EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 4, No. 3, 2011, 237-243 ISSN 1307-5543 – www.ejpam.com

On I_{s^*g} -Continuous Functions in Ideal Topological Spaces

M. Khan 1,* , T. Noiri 2

Abstract. By using I_{s^*g} -closed sets due to Khan and Hamza [5], we introduce the notion of I_{s^*g} -continuous functions in ideal topological spaces. We obtain several properties of I_{s^*g} -continuity and the relationship between this function and other related functions.

2000 Mathematics Subject Classifications: 45A05, 45A10

Key Words and Phrases: local-function, I_{s^*g} -closed set, I_{s^*g} -continuous, strong I_{s^*g} -continuous, weakly I_{s^*g} -continuous, $T_{1/2}$ -space.

1. Introduction

Khan and Hamza [5] introduced and investigated the notion of I_{s^*g} -closed sets in ideal topological spaces as a generalization of I_g -closed sets due to Dontchev et al. [2]. In this paper, by using I_{s^*g} -closed sets we introduce I_{s^*g} -continuous functions, strongly I_{s^*g} -continuous functions and weakly I_{s^*g} -continuous functions. It turns out that weak I_{s^*g} -continuity is weaker than weak I-continuity defined by Ackgoz et al. [1] . We obtain several properties of I_{s^*g} -continuity and the relationship between this function and other related functions.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , cl(A) and Int(A) denote the closure and interior of A in (X, τ) , respectively. An ideal I on a set X is a non-empty collection of subsets of X which satisfies the following properties:

- (1) $A \in I$ and $B \subset A$ implies $B \in I$,
- (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

Email addresses: profmoiz001@yahoo.com (M. Khan), t.noiri@nifty.com (T. Noiri)

¹ Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, PAKISTAN

² 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN

^{*}Corresponding author.

An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$, where, $\tau(x) = \{U \in \tau : x \in U\}$, is called the local function of A with respect to I and τ [4, 6]. We simply write A^* or A_X^* instead of $A^*(I,\tau)$ and B_A^* for $B^*(I_A,\tau_A)$ in case there is no chance for confusion. For every ideal topological space (X, τ, I) , there exists a topology $\tau^*(I)$, finer than τ , generated by the base $\beta(I,\tau) = \{U - J : U \in \tau \text{ and } J \in I\}$. It is known in [4] that $\beta(I,\tau)$ is not necessarily a topology. When there is no ambiguity, $\tau^*(I)$ is denoted by τ^* . Recall that *A* is said to be ()*-dense in itself (resp. τ^* -closed, ()*-perfect) if $A \subset A^*$ (resp. $A^* \subset A$, $A = A^*$). For a subset A of X, $cl^*(A)$ and $Int^*(A)$ will, respectively, denote the closure and interior of A in (X, τ^*) . A subset A of X is said to be semi-open [7] if there exists an open set U in X such that $U \subset A \subset cl(U)$. The complement of a semi-open set is said to be semi-closed. A subset A is said to be semi-regular if A is semi-open and semi-closed. A subset A of X is said to be generalized closed [8] (briefly, g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X. The complement of a g-closed set is said to be g-open. A space X is called a $T_{1/2}$ -space [3] if every g-closed set in X is closed. Recall that if (X, τ, I) is an ideal topological space and A is a subset of X, then (A, τ_A, I_A) is an ideal topological space, where τ_A is the relative topology on $A \text{ and } I_A = \{A \cap J : J \in I\}.$

3. $I_{s*}g$ -Closed Sets

The notion of I_{s^*g} -closed sets was defined by Khan and Hamza [5]. In this section we will obtain further properties of I_{s^*g} -closed sets in ideal topological spaces.

Definition 1. A subset A of a space (X, τ, I) is said to be I_{s^*g} -closed [5] if $A^* \subset U$ whenever $A \subset U$ and U is semi-open in X. The complement of an I_{s^*g} -closed set is said to be I_{s^*g} -open, equivalently if $F \subset Int^*(A)$ whenever $F \subset A$ for every semi-closed set F in X.

Lemma 1. Every open set is I_{s^*g} -open.

Lemma 2 ([Lemma 2.7, 2]). Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. Then $B^*(I_A, \tau_A) = B^*(I, \tau) \cap A$.

Lemma 3. If U is open and A is I_{s^*g} -open, then $U \cap A$ is I_{s^*g} -open.

