Argument Estimates of Certain Meromorphically p-Valent Functions Defined by a Linear Operator

A. O. Mostafa and M.K.Aouf*
Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt

Abstract

Making use of the linear operator $D_{\lambda, p}^{m}$, we obtain some argument properties of meromorphically p-valent functions. Also, we derive the integral preserving properties in a sector.

2010 Mathematics Subject Classifications: 30C45
Key Words and Phrases: Meromorphic function, p-valent functions, linear operator

1. Introduction

For any integer $n>-p$, let $\Sigma_{p, n}$ denote the class of all meromorphic functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic and $p-$ valent in the punctured unit disk

$$
U^{*}=\{z: z \in \mathbb{C}, 0<|z|<1\}=U \backslash\{0\} .
$$

Let f, g be analytic functions in U. Then we say that f is subordinate to g, written $f \prec g$ if there exists an analytic function $w(z)$ in U such that $|w(z)|<1(z \in U)$ and $f(z)=g(w(z))$. For this subordination, the symbol $f(z) \prec g(z)$ is used. In the case $g(z)$ is univalent in U, the subordination $f(z) \prec g(z)$ is equivalent to $g(0)=f(0)$ and $f(U) \subset g(U)$. For functions $f(z) \in \Sigma_{p, n}$ given by (1) and $g(z) \in \Sigma_{p, n}$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=n}^{\infty} b_{k} z^{k} \tag{2}
\end{equation*}
$$

[^0]we define the Hadamard product (or convolution) of f and g as
\[

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z), \tag{3}
\end{equation*}
$$

\]

Following the recent works of Aouf and Hossen [4], Liu and Srivastava [7] and Srivastava and Patel [11], for a function $f(z) \in \Sigma_{p, n}$ given by (1), we now define a linear operator $D_{\lambda, p}^{m}$ ($\lambda \geq 0, p \in \mathbb{N}, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$) by

$$
\begin{aligned}
D_{\lambda, p}^{0} f(z) & =f(z) \\
D_{\lambda, p}^{1} f(z) & =D_{\lambda, p} f(z)=(1-\lambda) f(z) \frac{\lambda}{z^{p}}\left(z^{p+1} f(z)\right)^{\prime} \\
& =z^{-p}+\sum_{k=n}^{\infty}[1+\lambda(k+p)] a_{k} z^{k}, \\
D_{\lambda, p}^{2} f(z) & =D_{\lambda, p}\left(D_{\lambda, p} f(z)\right)=z^{-p}+\sum_{k=n}^{\infty}[1+\lambda(k+p)]^{2} a_{k} z^{k}
\end{aligned}
$$

and (in general)

$$
\begin{equation*}
D_{\lambda, p}^{m} f(z)=D_{\lambda, p}\left(D_{\lambda, p}^{m-1} f(z)\right)=z^{-p}+\sum_{k=n}^{\infty}[1+\lambda(k+p)]^{m} a_{k} z^{k}, \quad \lambda \geq 0 . \tag{4}
\end{equation*}
$$

Also, we can write $D_{\lambda, p}^{m} f(z)$ as follows

$$
\begin{align*}
D_{\lambda, p}^{m} f(z) & =\left(z^{-p}+\sum_{k=n}^{\infty}[1+\lambda(k+p)]^{m} z^{k}\right)(z) \\
& =\left(f * \phi_{\lambda, p}^{m}\right)(z), \tag{5}
\end{align*}
$$

where

$$
\phi_{\lambda, p}^{m}(z)=z^{-p}+\sum_{k=n}^{\infty}[1+\lambda(k+p)]^{m} z^{k} .
$$

It is easily verified from (4) that

$$
\begin{equation*}
\lambda z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}=D_{\lambda, p}^{m+1} f(z)-(1+\lambda p) D_{\lambda, p}^{m} f(z), \quad \lambda>0 . \tag{6}
\end{equation*}
$$

The operator $D_{\lambda, p}^{m}$ was introduced by Aouf [3].
For a function $f(z) \in \Sigma_{p, n}$ and $v>0$, the integral operator $F_{v, p}(f)(z): \Sigma_{p, n} \rightarrow \Sigma_{p, n}$ is defined by

$$
F_{v, p}(f)(z)=\frac{v}{z^{v+p}} \int_{0}^{z} t^{v+p-1} f(t) d t
$$

$$
\begin{align*}
& =z^{-p}+\sum_{k=n}^{\infty}\left(\frac{v}{v+p+k}\right) a_{k} z^{k} \\
& =\left(z^{-p}+\sum_{k=n}^{\infty}\left(\frac{v}{v+p+k}\right) z^{k}\right) * f(z) \quad v>0 ; z \in U^{*} . \tag{7}
\end{align*}
$$

