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1. Introduction

The concept of fractional derivative and the corresponding fractional Voltera integral are non-
local [14] compared to the usual standard notions. As a result, the change of initial value in time
from zero to any t0 > 0 changes the fractional dynamic systems which needs to be considered
depending on the requirement of the properties of solutions of such equations. Recently [9]- [12],
we have investigated the fundamental theory of the initial value problem for fractional differen-
tial equations involving Riemann-Liouville differential operators of arbitrary order 0 < q < 1,
because such dynamic systems are important in modeling a variety of real world problems [1]-
[6], [13]- [15]. We followed the classical approach of the theory of differential equations of inte-
ger order in order to compare and contrast the differences and intricacies that might result in the
development [7].

In this paper, we discuss the theory of fractional differential equations in a Banach Space par-
allel to [8] utilizing the initial time t0 ≥ 0. We prove general existence and uniqueness, continuous
dependence, fractional differential inequalities in cones and flow invariance. Although the devel-
oped theory includes as a special case, fractional differential systems in Rn, it does not cover the
case when each component or a group of components of the vector in Rn, has a different arbi-
trary order. This case needs a different consideration such as employed in the study of large scale
systems, which will be taken up later.
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2. Uniqueness and Continuous Dependence

Let E be a real Banach Space with the norm | · |. Let 0 < q < 1 and p = 1 − q. We let
Cp([t0, t0 + a], E) = [u : C((t0, t0 + a], E) and (t − t0)1−qu(t) ∈ C([t0, t0 + a], E)]. Let us
consider the initial value problem (IVP) for fractional differential equations in E given by

Dqx = f(t, x), x(t)(t− t0)1−q|t=t0 = x0, (2.1)

where f ∈ C[R0, E] with R0 = [(t, x) : t0 ≤ t ≤ t0 + a and B(x0, b)], Dqx is the fractional
derivative of x of order 0 < q < 1 and x0(t) = x0(t−t0)q−1

Γ(q) . Since f is assumed continuous, the
IVP (2.1) is equivalent to the following fractional Volterra integral

x(t) = x0(t) +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s))ds, t0 ≤ t ≤ t0 + a; (2.2)

that is, every solution of (2.2) is a solution of (2.1) and vice versa. Here and in what follows Γ is
the Gamma function.
Remark 2.1: When we change the initial condition in time from zero to t0 ≥ 0, we need to change
the same in (2.2). In some earlier papers [9]- [11], we did use t0 = 0 for convenience. However,
in dealing with, for example, the continuous dependence of solutions with respect to initial values
(t0, x0), as well as discussing the qualitative theory including Lyapunov stability theory, we need
to employ nonzero initial time t0 > 0 instead of only t0 = 0. The difference in such a change
appears only when we have to utilize the Gamma and Beta functions, in which case, the limits of
the transformed integral is required to be zero to one. A suitable transformation does the trick, that
is, setting s = t0 + (t− t0)σ.

We need the following known results [10], [11] before we proceed further.
Lemma 2.1: Let m : R+ → R be locally Hölder continuous such that for any t1 ∈ [t0,∞), one
has

m(t1) = 0 and m(t) ≤ 0 or m(t) ≥ 0 for t0 ≤ t ≤ t1.

Then it follows that Dqm(t1) ≥ 0 or Dqm(t1) ≤ 0 respectively.
Lemma 2.2: Let {xε(t)} be a family of continuous functions on [t0, t0 +T ], for each ε > 0 where
Dqxε(t) = f(t, xε(t)), x0