Proof. We prove that $X-(U\cap A)$ is I_{s^*g} -closed. Let $X-(U\cap A)\subset G$ where G is semi-open in X. This implies $(X-U)\cup (X-A)\subset G$. Since $(X-A)\subset G$ and (X-A) is I_{s^*g} -closed in X, therefore $(X-A)^*\subset G$. Moreover X-U is closed and contained in G, therefore, $(X-U)^*\subset cl(X-U)\subset G$. Hence $(X-(U\cap A))^*=((X-U)\cup (X-A))^*=(X-U)^*\cup (X-A)^*\subset G$. This proves that $U\cap A$ is I_{s^*g} -open.

Theorem 1. Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. If B is an I_{s^*g} -closed set relative to A, where A is open and I_{s^*g} -closed in X, then B is I_{s^*g} -closed in X.

Proof. Let $B \subset G$, where G is semi-open in X. Then $B \subset A \cap G$ and $A \cap G$ is semi-open in X and hence in A. Therefore $B_A^* \subset A \cap G$. It follows from Lemma 2 that $A \cap B_X^* \subset A \cap G$ or

 $A \subset G \cup (X - B_X^*)$. By Theorem 2.3 of [4], B_X^* is closed in X and $G \cup (X - B_X^*)$ is semi-open in X. Since A is I_{s^*g} -closed in X, $A_X^* \subset G \cup (X - B_X^*)$ and hence $B^* = B^* \cap A^* \subset B^* \cap [G \cup (X - B_X^*)] \subset G$. Therefore, we obtain $B_X^* \subset G$. This proves that B is I_{s^*g} -closed in X.

Theorem 2. Let A be a semi-open set in a space (X, τ, I) and $B \subset A \subset X$. If B is I_{s^*g} -closed in X, then B is I_{s^*g} -closed relative to A.

Proof. Let $B \subset U$ where U is semi-open in A. Then there exists a semi-open set V in X such that $U = A \cap V$. Thus $B \subset A \cap V$. Now $B \subset V$ implies that $B_X^* \subset V$. It follows that $A \cap B_X^* \subset A \cap V$. By Lemma 2, $B_A^* \subset A \cap V = U$. This proves that B is a I_{s^*g} -closed relative to A.

Corollary 1. Let $B \subset A \subset X$ and A be open and I_{s^*g} -closed in (X, τ, I) . Then B is I_{s^*g} -closed relative to A if and only if B is I_{s^*g} -closed in X.

Theorem 3. If B is a subset of a space (X, τ, I) such that $A \subset B \subset A^*$ and A is I_{s^*g} -closed in X, then B is also I_{s^*g} -closed in X.

Proof. Let G be a semi-open set in X containing B, then $A \subset G$. Since A is I_{s^*g} -closed, therefore $A^* \subset G$ and hence $B^* \subset (A^*)^* \subset A^* \subset G$. This implies that B is I_{s^*g} -closed in X.

Theorem 4. Let $B \subset A \subset X$ and suppose that B is I_{s^*g} -open in X and A is a semi-regular set in X. Then B is I_{s^*g} -open relative to A.

Proof. We prove that A-B is I_{s^*g} -closed relative to A. Let $U \in SO(A)$ such that $(A-B) \subset U$. Now $(A-B) \subset (X-B) \subset U \cup (X-A)$, where $U \cup (X-A) \in SO(X)$ because $A \in SR(X)$. Since X-B is I_{s^*g} -closed in X, therefore $(X-B)_X^* \subset U \cup (X-A)$ or $(X-B)_X^* \cap A \subset (U \cup (X-A)) \cap A \subset U$. By Lemma 2, $(A-B)_A^* = (A-B)_X^* \cap A \subset (X-B)_X^* \cap A \subset U$ and hence $(A-B)_A^* \subset U$. This proves that B is I_{s^*g} -open relative to A.

Theorem 5. Let $B \subset A \subset X$. B is I_{s^*g} -open in A and A is open in X then B is I_{s^*g} -open in X.

Proof. Let F be a semi-closed subset of B in X. Since A is open, therefore $F \in SC(A)$. Since B is I_{s^*g} -open in A, therefore $F \subset Int_A^*(B) = A \cap Int_X^*(B) \subset Int_X^*(B)$. This proves that B is I_{s^*g} -open in X.

4. $I_{s*}g$ -Continuous Functions

Definition 2. A function $f:(X,\tau,I)\to (Y,\Omega,J)$ is said to be weakly I-continuous [1] if for each $x\in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U)\subset cl^*(V)$.