It follows from (7) that

$$
\begin{equation*}
z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}=v D_{\lambda, p}^{m} f(z)-(v+\lambda p) D_{\lambda, p}^{m} F_{v, p}(f)(z) \tag{8}
\end{equation*}
$$

The operator $F_{v, p}(f)(z)$ was investigated by many authors (see for example [1, 12, 13]). Let $\Sigma_{p, n}^{*}[\lambda, m, A, B]$ be the class of functions $f(z) \in \Sigma_{p, n}$ defined by

$$
\begin{align*}
\Sigma_{p, n}^{*}[\lambda, m, A, B]= & \left\{f(z) \in \Sigma_{p, n}:-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} f(z)} \prec p \frac{1+A z}{1+B z},\right. \tag{9}\\
& \left.-1 \leq B<A \leq 1 ; \quad \lambda>0 ; p \in \mathbb{N} ; n>-p ; m \in \mathbb{N}_{0} ; z \in U^{*}\right\}
\end{align*}
$$

We note that
(i) For $m=0$, we have $\Sigma_{p, n}^{*}[\lambda, 0 ; 1,-1]=\Sigma_{p, n}^{*}$, the well-known class of meromorphically p-valent starlike functions;
(ii) For $m=0, A=1-\frac{2 \alpha}{p}, 0 \leq \alpha<p$ and $B=-1$, we have $\Sigma_{p, n}^{*}[\lambda, 0 ; 1,-1]=\Sigma_{p, n}^{*}[\alpha]$, the well-known class of meromorphically p-valent starlike functions of order α (see [2]);
(iii) For $\lambda=1$ and $n=0$, the class $\Sigma_{p, n}^{*}[1, m ; A, B]$ reduces to the class

$$
\begin{aligned}
\Sigma_{p, n}^{*}[m, A, B]= & \left\{f(z) \in \Sigma_{p, n}:-\frac{z\left(D_{p}^{m} f(z)\right)^{\prime}}{D_{p}^{m} f(z)} \prec p \frac{1+A z}{1+B z}\right. \\
& \left.-1 \leq B<A \leq 1 ; p \in \mathbb{N} ; n>-p ; m \in \mathbb{N}_{0} ; z \in U^{*}\right\}
\end{aligned}
$$

where the operator D_{p}^{m} was introduced by Aouf and Hossen [4].
From (9) and by using the result of Silverman and Silvia [10], we observe that a function $f(z)$ is in the class $\Sigma_{p, n}^{*}[\lambda, m, A, B]\left(-1<B<A \leq 1 ; \lambda>0 ; p \in \mathbb{N} ; m \in \mathbb{N}_{0}\right)$ if and only if

$$
\begin{equation*}
\left|\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} f(z)}+\frac{p(1-A B)}{1-B^{2}}\right|<\frac{p(A-B)}{1-B^{2}} \quad z \in U^{*} \tag{10}
\end{equation*}
$$

The object of the present paper is to give some argument properties of meromorphically functions belonging to $\Sigma_{p, n}$ and the integral preserving properties in connection with the operator $D_{\lambda, p}^{m}$ defined by (4).

2. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that $\lambda>0$, $n>-p, p \in \mathbb{N}$ and $m \in \mathbb{N}_{0}$.

In order to prove our main results, we need the following lemmas.
Lemma 1. [5] Let $h(z)$ be convex (univalent) in U with $h(0)=1$ and $\Re\{\beta h(z)+\gamma\}>0$ $(\beta, \gamma \in \mathbb{C})$. If $q(z)$ is analytic in U with $q(0)=1$, then