ε = xε(t)(t − t0)1−q|t=t0 and |f(t, xε(t))| ≤ M for t0 ≤ t ≤ t0 + T .
Then the family {xε(t)} is equicontinuous on t0 ≤ t ≤ t0 + T .
Lemma 2.3: Assume that g ∈ C[Ω, R] where Ω is an open (t, u)-set in R2 and (t0, u0) ∈ Ω.
Suppose that [t0, t0 + a) is the largest interval of existence of the maximal solution r(t) of Dqu =
g(t, u), u(t)(t − t0)1−q|t=t0 = u0. Let [t0, t1] be a compact interval of [t0, t0 + a). Then there
is an ε0 > 0 such that for 0 < ε < ε0, the maximal solution r(t, ε) of Dqu = g(t, u) + ε,
u(t)(t− t0)1−q + ε|t=t0 = u0 + ε exists on [t0, t1] and limε→∞ r(t, ε) = r(t) uniformly on [t0, t1].
Lemma 2.4: Assume that m : [t0, t0 + a] → R+ be locally Hölder continuous, g ∈ C([t0, t0 +
a]×R+, R+) and for t0 ≤ t ≤ t0 + a,

Dqm(t) ≤ g(t,m(t)), m0 = m(t)(t− t0)1−q|t=t0 .

Let r(t) be the maximal solution of

Dqu = g(t, u), u(t)(t− t0)1−q|t=t0 = u0 ≥ 0,
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existing on [t0, t0 + a]. Then we have

m(t) ≤ r(t), t0 ≤ t ≤ t0 + a.

We are now in a position to prove the following general existence and uniqueness result.
Theorem 2.1: Assume that

(a) f ∈ C(R0, E) and |f(t, x)| ≤ M0 on R0;

(b) g ∈ C([t0, t0 + a]× [0, 2b], R+), g(t, u) ≤ M1 on [t0, t0 + a]× [0, 2b], g(t, 0) ≡ 0, g(t, u)
is nondecreasing in u for each t and u(t) ≡ 0 is the only solution of

Dqu = g(t, u), u(t)[t− t0)1−q|t=t0 = 0, (2.3)

on [t0, t0 + a];

(c) |f(t, x)− f(t, y)| ≤ g(t, |x− y|) on R0.

Then, the successive approximation defined by

xn+1(t) = x0(t) +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, xn(s))ds, n = 0, 1, 2, ... (2.4)

on [t0, t0 + α], where α = min
(

a,
[

bΓ(q+1)
M

] 1
q

)
, M = max(M0,M1), are continuous and

converge uniformly to the unique solution x(t) of the IVP (2.1) on [t0, t0 + α].
Proof: For t0 ≤ t1 ≤ t2 ≤ t0 + α, we find

|x1(t1)− x0(t1)− x1(t2) + x0(t2)| ≤ M

Γ(q)

∣∣∣∣
∫ t

t0

[(t1 − s)q−1 − (t2 − s)q−1]ds +
∫ t2

t1

(t2 − s)q−1ds

∣∣∣∣

≤ M

Γ(q + 1)
[(t1 − t0)q − (t2 − t0)q + 2(t2 − t1)q]

≤ 2M

Γ(q + 1)
(t2 − t1)q < ε,

provided |t2 − t1| < δ, where δ =
[

εΓ(q+1)
2M

] 1
q , proving that x1(t) is continuous on [t0, t0 + α].

Similarly,

|x1(t)− x0(t)| ≤ 1
Γ(q)

∫ t

t0

(t− s)q−1|f(s, x0)|ds ≤ M(t− t0)q

Γ(q + 1)
≤ Mαq

Γ(q + 1)
≤ b.

Hence it is easily seen by induction that the successive approximations are continuous and satisfy
|xn(t)− x0| ≤ b, n = 0, 1, 2, 3, ...

We shall next define the successive approximations for the IVP (2.3) as follows:

u0(t) =
M(t− t0)q

Γ(q + 1)

un+1 =
1

Γ(q)

∫ t

t0

(t− s)q−1g(s, un(s))ds, t0 ≤ t ≤ t0 + α. (2.5)



V.Lakshmikantham, J.Devi / Eur. J. Pure Appl. Math, 1 (2008), (38-45) 41

Since g(t, u) is assumed to be nondecreasing in u for each t, an easy induction shows that the
successive approximations (2.5) are well defined and satisfy

0 ≤ un+1(t) ≤ un(t), t0 ≤ t ≤ t0 + α.

