_{n=2}^{\infty} n^{k+1}\left|a_{n}-b_{n}\right| \\
& \leq \delta .
\end{aligned}
$$

Thus by Theorem 1, we have $f(z) \in(\alpha, \alpha, \delta)-\mathscr{N}(g)$.
Corollary 2. If $f(z) \in \mathscr{T}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k+1}| | a_{n}\left|-\left|b_{n}\right|\right| \leq \delta-\sqrt{2(1-\cos (\alpha-\beta))} \tag{7}
\end{equation*}
$$

for some $-\pi \leq \alpha, \beta \leq \pi, \delta>\sqrt{2(1-\cos (\alpha-\beta))}$ and $\arg a_{n}-\arg b_{n}=\beta-\alpha(n=2,3,4, \ldots)$, then $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$.

Proof. Let $\arg a_{n}-\arg b_{n}=\beta-\alpha$ and $\arg a_{n}=\theta_{n}$. Then $\arg b_{n}=\theta_{n}+\alpha-\beta$. Therefore,

$$
e^{i \alpha} a_{n}-e^{i \beta} b_{n}=\left|a_{n}\right| e^{i\left(\alpha+\theta_{n}\right)}-\left|b_{n}\right| e^{i\left(\alpha+\theta_{n}\right)}
$$

which implies

$$
\begin{equation*}
\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|=\left|\left|a_{n}\right|-\left|b_{n}\right|\right| . \tag{8}
\end{equation*}
$$

From the hypotheses (7) and (8), we get (6). Thus by Theorem 1, it follows that $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$.

Furthermore, from Theorem 1, we easily get
Corollary 3. If $f(z) \in \mathscr{T}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k+1}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \delta-\sqrt{2(1-\cos (\alpha-\beta))} \tag{9}
\end{equation*}
$$

for some $-\pi \leq \alpha, \beta \leq \pi$ and $\delta>\sqrt{2(1-\cos (\alpha-\beta)}$ then $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$.
Next, we prove
Theorem 2. Iff $(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$ and $\arg \left(e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right)=(n-1) \varphi(n=2,3,4, \ldots)$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|>\delta+\cos \alpha-\cos \beta \tag{10}
\end{equation*}
$$

Proof. Let $f(z) \in(\alpha, \beta, \delta)-\mathscr{N}(g)$ and $\arg z=-\varphi$. Then for all $z \in \mathscr{U}$, we have

$$
\begin{aligned}
\left|e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}-e^{i \beta}\left(D^{k} g(z)\right)^{\prime}\right|= & \left.\left|\begin{array}{l}
\left(e^{i \alpha}-e^{i \beta}\right)-\sum_{n=2}^{\infty} n^{k+1}\left(e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right) z^{n-1} \mid \\
=
\end{array}\right| \begin{array}{l}
\left(e^{i \alpha}-e^{i \beta}\right)-\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right| e^{i(n-1) \varphi}|z|^{n-1} e^{-i(n-1) \varphi} \mid \\
=
\end{array}\left|\left(e^{i \alpha}-e^{i \beta}\right)-\sum_{n=2}^{\infty} n^{k+1}\right| e^{i \alpha} a_{n}-\left.e^{i \beta} b_{n}| | z\right|^{n-1} \right\rvert\, \\
= & \left(\left[(\cos \alpha-\cos \beta)-\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right||z|^{n-1}\right]^{2}+\right. \\
& \left.(\sin \alpha-\sin \beta)^{2}\right)^{1 / 2} \\
< & \delta
\end{aligned}
$$

for $z \in \mathscr{U}$. This implies that

$$
(\cos \alpha-\cos \beta)-\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right||z|^{n-1}<\delta
$$

for $z \in \mathscr{U}$. Letting $|z| \rightarrow 1^{-}$, we have

$$
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|>\delta+\cos \alpha-\cos \beta
$$

Finally, we prove
Theorem 3. If $f(z) \in \mathscr{T}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|<\mu-\sqrt{2(1-\cos (\alpha-\beta))} \tag{11}
\end{equation*}
$$

for some $-\pi \leq \alpha, \beta \leq \pi$ and $\mu>\sqrt{2(1-\cos (\alpha-\beta))}$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}}{e^{i \beta}\left(D^{k} g(z)\right)^{\prime}}\right)>0 \tag{12}
\end{equation*}
$$

where $g(z) \in \mathscr{N}_{1-\mu}^{k}(e)$.
Proof. Note that

$$
\begin{aligned}
\left|\frac{e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}}{e^{i \beta}\left(D^{k} g(z)\right)^{\prime}}-1\right| & \leq \frac{\sqrt{2(1-\cos (\alpha-\beta))}+\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|}{1-\sum_{n=2}^{\infty} n^{k+1} b_{n}} \\
& \leq \frac{\sqrt{2(1-\cos (\alpha-\beta))}+\sum_{n=2}^{\infty} n^{k+1}\left|e^{i \alpha} a_{n}-e^{i \beta} b_{n}\right|}{\mu} .
\end{aligned}
$$

Hence by the condition (11), we have

$$
\left|\frac{e^{i \alpha}\left(D^{k} f(z)\right)^{\prime}}{e^{i \beta}\left(D^{k} g(z)\right)^{\prime}}-1\right|<1
$$

This evidently proves Theorem 3.

References

[1] O.P. Ahuja and M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. Japonica 51. No.3, 487-492. 2000.
[2] O. Altintaş, Neighborhoods of certain p-valently analytic functions with negative coefficients, Appl. Math. Comp., 187, 47-53. 2007.
[3] O. Altintaş, Ö. Özkan and H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13 (3), 63-67. 2000.
[4] M.K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, IJMMS., Article ID 38258, pp. 1-6. 2006.
[5] B.A. Frasin, Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Aust. J. Math. Ana. Appl.,Vol.7, Issue1, Article 6, pp. 1-7, 2010.
[6] B.A. Frasin and M. Darus, Integral means and neighborhoods for certain analytic univalent functions with negative coefficients, Soochow J. Math. Comp., Vol. 30 No.3, 217-223. 2004.
[7] B.S. Keerthi, B.A. Stephen, A. Gangadharan and S. Sivasubramanian, Neighborhoods of certain classes of analytic functions with negative coefficients, IJMMS., Article ID 38258, pp. 1-6. 2006.
[8] H. Orhan, E. Kadioğlu, Neighborhoods of a class of analytic functions with negative coefficients, Tamsui Oxford Journal of Math. Sci., 20 (2) 135-142. 2004.
[9] H. Orhan, M. Kamali, Neighborhoods of a class of analytic functions with negative coefficients, Acta Mathematica Academiae Paedagogiace Nyiregyhaziensi, 4. 1 (21), 55-61. 2005.
[10] H. Orhan, E. Kadioğlu and S. Owa, (α, δ)-Neighborhood for Certain Analytic Functions, Proceeding of international symposium "Geometric Function Theory and Applications" Istanbul Kultur University, 207-213. 2007.
[11] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math.Soc. 81(4), 521527. 1981.
[12] G. Sălăgean, Subclasses of univalent functions, in " Complex Analysis: Fifth RomanianFinnish Seminar," Part I (Bucharest, 1981), pp.362-372, Lecture Notes in Mathematics, Vol. 1013, Springer-Verlag, Berlin/ New York, 1983.
[13] H. Silverman, Neighborhoods of class of analytic functions, Far East J. Math. Sci., 3(2), 165-169. 1995.