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \prec h(z)
$$

implies $q(z) \prec h(z)$.
Lemma 2. [8] Let $h(z)$ be convex (univalent) in U and $\psi(z)$ be analytic in in U with $\mathfrak{R}\{\psi(z)\} \geq 0$. If $q(z)$ is analytic in U and $q(0)=h(0)$, then

$$
q(z)+\psi(z) z q^{\prime}(z) \prec h(z)
$$

implies $q(z) \prec h(z)$.
Lemma 3. [9] Let $q(z)$ be analytic in U, with $q(0)=1$ and $q(z) \neq 0,(z \in U)$. Suppose that there exists a point $z_{0} \in U$, such that

$$
\begin{equation*}
|\arg q(z)|<\frac{\pi}{2} \alpha \text { for }|z|<\left|z_{0}\right| \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg q\left(z_{0}\right)\right|<\frac{\pi}{2} \alpha \quad 0<\alpha \leq 1 \tag{12}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i k \alpha \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& k \geq \frac{1}{2}\left(\alpha+\frac{1}{\alpha}\right) \text { when } \arg q\left(z_{0}\right)=\frac{\pi}{2} \alpha \tag{14}\\
& k \geq-\frac{1}{2}\left(\alpha+\frac{1}{\alpha}\right) \text { when } \arg q\left(z_{0}\right)=-\frac{\pi}{2} \alpha \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
q\left(z_{0}\right)^{\frac{1}{\alpha}}= \pm i \alpha, \quad \alpha>0 \tag{16}
\end{equation*}
$$

At first, with the help of Lemma 1, we obtain the following result:

Theorem 1. Let h be convex univalent in U with $h(0)=1$ and $\mathfrak{R}\{h\}$ be bounded in U. If $f(z) \in \Sigma_{p, n}$ satisfies the condition:

$$
-\frac{z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m+1} f(z)} \prec h(z)
$$

then

$$
-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} f(z)} \prec h(z)
$$

for $\max _{z \in U} \Re h(z)<\left(\frac{1+\lambda p}{\lambda p}\right)$ (provided $D_{\lambda, p}^{m} f(z) \neq 0, z \in U^{*}$).
Proof. Let

$$
q(z)=-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} f(z)}
$$

By using (6), we have

$$
\begin{equation*}
q(z)-\left(\frac{1+\lambda p}{\lambda p}\right)=-\frac{D_{\lambda, p}^{m+1} f(z)}{\lambda_{p} D_{\lambda, p}^{m} f(z)} \tag{17}
\end{equation*}
$$

Using logarithmic differentiation in both sides of (17) with respect to z and multiplying by z, we get

$$
\frac{z q^{\prime}(z)}{-p q(z)+\frac{1+\lambda p}{\lambda}}+q(z)=--\frac{D_{\lambda, p}^{m+1} f(z)}{p D_{\lambda, p}^{m} f(z)} \prec h(z)
$$

From Lemma 1 , it follows that $q(z) \prec h(z)$ for $\Re\left\{-h(z)+\frac{1+\lambda p}{\lambda p}\right\}>0, z \in U^{*}$, which means

$$
-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} f(z)} \prec h(z)
$$

for $\max _{z \in U} \Re h(z)<\frac{1+\lambda p}{\lambda p}$.
Using Lemmas 1 and 2 and Theorem 1, we now derive:
Theorem 2. Let $f(z) \in \Sigma_{p, n}, \frac{1}{\lambda} \geq \frac{p(A-B)}{1+B}$, where $-1<B<A \leq 1$. If

$$
\left|\arg \left(-\frac{z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m+1} g(z)}-\gamma\right)\right|<\frac{\pi}{2} \delta, \quad 0 \leq \gamma<p ; 0<\delta<1
$$

for some $g(z) \in \Sigma_{p, n}^{*}[\lambda, m+1 ; A, B]$ then

$$
\left|\arg \left(-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} g(z)}-\gamma\right)\right|<\frac{\pi}{2} \alpha, \quad 0<\alpha \leq 1
$$

is the solution of the equation

$$
\begin{equation*}
\delta=\alpha+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha \sin \frac{\pi}{2}[1-t(A, B)]}{\frac{(1-B)+\lambda p(A-B)}{\lambda(1-B)}+\alpha \cos \frac{\pi}{2}[1-t(A, B)]}\right) \tag{18}
\end{equation*}
$$

when

$$
\begin{equation*}
t(A, B)=\frac{2}{\pi} \sin ^{-1}\left(\frac{\lambda p(A-B)}{(1+\lambda p)\left(1-B^{2}\right)-\lambda p(1-A B)}\right) . \tag{19}
\end{equation*}
$$

Proof. Let

$$
q(z)=\frac{1}{p-\gamma}\left(-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} g(z)}-\gamma\right)
$$