Moreover, |Dqun(t)| = g(t, un−1(t)) ≤ M and therefore, we can conclude by Ascoli-Arzela
theorem and the monotonicity of the sequence {un(t)} that limn→∞ un(t) = u(t) uniformly on
[t0, t0+α]. It is also clear that u(t) satisfies the IVP (2.3) and hence by (b) u(t) ≡ 0 on [t0, t0+α].
To get the equicontinuity of the sequence {un(t)}, one can use Lemma 2.2.

Now from the earlier estimate

|x1(t)− x0(t)| ≤ M(t− t0)q

Γ(q + 1)
= u0(t).

Assume that |xk(t)− xk−1(t)| ≤ uk−1(t) for some given k. Since

|xk+1(t)− xk(t)| = 1
Γ(q)

∣∣∣∣
∫ t

t0

(t− s)q−1f(s, xk(s))ds−
∫ t

t0

(t− s)q−1f(s, xk−1(s))ds

∣∣∣∣

≤ 1
Γ(q)

∫ t

t0

(t− s)q−1|f(s, xk(s))− f(s, xk−1(s))|ds,

using condition (c) and the monotone character of g(t, u), we get

|xk+1(t)− xk(t)| ≤ 1
Γ(q)

∫ t

t0

(t− s)q−1g(s, |xk(s)− xk−1(s)|)ds = uk(t).

Thus by induction, the inequality

|xn+1(t)− xn(t)| ≤ un(t), t0 ≤ t ≤ t0 + α,

holds for all n. Also,

|Dqxn+1(t)−Dqxn(t)| ≤ |f(t, xn(t))− f(t, xn−1(t))|
≤ g(t, |xn(t)− xn−1(t)|) ≤ g(t, un(t)).

Let n ≤ m. Then we can easily obtain

D+q|xn(t)− xm(t)| ≤ |Dqxn(t)−Dqxm(t)|
≤ g(t, un−1(t)) + g(t, um−1(t)) + g(t, |xn(t)− xm(t)|).

Since un+1(t) ≤ un(t) for all n, it follows that

D+q|xn(t)− xm(t)| ≤ g(t, |xn(t)− xm(t)|) + 2g(t, un−1(t)),

where D+q denotes the corresponding Dini derivative to D+. An application of comparison result
Lemma 2.4 gives

|xn(t)− xm(t)| ≤ rn(t), t0 ≤ t ≤ t0 + α,
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where rn(t) is the maximal solution of the IVP

Dqv = g(t, v) + 2g(t, un−1(t)), v(t)(t− t0)1−q|t=t0 = 0,

for each n. Since as n →∞, 2g(t, un−1(t)) → 0 uniformly on [t0, t0 + α], it follows by Lemma
2.3 that rn(t) → 0 uniformly on [t0, t0 + α]. This implies that {xn(t)} converges uniformly to
x(t) and it is now easy to show that x(t) is a solution of IVP (2.1).

To show that this solution x(t) is unique, let y(t) be another solution of the IVP (2.1) on
[t0, t0 + α]. Define m(t) = |x(t)− y(t)| and note that m(t0) = 0. Then D+qm(t) ≤ |Dqx(t)−
Dqy(t)| ≤ |f(t, x(t)) − f(t, y(t))| ≤ g(t,m(t)), using condition (c). Again applying the com-
parison result Lemma 2.4, we have

m(t) ≤ r(t), t0 ≤ t ≤ t0 + α,

where r(t) is the maximal solution of IVP (2.3). By assumption (b), r(t) ≡ 0 and this proves that
x(t) = y(t) on [t0, t0 + α]. Hence the proof is complete.
Corollary 2.1: The function g(t, u) = Lu, L > 0 is admissible in Theorem 2.1.