Definition 3. A function $f:(X,\tau,I)\to (Y,\Omega)$ is said to be I_{s^*g} -continuous if for every $U\in\Omega$, $f^{-1}(U)$ is I_{s^*g} -open in (X,τ_X,I) .

Remark 1. Every continuous function is I_{s^*g} -continuous and the converse need not be true as seen from Example 2 (below).

Definition 4. A function $f:(X,\tau)\to (Y,\Omega,J)$ is said to be strongly I_{s^*g} -continuous if for every I_{s^*g} -open set U in Y, $f^{-1}(U)$ is open in X.

Remark 2. Every strongly I_{s^*g} -continuous function is continuous but the converse is not true in general.

Example 1. Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let $Y = \{a, b, c, d\}$ with $\Omega = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $J = \{\phi, \{a\}\}$. Let $f : (X, \tau) \to (Y, \Omega, J)$ be defined by f(a) = b, f(b) = a, f(c) = a and f(d) = d. Then f is continuous. Let $U = \{a, c\}$ then U is I_{s^*g} -open in Y but $f^{-1}(U) = \{a, c\}$ is not open in X. Hence f is not strongly I_{s^*g} -continuous.

Definition 5. A function $f:(X,\tau,I)\to (Y,\Omega,J)$ is said to be weakly I_{s^*g} -continuous if for each $x\in X$ and each open set V in Y containing f(x), there exists an I_{s^*g} -open set U containing x such that $f(U)\subset cl^*(V)$.

- **Remark 3.** (1) Every weakly I-continuous function is weakly I_{s^*g} -continuous but the converse is not true in general.
 - (2) Every I_{s^*g} -continuous function is weakly I_{s^*g} -continuous.

By the above definitions, for a function $f:(X,\tau,I)\to (Y,\Omega,J)$ we obtain the following implications:

strong
$$I_{s^*g}$$
-continuity \Rightarrow continuity \Rightarrow I_{s^*g} -continuity \downarrow Weak I -continuity \Rightarrow weak I_{s^*g} -continuity

Remark 4. I_{s^*g} -continuity and weak I-continuity are independent of each other.

Example 2. Let $X = Y = \{a, b, c, d\}$ and $\tau = \Omega = \{\phi, X, \{a, b\}\}$ with $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f: (X, \tau, I) \to (Y, \Omega, I)$ by f(a) = a, f(b) = c, f(c) = b and f(d) = b. Then f is I_{s^*g} -continuous but not weak I-continuous. Since for $c \in X$, f(c) = b and an open set $V = \{a, b\}$ containing f(c), the only open set containing c is U = X and $f(U) \nsubseteq cl^*(V) = \{a, b\}$.

Example 3. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a, b\}\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Let $Y = \{1, 2, 3, 4\}$, $\Omega = \{\phi, \{1, 2\}, Y\}$ and $J = \{\phi, \{3\}, \{4\}, \{3, 4\}\}$. Define $f : (X, \tau, I) \to (Y, \Omega, I)$ by f(a) = 1, f(b) = 3, f(c) = 2 and f(d) = 4. f is weak I-continuous but not I_{s^*g} -continuous. Since $V = \{1, 2\}$ is open in Y but $f^{-1}(V) = \{a, c\}$ is not I_{s^*g} -open in X.

Theorem 6. Let $f:(X,\tau,I)\to (Y,\Omega)$ be a function. Then, the following statements are equivalent:

- (1) f is I_{s^*g} -continuous.
- (2) The inverse image of each closed set in Y is I_{s^*g} -closed in X.

(3) The inverse image of each open set in Y is I_{S^*g} -open in X.

Definition 6. An ideal topological space (X, τ, I) is said to be T-dense if every subset of X is \star -dense in itself.

Definition 7. Let N be a subset of a space (X, τ, I) and $x \in X$. Then N is called an I_{s^*g} -open neighborhood of x if there exists an I_{s^*g} -open set U containing x such that $U \subset N$.