Using the identity (6), we have

$$
\begin{align*}
& (p-\gamma) z q^{\prime}(z) D_{\lambda, p}^{m} g(z)+(p-\gamma) q(z) z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}+\gamma z\left(D_{\lambda, p}^{m} g(z)\right)^{\prime} \\
& \quad=\frac{1+\lambda p}{\lambda} z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}-\frac{1}{\lambda} z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime} . \tag{20}
\end{align*}
$$

Simplifying (20), we obtain

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{-r(z)+\frac{1+\lambda p}{\lambda}}=-\frac{1}{p-\gamma}\left(\frac{z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} g(z)}+\gamma\right) \tag{21}
\end{equation*}
$$

where

$$
r(z)=-\frac{z\left(D_{\lambda, p}^{m} g(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}
$$

Since $g(z) \in \Sigma_{p, n}^{*}[\lambda, m, A, B]$, from Theorem 1, we have

$$
r(z) \prec p \frac{1+A z}{1+B z},
$$

using (10), we have

$$
-r(z)+\frac{1+\lambda p}{\lambda}=\rho e^{i \frac{\pi}{2} \phi}
$$

where

$$
\frac{(1+B)-\lambda p(A-B)}{\lambda(1+B)}<\rho<\frac{(1-B)+\lambda p(A-B)}{\lambda(1+B)}
$$

and $-t(A, B)<\phi<t(A, B)$, where $t(A, B)$ is given by (19).
Let h be a function which maps U onto the angular domain $\left\{w:|\arg w|<\frac{\pi}{2} \delta\right\}$ with $h(0)=1$. Applying Lemma 2 for this h with $\psi(z)=\frac{1}{-r(z)+\frac{1+\lambda p}{\lambda}}$ we see that $\Re\{q(z)\}>0$ in U and hence $q(z) \neq 0$ in U. If there exists a point $z_{0} \in U$ such that the conditions (11) and
(12) are satisfied, then by using Lemma 3, we have (13) under the restrictions (14), (15) and (16).

At first, suppose that $q\left(z_{0}\right)^{\frac{1}{\alpha}}=i a(a>0)$. Then we obtain

$$
\begin{aligned}
& \arg \left[-\frac{1}{p-\gamma}\left(\frac{z\left(D_{\lambda, p}^{m+1} f\left(z_{0}\right)\right)^{\prime}}{D_{\lambda, p}^{m+1} g\left(z_{0}\right)}+\gamma\right)\right] \\
& =\arg \left(q\left(z_{0}\right)+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{-r\left(z_{0}\right)+\frac{1+\lambda p}{\lambda}}\right) \\
& =\frac{\pi}{2} \alpha+\arg \left(1+i k \alpha\left(\rho e^{i \frac{\pi}{2} \phi}\right)^{-1}\right) \\
& =\frac{\pi}{2} \alpha+\tan ^{-1}\left(\frac{\alpha k \sin \frac{\pi}{2}[1-\phi]}{\rho+\alpha k \cos \frac{\pi}{2}[1-\phi]}\right) \\
& \geq \frac{\pi}{2} \alpha+\tan ^{-1}\left(\frac{\alpha \sin \frac{\pi}{2}[1-t(A, B)]}{\frac{(1-B)+\lambda p(A-B)}{\lambda(1-B)}+\alpha \cos \frac{\pi}{2}[1-t(A, B)]}\right) \\
& \quad-\frac{\pi}{2} \delta,
\end{aligned}
$$

where δ and $t(A, B)$ are given by (18) and (19), respectively. This is a contradiction to the assumption of our theorem.

Next, suppose that $q\left(z_{0}\right)^{\frac{1}{\alpha}}=-i a(a>0)$. Applying the same method as the above, we have

$$
\begin{aligned}
& \arg \left[-\frac{1}{p-\gamma}\left(\frac{z_{0}\left(D_{\lambda, p}^{m+1} f\left(z_{0}\right)\right)^{\prime}}{D_{\lambda, p}^{m+1} g\left(z_{0}\right)}+\gamma\right)\right] \\
& \quad \leq-\frac{\pi}{2} \alpha-\tan ^{-1}\left(\frac{\alpha \sin \frac{\pi}{2}[1-t(A, B)]}{\frac{(1-B)+\lambda p(A-B)}{\lambda(1-B)}+\alpha \cos \frac{\pi}{2}[1-t(A, B)]}\right) \\
& \quad=-\frac{\pi}{2} \delta
\end{aligned}
$$

where δ and $t(A ; B)$ are given by (18) and (19), respectively, which contradicts the assumption. Therefore we complete the proof of our theorem.