Let us note first that when the initial time is changed the corresponding fractional differential
equation becomes different because the notion of fractional derivative is nonlocal. We are therefore
content with proving the continuous dependence of solutions x(t, t0, x0) of IVP (2.1) with respect
to x0 only.
Theorem 2.2: Let f ∈ C(R+ ×E,E) and for (t, x) = R+ × E,

|f(t, x)− f(t, y)| ≤ g(t, |x− y|) (2.6)

where g ∈ C(R2
+, R+). Assume that u(t) ≡ 0 is the unique solution of the fractional differential

equation
Dqu = g(t, u) (2.7)

with u(t)(t− t0)1−q|t=t0 = 0. Then, if the solutions u(t, t0, u0) where u0 = u(t)(t− t0)1−q|t=t0

of (2.7) are continuous with respect to the initial condition u0, the solutions x(t, t0, x0) of (2.1)
are unique and continuous relative to x0.
Proof: Since uniqueness follows from Theorem 2.1, we have to consider continuity part only.
To the end, let x(t, t0, x0), y(t, t0, y0) be the two solutions of (2.1) through (t0, x0), (t0, y0)
respectively. Defining m(t) = |x(t, t0, x0)− y(t, t0, y0)|, condition (2.6) implies the inequality

D+qm(t) ≤ g(t,m(t)),

and by Lemma 2.4, we get m(t) ≤ r(t, t0, |x0 − y0|), t ≥ t0, where r(t, t0, u0) is the maximal
solution of (2.7) such that u0 = |x0 − y0|. Since the solutions u(t, t0, u0) are assumed to be con-
tinuous relative to u0, it follows that limx0→y0 r(t, t0, |x0 − y0|) = r(t, t0, 0) ≡ 0 by hypothesis.
It then follows that limx0→y0 x(t, t0, x0) = y(t, t0, y0), proving the continuity with respect to x0.
The proof is complete.
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3. Flow Invariance and Inequalities in Cones

The definition of the fractional derivative of an arbitrary order 0 < q < 1 of a function
x ∈ C([t0,∞), E) is given by [14]

Dqx(t) = lim
h→0

nh=(t−t0)

h−q
n∑

η=0

(−1)η(q
η)× (t− ηh) = lim

h→0
nh=(t−t0)

x(q)h(t), (3.1)

where

x
(q)
h (t) = h−q

n∑

η=0

(−1)η(q
η)× (t− ηh). (3.2)

This implies, on expanding

x
(q)
h (t) =

1
hq

[
x(t)− qx(t− h) +

q(q − 1)
2!

x(t− 2h)− q(q − 1)(q − 2)
3!

x(t− 3h) + ...

]

=
1
hq

[x(t)− s(t, h, q)]. (3.3)

Let us consider the IVP for fractional differential equation

Dqx = f(t, x), x(t)(t− t0)1−q|t=t0 = x0 ∈ F, (3.4)

where f ∈ C([t0,∞)×E, E) and F ⊂ E is a closed set. We define

lim
h→∞

1
hq

d[x− hqf(t, x), F ] = 0, (3.5)

where d(x, F ) = infy∈F |x − y|. The set F is said to be flow invariant relative to f , if every
solution x(t) of IVP (3.4) on [t0,∞) is such that x(t) ∈ F for t0 ≤ t < ∞. A set A ⊂ E is called
a distance set, if to each x ∈ E there corresponds a point y ∈ A such that d(x,A) = |x − y|. A
function g ∈ ([t0,∞) × R+, R+) is said to be a uniqueness function, if the following holds: if
m ∈ C([t0,∞), R+) is such that m(t)(t − t0)1−q|t=t0 ≤ 0 and Dqm(t) ≤ g(t,m(t)), wherever
m(t) > 0, then m(t) ≤ 0 for t0 ≤ t < ∞.

We are now in a position to prove the following result on flow invariance of F .
Theorem 3.1: Let F ⊂ E be a closed and distance set. Assume further that

(i) limh→0
1
hq d[x− hqf(t, x), F ] = 0, t ∈ [t0,∞), x ∈ ϕF

(ii) |f(t, x)− f(t, y)| ≤ g(t, |x− y|), x ∈ E − F, y ∈ ϕF , where g(t, u) is a uniqueness
function.

