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1. Introduction and Definitions

LetA denote the class of functions of the form :

f (z) = z +

∞
∑

n=2

anzn

which are analytic in the open unit disc U = {z : |z| < 1} . Further, by S we shall denote the

class of all functions inA which are univalent in U .

In [10] Ozaki and Nunokawa showed that if f ∈A and

�

�

�

�

�

z2 f ′(z)

f 2(z)
− 1

�

�

�

�

�

≤ |z|2 , for all z ∈ U , (1)

then the function f is univalent in U .
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Making use of the univalence criteria (1), several authors (e.g., see [1, 3, 4, 6, 8, 14, 16,

17]), obtained many sufficient conditions for the univalency of the integral operators

Fα1,α2,...,αn,β(z) =







z
∫

0

β tβ−1

�

f1(t)

t

�
1

α1

. . .

�

fn(t)

t

�
1

αn

d t







1

β

(2)

and

Gn,β (z) =







[n(β − 1) + 1]

z
∫

0

�

f1(t)
�β−1

. . .
�

fn(t)
�β−1

d t







1

n(β−1)+1

(3)

where the functions f1, f2, . . . , fn belong to the classA and the parameters α1,α2, . . . ,αn and

β are complex numbers such that the integrals in (2) and (3) exist. Here and throughout

in the sequel every many-valued function is taken with the principal branch. The integral

operator in (2) was introduced and studied by Seenivasagan and Breaz [15], and the integral

operator in (3) was introduced and studied by Breaz and Breaz [2].

In this paper we are mainly interested on some integral operators of the type (2) and (3).

More precisely, we obtain new sufficient conditions for this operators to be univalent in the

open unit disc U .

In the proofs of our main results we need the following univalence criteria. The first result,

i.e. Lemma 1 is a generalization of Ozaki - Nunokawa’s criterion (1) obtained by Raducanu et

al. [13], while the second, i.e. Lemma 2 is a generalization of Ahlfors’ and Becker’s univalence

criterion [11]. Finally, we need the well-known general Schwarz Lemma.

Lemma 1 ([13]). Let f ∈ A and m > 0 such that

�

�

�

�

�

�

z2 f ′(z)

f 2(z)
− 1

�

−
m− 1

2
|z|m+1

�

�

�

�

�

≤
m+ 1

2
|z|m+1 , (4)

for all z ∈ U . Then the function f is analytic and univalent in U .

Lemma 2 ([11]). Let β ∈ C with Re(β)> 0, c ∈ C with |c| ≤ 1, c 6= −1. If h ∈A satisfies

�

�

�

�

c |z|2β + (1− |z|2β )
zh′′(z)

βh′(z)

�

�

�

�

≤ 1,

for all z ∈ U , then the integral operator

Fβ (z) =







β

z
∫

0

tβ−1h′(t)d t







1

β

is analytic and univalent in U .
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Lemma 3 ([9]). Let the function f be regular in the disk UR = {z : |z| < R}, with
�

� f (z)
�

� < M

for fixed M . If f (z) has one zero with multiplicity order bigger than m for z = 0, then

�

� f (z)
�

�≤
M

Rm
|z|m (z ∈ UR).

The equality can hold only if

f (z) = eiθ (M/Rm) zm

where θ is constant.

2. Univalence Conditions for Fα1,α2,...,αn,β(z)

We first prove

Theorem 1. Let αi ∈ C, Mi ≥ 1, mi > 0 for all i = 1, . . . , n and β ∈ C with

Re(β)≥
n
∑

i=1

(mi + 1)Mi + 1
�

�αi

�

�

. (5)

and let c ∈ C be such that

|c| ≤ 1−
1

Re(β)

n
∑

i=1

(mi + 1)Mi + 1
�

�αi

�

�

. (6)

If fi ∈A (i=1, . . . , n) satisfies the inequality (4) and

�

� fi(z)
�

�≤ Mi (z ∈ U , i = 1, . . . , n),

then the integral operator Fα1 ,α2,...,αn,β(z) defined by (2) is analytic and univalent in U .