Taking $A=1, B=0$ and $\delta=1$ in Theorem 2, we have the following corollary.
Corollary 1. Let $f(z) \in \Sigma_{p, n}$. If

$$
-\Re\left\{\frac{z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} g(z)}\right\}>\gamma \quad 0 \leq \gamma<p
$$

for some $g(z) \in \Sigma_{p, n}^{*}$ satisfying the condition

$$
\left|\frac{z\left(D_{\lambda, p}^{m+1} g(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} g(z)}+p\right|<p
$$

then

$$
-\Re\left\{\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}\right\}>\gamma \quad 0 \leq \gamma<p
$$

Taking $A=1, B=0$ and $g(z)=\frac{1}{z^{p}}$ in Theorem 2, we have the following corollary.
Corollary 2. Let $f(z) \in \Sigma_{p, n}$, If

$$
\left|\arg \left(-z^{p+1}\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}-\gamma\right)\right|<\frac{\pi}{2} \delta, \quad 0 \leq \gamma<p ; 0<\delta \leq 1
$$

then

$$
\left|\arg \left(-z^{p+1}\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}-\gamma\right)\right|<\frac{\pi}{2} \alpha, \quad 0<\alpha \leq 1 .
$$

Taking $m=0$ and $\delta=1$ in Corollary 2, we have the following corollary.
Corollary 3. Let $f(z) \in \Sigma_{p, n}$, If

$$
-\Re\left\{z^{p+1}\left[\lambda z f^{\prime \prime}(z)+(1+\lambda+\lambda p) f^{\prime}(z)\right]\right\}>\gamma, \quad 0 \leq \gamma<p,
$$

then

$$
-\Re\left\{z^{p+1} f^{\prime}(z)\right\}>\gamma .
$$

Remark 1. Taking $\lambda=p=1$ in Corollary 3, we obtain the result obtained by Lashin [6, Corollary 2.5 with $p=1$]

By the same technique as in the proof of Theorem 2, we obtain
Theorem 3. Let $f(z) \in \Sigma_{p, n}$. Choose λ such that $\frac{1}{\lambda} \geq \frac{p(A-B)}{1+B}$, where $-1<B<A \leq 1$. If

$$
\left|\arg \left\{\frac{z\left(D_{\lambda, p}^{m+1} f(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} g(z)}+\gamma\right\}\right|<\frac{\pi}{2} \delta, \quad \gamma>p ; 0<\delta<1
$$

for some $g(z) \in \Sigma_{p, n}^{*}[\lambda, m+1 ; A, B]$, then

$$
\left|\arg \left\{\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}+\gamma\right\}\right|<\frac{\pi}{2} \alpha, \quad 0<\alpha \leq 1
$$

is the solution of the equation (18).

Theorem 4. Let h be convex univalent in U with $h(0)=1$ and $\Re>$ be bounded in U. Let $F_{v, p}(f)(z)$ be the integral operator defined by (7). If $f(z) \in \Sigma_{p, n}$ satisfies the condition

$$
-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} f(z)} \prec h(z)
$$

then

$$
-\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{p D_{\lambda, p}^{m} F_{v, p}(f)(z)} \prec h(z)
$$

for $\max _{z \in U} \Re h(z)<\frac{v+p}{p}$ (provided $D_{\lambda, p}^{m} F_{v, p}(f)(z) \neq 0$ in U^{*}).
Proof. Let

$$
q(z)=-\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{p D_{\lambda, p}^{m} F_{v, p}(f)(z)}
$$

Then, by using (8), we have

$$
\begin{equation*}
p q(z)-(v+p)=-v \frac{D_{\lambda, p}^{m} f(z)}{D_{\lambda, p}^{m} F_{v, p}(f)(z)} \tag{22}
\end{equation*}
$$

Taking logarithmic derivatives in both sides of (22) with respect to z and multiplying by z, we get

$$
q(z)+\frac{z q^{\prime}(z)}{-p q(z)+(v+p)}=-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} f(z)} \prec h(z)
$$

Therefore, by using Lemma 1, we have

$$
-\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{p D_{\lambda, p}^{m} F_{v, p}(f)(z)}
$$

for $\max _{z \in U} \Re h(z)<\frac{v+p}{p}$ (provided $D_{\lambda, p}^{m} F_{v, p}(f)(z) \neq 0$ in U^{*}). This completes the proof of Theorem 4.