Then F is flow invariant with respect to f .
Proof: Let x(t) be a solution of (3.4). Suppose that x(t) ∈ F for t0 ≤ t ≤ t0 + a, where
t0 + a < ∞ is maximal, that is, x(t) leaves the set F at t = t0 + a for the first time. Let
t1 ∈ (t0 + a,∞) and x(t1) 6∈ F and let y0 ∈ ϕF be such that d(x(t1), F ) = |x(t1) − y0|. Set
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for t ∈ [t0,∞) m(t) = d[x(t), F ] and v(t) = |x(t) − y0|. For sufficiently small h > 0, letting
x = x(t1), we have

d[s(t1, h, q), F ] ≥ d[x− hqf(t1, x), F ]− ε(hq)
= d[x− y0 − hq(f(t1, x)− f(t1, y0)), F ]
− d[x− y0 − hq(f(t1, x)− f(t1, y0)), F ]
+ d[x− hqf(t1, x), F ]− ε(hq)
≥ d[x− y0 − hq(f(t1, x)− f(t1, y0)), F ]− d[y0 − hqf(t1, y0, F )]− ε(hq)
≥ −hq|f(t1, x)− f(t1, y0)| − ε(hq) + d[x, F ].

(3.6)

Since m(t1) = v(t1) > 0 and m(t1) = d[x, F ] = |x(t1)− y0|, we find

|x(t1)− y0| − d[s(t1, h, q), F ] ≤ hq|f(t1, x)− f(t1, y0)| − ε(hq),

which yields the inequality
Dqm(t1) ≤ g(t1,m(t1)).

This gives, in view of the facts that g is the uniqueness function and m(t)(t− t0)1−q|t=t0 = 0, the
relation m(t) ≤ 0, t0 ≤ t < ∞. But, d[x(t1), F ] = m(t1) > 0, which is a contradiction. Hence
the set F is flow invariant relative to f(t, x) and the proof is complete.

We shall next develop the theory fractional differential inequalities. To do this, we need the
concept of a cone which induces a partial order in E. A proper subset k of E is said to be a cone if
λk ⊂ k, λ ≥ 0, k + k ⊂ k, k = k and k ∩ {−k} = 0, where 0 denotes the null element of E and
k is the closure of k. Let k0 denote the interior of k and assume that k0 is nonempty. The cone k
induces the order relations in E defined by

x ≤ y iff y − x ∈ k and x < y iff y − k ∈ k0.

Let k∗ be the set of all continuous linear functionals c on E such that cx ≥ 0 for all x ∈ k and let
k∗0 be the set such that cx > 0 for all x ∈ k0. A function f : E → E is said to be quasimonotone
nondecreasing if x ≤ y and cx = cy for some c ∈ k∗0 , then cf(x) ≤ cf(y).
Theorem 3.2: Let k be a cone with nonempty interior. Assume that

(a) u, v ∈ C[R+, E] such that Dqv, Dqu exist, f ∈ C[R+×E,E] and f(t, x) is quasimonotone
nondecreasing in x for each t ∈ R+;

(b) Dqu(t)− f(t, u(t)) < Dqv(t)− f(t, v(t)), t ∈ [t0,∞).

Then v0 < w0 implies that u(t) < v(t), t0 ≤ t < ∞.
Proof: Suppose that the assertion of the Theorem is false. Then there exists a t1 > t0 such that

v(t1)− u(t1) ∈ ϕk and v(t)− u(t) ∈ k0, t ∈ [t0, t1).

By Mazur’s Lemma, there exists a c ∈ k∗0 with cv(t1)−cu(t1) = 0. Setting m(t) = c(v(t)−u(t)),
we see that m(t) > 0 for t0 ≤ t ≤ t1 and m(t1) = 0. Consequently, by Lemma 2.1, we
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get Dqm(t1) ≤ 0. At t = t1, we have u(t1) ≤ v(t1) and c(u(t1)) = c(v(t1)). Hence using
quasimonotone property of f and (b), it follows that

Dqm(t1) = c(Dqv(t1)−Dqu(t1)) > c(f(t1, v(t1))− f(t1, u(t1))) ≥ 0.

This contradiction proves the Theorem.
Remark 3.1: Observe that theorem 3.1 is true when F = k. Although k0 is not assumed to have
nonempty interior, Theorem 3.1 requires that k must be a distance set. This, however, a weaker
assumption because the cones in Lp-spaces are distance sets whose interior is empty. We note also
that every closed convex set in a reflexive Banach space is a distance set.
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