Proof. Define

h(z) =

z
∫

0

n
∏

i=1

�

fi(t)

t

�
1

αi

d t

we observe that h(0) = h′(0)− 1= 0. On the other hand, it is easy to see that

h′(z) =

n
∏

i=1

�

fi(z)

z

�
1

αi

. (7)

Now we differentiate (7) logarithmically and multiply by z on both sides, we obtain

zh′′(z)

h′(z)
=

n
∑

i=1

1

αi

�

z fi
′(z)

fi(z)
− 1

�

. (8)
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Since
�

� fi(z)
�

� ≤ Mi (z ∈ U , i = 1, . . . , n), then by the general Schwarz Lemma, we obtain
�

� fi(z)
�

� ≤ Mi |z| for all z ∈ U and i = 1, . . . , n, we thus from (4) and (8) find that

�

�

�

�

zh′′(z)

h′(z)

�

�

�

�

≤
n
∑

i=1

1
�

�αi

�

�

��

�

�

�

z fi
′(z)

fi(z)

�

�

�

�

+ 1

�

=

n
∑

i=1

1
�

�αi

�

�

 
�

�

�

�

�

z2 fi
′(z)

[ fi(z)]
2

�

�

�

�

�

�

�

�

�

fi(z)

z

�

�

�

�

+ 1

!

≤
n
∑

i=1

1
�

�αi

�

�

 
�

�

�

�

�

�

z2 fi
′(z)

[ fi(z)]
2
− 1

�

−
mi − 1

2
|z|mi+1

�

�

�

�

�

Mi +

�

1+
mi − 1

2
|z|mi+1

�

Mi + 1

!

≤
n
∑

i=1

1
�

�αi

�

�

�

mi + 1

2
|z|mi+1 Mi +

�

1+
mi − 1

2
|z|mi+1

�

Mi + 1

�

≤
n
∑

i=1

(mi + 1)Mi + 1
�

�αi

�

�

Therefore, we have

�

�

�

�

c |z|2β + (1− |z|2β)
zh′′(z)

βh′(z)

�

�

�

�

≤ |c|+
1
�

�β
�

�

�

�

�

�

zh′′(z)

h′(z)

�

�

�

�

≤ |c|+
1
�

�β
�

�

n
∑

i=1

(mi + 1)Mi + 1
�

�αi

�

�

≤ |c|+
1

Re(β)

n
∑

i=1

(mi + 1)Mi + 1
�

�αi

�

�

,

which, in the light of the hypothesis (6), yields

�

�

�

�

c |z|2β + (1− |z|2β )
zh′′(z)

βh′(z)

�

�

�

�

≤ 1.

Finally, by applying Lemma 2, we conclude that Fα1 ,α2,...,αn,β(z) ∈ S .

Letting m1 = m2 = · · ·= mn = m in Theorem 1, we have

Corollary 1. Let αi ∈ C Mi ≥ 1 for all i = 1, . . . , n, m > 0 and β ∈ Cwith

Re(β)≥
n
∑

i=1

(m+ 1)Mi + 1
�

�αi

�

�

. (9)

and let c ∈ C be such that

|c| ≤ 1−
n
∑

i=1

(m+ 1)Mi + 1
�

�αi

�

�

. (10)
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If fi ∈A (i = 1, . . . , n) satisfies the inequality (4) and
�

� fi(z)
�

�≤ Mi (z ∈ U , i = 1, . . . , n),

then the integral operator Fα1 ,α2,...,αn,β(z) defined by (2) is analytic and univalent in U .

Remark 1. If we put m= 1 in Corollary 1, we obtain Theorem 2.1 in [5].

Letting α1 = α2 = · · ·= αn = α and M1 = M2 = · · · = Mn = M in Corollary 1, we have

Corollary 2. Let α ∈ C, M ≥ 1 , m > 0 and β ∈ C with

Re(β)≥
n(m+ 1)M + n

|α|
. (11)

and let c ∈ C be such that

|c| ≤ 1−
n(m+ 1)M + n

|α|Re(β)
. (12)

If fi ∈A (i = 1, . . . , n) satisfies the inequality (4) and
�

� fi(z)
�

� ≤ M (z ∈ U , i = 1, . . . , n),

then the integral operator

Fα,β (z) =







z
∫

0

β tβ−1
n
∏

i=1

�

fi(t)

t

�
1

α

d t







1

β

is analytic and univalent in U .

Letting n= 1, α1 = α, M1 = M , m1 = m and f1 = f in Theorem 1, we have

Corollary 3. Let α ∈ C, M ≥ 1, m > 0 and β ∈ C with

Re(β)≥
(m+ 1)M + 1

|α|
. (13)

and let c ∈ C be such that

|c| ≤ 1−
(m+ 1)M + 1

|α|Re(β)
. (14)

If f ∈ A satisfies the inequality (4) and
�

� f (z)
�

� ≤ M (z ∈ U ),

then the integral operator

Fα,β(z) =







z
∫

0

β tβ−1

�

f (t)

t

�
1

α

d t







1

β

defined by (2) is analytic and univalent in U .
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3. Univalence Conditions for Gn,β(z)

Next, we prove

Theorem 2. Let Mi ≥ 1, mi > 0 for all i = 1, . . . , n and β ≥ 1 with

�

β − 1

β

� n
∑

i=1

[(mi + 1)Mi + 1]≤ 1. (15)

and let c ∈ C be such that

|c| ≤ 1+

�

1− β

β

� n
∑

i=1

[(mi + 1)Mi + 1]. (16)

If fi ∈A (i=1, . . . , n) satisfies the inequality (4) and

�

� fi(z)
�

�≤ Mi (z ∈ U , i = 1, . . . , n),

then the integral operator Gn,β (z) defined by (2) is analytic and univalent in U .