Theorem 7. Let (X, τ, I) be T-dense. Then, for a function $f: (X, \tau, I) \to (Y, \Omega)$ the following statements are equivalent:

- (1) f is I_{s^*g} -continuous.
- (2) For each $x \in X$ and each open set V in Y with $f(x) \in V$, there exists an I_{s^*g} -open set U containing x such that $f(U) \subset V$.
- (3) For each $x \in X$ and each open set V in Y with $f(x) \in V$, $f^{-1}(V)$ is an I_{s^*g} -open neighborhood of x.
- *Proof.* (1) \Rightarrow (2) Let $x \in X$ and let V be an open set in Y such that $f(x) \in V$. Since f is I_{s^*g} -continuous, $f^{-1}(V)$ is I_{s^*g} -open in X. By putting $U = f^{-1}(V)$, we have $x \in U$ and $f(U) \subset V$.
- $(2)\Rightarrow (3)$ Let V be an open set in Y and let $f(x)\in V$. Then by (2), there exists an I_{s^*g} -open set U containing x such that $f(U)\subset V$. So $x\in U\subset f^{-1}(V)$. Hence $f^{-1}(V)$ is an I_{s^*g} -open neighbourhood of x.
- (3) \Rightarrow (1) Let V be an open set in Y and let $f(x) \in V$. Then by (3), $f^{-1}(V)$ is an I_{s^*g} -neighborhood of x. Thus for each $x \in f^{-1}(V)$, there exists an I_{s^*g} -open set U_x containing x such that $x \in U_x \subset f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and so by Theorem 2.12 [5], $f^{-1}(V)$ is I_{s^*g} -open in X.

Theorem 8. A function $f:(X,\tau)\to (Y,\Omega,J)$ is strongly I_{s^*g} -continuous if and only if the inverse image of every I_{s^*g} -closed set in Y is closed in X.

- **Theorem 9.** (1) Let $f:(X,\tau) \to (Y,\Omega,J)$ be strongly I_{s^*g} -continuous and $h:(Y,\Omega,J) \to (Z,\sigma)$ be I_{s^*g} -continuous, then $h \circ f$ is continuous.
 - (2) Let $f:(X,\tau,I)\to (Y,\Omega)$ be I_{s^*g} -continues and $g:(Y,\Omega)\to (Z,\sigma)$ be continuous, then $g\circ f:(X,\tau,I)\to (Z,\sigma)$ is I_{s^*g} -continuous.

Theorem 10. Let $f:(X,\tau,I) \to (Y,\Omega)$ be I_{s^*g} -continuous and $U \in RO(X)$. Then the restriction $f \mid U:(U,\tau_U,I_U) \to (Y,\Omega)$ is I_{s^*g} -continuous.

Proof. Let V be any open set of (Y, τ_Y) . Since f is I_{s^*g} -continuous, $f^{-1}(V)$ is I_{s^*g} -open in X. By Theorem 2.14 of [5], $f^{-1}(V) \cap U$ is I_{s^*g} -open in X. Thus by Theorem 4 $(f \mid U)^{-1}(V) = f^{-1}(V) \cap U$ is I_{s^*g} -open in U because U is regular-open in X. This proves that $f \mid U : (U, \tau \mid U, I \mid U) \to (Y, \tau_Y)$ is I_{s^*g} -continuous.

Theorem 11. Let $f:(X,\tau,I) \to (Y,\Omega,J)$ be a function and $\{U_\alpha:\alpha\in\nabla\}$ be an open cover of a T-dense space X. If the restriction $f\mid U_\alpha$ is I_{s^*g} -continuous for each $\alpha\in\nabla$, then f is I_{s^*g} -continuous.

Proof. Suppose F is an arbitrary open set in (Y,Ω,J) . Then for each $\alpha\in\nabla$, we have $(f\mid U_{\alpha})^{-1}(V)=f^{-1}(V)\cap U_{\alpha}$. Because $f\mid U_{\alpha}$ is $I_{s^{*}g}$ -continuous, therefore, $f^{-1}(V)\cap U_{\alpha}$ is $I_{s^{*}g}$ -open in X for each $\alpha\in\nabla$. Since for each $\alpha\in\nabla$, U_{α} is open in X, by Theorem 5, $f^{-1}(V)\cap U_{\alpha}$ is $I_{s^{*}g}$ -open in X. Now since X is T-dense, by [Theorem 2.12 5], $\bigcup_{\alpha\in\nabla}f^{-1}(V)\cap U_{\alpha}=f^{-1}(V)$ is $I_{s^{*}g}$ -open in X. This implies f is $I_{s^{*}g}$ -continuous.

Theorem 12. If (X, τ, I) is a T-dense space and $f: (X, \tau, I) \to (Y, \Omega)$ is I_{s^*g} -continuous, then graph function $g: X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is I_{s^*g} -continuous.