Theorem 5. Let $f(z) \in \Sigma_{p, n}$ and choose a positive number v such that $v \geq p \frac{A-B}{1+B}$, where $-1<B<A \leq 1$. If

$$
\left|\arg \left\{-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{p D_{\lambda, p}^{m} g(z)}-\gamma\right\}\right|<\frac{\pi}{2} \delta, \quad 0 \leq \gamma<p ; 0<\delta \leq 1
$$

for some $g(z) \in \Sigma_{p, n}^{*}[\lambda, m ; A, B]$ then

$$
\left|\arg \left(-\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{p D_{\lambda, p}^{m} G_{v, p}(f)(z)}-\gamma\right)\right|<\frac{\pi}{2} \alpha, \quad 0<\alpha \leq 1
$$

where $F_{v, p}(f)(z)$ is the integral operator given by (7),

$$
\begin{equation*}
G_{v, p}(f)(z)=\frac{v}{z^{v+p}} \int_{0}^{z} t^{v+p-1} g(t) d t \quad v>0 \tag{23}
\end{equation*}
$$

is the solution of the equation

$$
\begin{equation*}
\delta=\alpha+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha \sin \frac{\pi}{2}[1-t(A, B, v)]}{\frac{(v+p)(1-B)+p(A-B)}{1-B}+\alpha \cos \frac{\pi}{2}[1-t(A, B, v)]}\right), \tag{24}
\end{equation*}
$$

when

$$
\begin{equation*}
t(A, B, v)=\frac{2}{\pi} \sin ^{-1}\left(\frac{p(A-B)}{(v+p)\left(1-B^{2}\right)-p(1-A B)}\right) . \tag{25}
\end{equation*}
$$

Proof. Let

$$
q(z)=-\frac{1}{p-\gamma}\left(\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{p D_{\lambda, p}^{m} G_{v, p}(g)(z)}+\gamma\right)
$$

Since $g(z) \in \Sigma_{p, n}^{*}[\lambda, m, A, B]$, from Theorem 4, $G_{v, p}(g)(z) \in \Sigma_{p, n}^{*}[\lambda, m, A, B]$. Using the identity (8), we have

$$
(p-\gamma) q(z) D_{\lambda, p}^{m} G_{v, p}(g)(z)-(v+p) D_{\lambda, p}^{m} F_{v, p}(f)(z)=-v D_{\lambda, p}^{m} f(z)-\gamma D_{\lambda, p}^{m} G_{v, p}(g)(z) .
$$

Then, by a simple calculation, we have

$$
(p-\gamma)\left\{z q^{\prime}(z)+q(z)[-r(z)+v+p]\right\}+\gamma[-r(z)+v+p]=-v \frac{v z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} G_{v, p}(g)(z)}
$$

where

$$
r(z)=\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{D_{\lambda, p}^{m} G_{v, p}(g)(z)}
$$

Hence, we have

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{-r(z)+v+p}=-\frac{1}{p-\gamma}\left(\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}+\gamma\right) . \tag{26}
\end{equation*}
$$

The remaining part of the proof is similar to that of Theorem 2 and so, we omit it.
Taking $m=0$ in Theorem 5, we obtain the result obtained by Lashin [6, Corollary 2.3].
Taking $m=0, A=1, B=0$ and $\delta=1$ in Theorem 5, we obtain the following result.

Corollary 4. Let $v>0$ and $f(z) \in \Sigma_{p, n}$. If

$$
-\Re\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\gamma \quad 0 \leq \gamma<p
$$

for some $g(z) \in \Sigma_{p, n}$ satisfying the condition

$$
\left|\frac{z g^{\prime}(z)}{g(z)}+p\right|<p
$$

then

$$
-\Re\left\{\frac{z F_{v, p}^{\prime}(f)(z)}{G_{v, p}(g)(z)}\right\}>\gamma \quad 0 \leq \gamma<p
$$

where $F_{v, p}(f)(z)$ and $G_{v, p}(g)(z)$ are given by (7) and (23), respectively.
Taking $m=0 B \rightarrow A$ and $g(z)=\frac{1}{z^{p}}$ in Theorem 5, we have the following corollary.
Corollary 5. Let $v>0$ and $f(z) \in \Sigma_{p, n}$. If

$$
\left|\arg \left(-z^{p+1} f^{\prime}(z)-\gamma\right)\right|<\frac{\pi}{2} \delta, \quad 0 \leq \gamma<p ; 0<\delta \leq 1
$$

then

$$
\left|\arg \left(-z^{p+1} F_{v, p}^{\prime}(f)(z)-\gamma\right)\right|<\frac{\pi}{2} \alpha
$$

where $F_{v, p}(f)(z)$ is given by (7) and $0<\alpha \leq 1$ is the solution of the equation

$$
\delta=\alpha+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha}{v+p}\right)
$$