Proof. Setting

h(z) =

z
∫

0

n
∏

i=1

�

fi(t)

t

�β−1

d t

so that,

h′(z) =

n
∏

i=1

�

fi(z)

z

�β−1

. (17)

and

h′′(z) = (β − 1).

n
∑

i=1

�

fi(z)

z

�β−2�z fi − fi

z2

�

.

n
∏

k=1(k 6=i)

�

fk(z)

z

�β−1

. (18)

It follows from (17) and (18) that

zh′′(z)

h′(z)
=

n
∑

i=1

(β − 1)

�

z fi
′(z)

fi(z)
− 1

�

. (19)

Since
�

� fi(z)
�

� ≤ Mi (z ∈ U , i = 1, . . . , n), then by the general Schwarz Lemma, we obtain
�

� fi(z)
�

� ≤ Mi |z| for all z ∈ U and i = 1, . . . , n, we thus from (4) and (19) find that

�

�

�

�

zh′′(z)

h′(z)

�

�

�

�

≤
n
∑

i=1

(β − 1)

��

�

�

�

z fi
′(z)

fi(z)

�

�

�

�

+ 1

�

≤
n
∑

i=1

(β − 1)

 
�

�

�

�

�

z2 fi
′(z)

[ fi(z)]
2

�

�

�

�

�

�

�

�

�

fi(z)

z

�

�

�

�

+ 1

!
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≤
n
∑

i=1

(β − 1)

 
�

�

�

�

�

�

z2 fi
′(z)

[ fi(z)]
2
− 1

�

−
mi − 1

2
|z|mi+1

�

�

�

�

�

Mi +

�

1+
mi − 1

2
|z|mi+1

�

Mi + 1

!

≤
n
∑

i=1

(β − 1)

�

mi + 1

2
|z|mi+1 Mi +

�

1+
mi − 1

2
|z|mi+1

�

Mi + 1

�

≤
n
∑

i=1

(β − 1)[(mi + 1)Mi + 1].

Therefore, we have

�

�

�

�

c |z|2β + (1− |z|2β )
zh′′(z)

βh′(z)

�

�

�

�

≤ |c|+
1

β

�

�

�

�

zh′′(z)

h′(z)

�

�

�

�

≤ |c|+
�

β − 1

β

� n
∑

i=1

[(mi + 1)Mi + 1],

which, in the light of the hypothesis (16), yields

�

�

�

�

c |z|2β + (1− |z|2β )
zh′′(z)

βh′(z)

�

�

�

�

≤ 1.

Finally, by applying Lemma 2, we conclude that Gn,β(z) ∈ S .

Letting m1 = m2 = . . . = mn = m and M1 = M2 = . . . = Mn = M in Theorem 2, we have

Corollary 4. Let M ≥ 1, m > 0 and β ∈ R with

β ∈
�

1,
((m+ 1)M + 1)n

((m+ 1)M + 1)n− 1

�

. (20)

and let c ∈ C be such that

|c| ≤ 1+

�

1− β

β

�

((m+ 1)M + 1)n. (21)

If fi ∈A (i = 1, . . . , n) satisfies the inequality (4) and

�

� fi(z)
�

� ≤ M (z ∈ U )

then the integral operator Gn,β (z) defined by (2) is analytic and univalent in U .

Remark 2. If we put m= 1 in Corollary 4, we obtain Theorem 4 in [7].

If we put m = M = n = 1 and f1 = f in Corollary 4, we obtain the following interesting

result obtained by Pescar [12].
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Corollary 5 ([12]). Let β ∈ R with

β ∈
�

1,
3

2

�

. (22)

and let c ∈ C be such that

|c| ≤
3− 2β

β
(c 6= −1). (23)

If f ∈ A satisfies the inequality (4) and

�

� f (z)
�

� ≤ 1 (z ∈ U )

then the integral operator Gβ (z) defined by

Gβ(z) =









β

z
∫

0

�

f (t)
�β−1

d t









1

β

is analytic and univalent in U .
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