Proof. Let $x \in X$ and W be any open set in $X \times Y$ containing g(x) = (x, f(x)). Then there exists a basic open set $U \times V$ such that $g(x) \subset U \times V \subset W$. Since f is I_{s^*g} -continuous, there exits an I_{s^*g} -open set U_1 in X containing x such that $f(U_1) \subset V$. By Lemma 3, $U_1 \cap U$ is I_{s^*g} -open in X and we have $x \in U_1 \cap U \subset U$ and $g(U_1 \cap U) \subset U \times V \subset W$. Since X is X-dense, therefore by Theorem 7, X is X-continuous.

Theorem 13. A function $f:(X,\tau,I)\to (Y,\Omega)$ is I_{s^*g} -continuous if the graph function $g:X\to X\times Y$ is I_{s^*g} -continuous.

Proof. Let V be an open set in Y containing f(x). Then $X \times V$ is an open set in $X \times Y$ and by the I_{s^*g} -continuity of g, there exists an I_{s^*g} -open set U in X containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. This shows that f is I_{s^*g} -continuous.

Theorem 14. Let $\{X_{\alpha}: \alpha \in \nabla\}$ be any family of topological spaces. If $f:(X,\tau,I) \to \Pi_{\alpha \in \nabla} X_{\alpha}$ is an $I_{s^{\star}g}$ -continuous function, then $P_{\alpha} \circ f: X \to X_{\alpha}$ is $I_{s^{\star}g}$ -continuous for each $\alpha \in \nabla$, where P_{α} is the projection of ΠX_{α} onto X_{α} .

Proof. We will consider a fixed $\alpha_0 \in \nabla$. Let G_{α_0} be an open set of X_{α_0} . Then $(P_{\alpha_0})^{-1}(G_{\alpha_0})$ is open in ΠX_{α} . Since f is I_{s^*g} -continuous, $f^{-1}((P_{\alpha_0})^{-1}(G_{\alpha_0})) = (P_{\alpha_0} \circ f)^{-1}(G_{\alpha_0})$ is I_{s^*g} -open in X. Thus $P_{\alpha} \circ f$ is I_{s^*g} -continuous.

Corollary 2. For any bijective function $f:(X,\tau)\to (Y,\Omega,J)$, the following are equivalent:

- (1) $f^{-1}:(Y,\Omega,J)\to (X,\tau)$ is I_{s^*g} -continuous.
- (2) f(U) is I_{s^*g} -open in Y for every open set U in X.
- (3) f(U) is I_{s^*g} -closed in Y for every closed set U in X.

Proof. It is trivial.

Definition 8. An ideal topological space (X, τ, I) is an RI-space [1], if for each $x \in X$ and each open neighbourhood V of x, there exists an open neighbourhood U of x such that $x \in U \subset cl^*(U) \subset V$.

REFERENCES 243

Theorem 15. Let (Y, Ω, J) be an RI-space and (X, τ, I) be a T-dense space. Then $f: (X, \tau, I) \to (Y, \Omega, J)$ is weak I_{s^*g} -continuous if and only if f is I_{s^*g} -continuous.

Proof. The sufficiency is clear.

Necessity. Let $x \in X$ and V be an open set of Y containing f(x). Since Y is an RI-space, there exists an open set W of Y such that $f(x) \in W \subset cl^*(W) \subset V$. Since f is weakly I_{s^*g} -continuous, there exists an I_{s^*g} -open set U such that $x \in U$ and $f(U) \subset cl^*(W)$. Hence we obtain that $f(U) \subset cl^*(W) \subset V$. By Theorem 8, f is I_{s^*g} -continuous.

References

- [1] Ackgoz .A, T. Noiri and S. Yuksel, A decomposition of continuity in ideal topological spaces, Acta Math. Hungar., 105, 285-289. 2004.
- [2] Dontchev .J, M. Ganster and T. Noiri, Unified operations approach of generalized closed sets via topological ideals, Math. Japon., 49(3), 395-401. 1999.
- [3] Dunham .W, $T_{1/2}$ -spaces, Kyungpook Math. J., 17, 161-169. 1977.
- [4] Jankovic .J and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (4), 295-310. 1990.
- [5] Khan .M and M. Hamza, I_{s^*g} -closed sets in ideal topological spaces, Global Journal of Pure and Applied Mathematics, 7(1), 89-99. 2011
- [6] Kuratowski .K, Topology I, Warszawa, 1933.
- [7] Levine .N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1), 36-41. 1963.
- [8] Levine .N, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19, 89-96. 1970.