By using the same argument used in proving Theorem 5, we have
Theorem 6. Let $f(z) \in \Sigma_{p, n}$ and choose a positive number v such that $v \geq \frac{1+A}{1+B}-p$, where $-1<B<A \leq 1$. If

$$
\left|\arg \left\{\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}+\gamma\right\}\right|<\frac{\pi}{2} \delta, \quad \gamma>p ; 0<\delta \leq 1
$$

for some $g(z) \in \Sigma_{p, n}^{*}[\lambda, m ; A, B]$ then

$$
\left|\arg \left(\frac{z\left(D_{\lambda, p}^{m} F_{v, p}(f)(z)\right)^{\prime}}{D_{\lambda, p}^{m} G_{v, p}(g)(z)}+\gamma\right)\right|<\frac{\pi}{2} \alpha, \quad 0<\alpha \leq 1
$$

where $F_{v, p}(f)(z)$ and $G_{v, p}(g)(z)$ are given (7) and (23), respectively, and $\alpha(0<\alpha \leq 1)$ is the solution of the equation (24).

Finally, we derive
Theorem 7. Let $f(z) \in \Sigma_{p, n}$ and choose λ such that $\frac{1}{\lambda} \geq \frac{p(A-B)}{1+B}$, where $-1<B<A \leq 1$. If

$$
\left|\arg \left\{-\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}-\gamma\right\}\right|<\frac{\pi}{2} \delta, \quad 0 \leq \gamma<p ; 0<\delta \leq 1,
$$

for some $g(z) \in \Sigma_{p, n}^{*}[\lambda, m ; A, B]$ then

$$
\left|\arg \left(-\frac{z\left(D_{\lambda, p}^{m+1} F_{v, p}(f)(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} G_{v, p}(g)(z)}-\gamma\right)\right|<\frac{\pi}{2} \delta
$$

where $F_{v, p}(f)(z)$ and $G_{v, p}(g)(z)$ are given (7) and (23), respectively with $v=\frac{1}{\lambda}$.
Proof. From (6) and (8), with $v=\frac{1}{\lambda}$, we have $D_{\lambda, p}^{m} f(z)=D_{\lambda, p}^{m+1} F_{v, p}(f)(z)$. Therefore

$$
\frac{z\left(D_{\lambda, p}^{m} f(z)\right)^{\prime}}{D_{\lambda, p}^{m} g(z)}=\frac{z\left(D_{\lambda, p}^{m+1} F_{v, p}(f)(z)\right)^{\prime}}{D_{\lambda, p}^{m+1} G_{v, p}(g)(z)}
$$

and the theorem follows.

Remark 2. Putting $\lambda=1$ and $n=0$ in the above results, we obtain the results corresponding to the class $\Sigma_{p}^{*}[m ; A, B]$ defined in the introduction.

ACKNOWLEDGEMENTS The authors would like to thank the referee(s) for their insightful comments and suggestions.

References

[1] M.K. Aouf. New criteria for multivalent meromorphic starlike functions of order alpha. Procceding of the Japan Academy, Series A, Mathematical Science, 69(3):66-70, 1993.
[2] M.K. Aouf. Certain classes of meromorphic multivalent functions with positive coefficients. Mathematical Computer Modelling, 47(3-4):328-340, 2008.
[3] M.K. Aouf. On certain subclass of meromorphic p-valent functions with negative coefficients. General Mathematics, 18(2):71-84, 2010.
[4] M.K. Aouf and H.M. Hossen. New criteria for meromorphic p-valent starlike functions. Tsukuba Journal of Mathematics, 17(2):481-486, 1993.
[5] P. Eenigenberg, S.S. Miller, P.T. Mocanu, and M.O. Reade. On a briot-bouquet differential subordination. General Inequality, 3:339-348, 1983.
[6] A.Y. Lashin. Argument estimates of certain meromorphically p-valent functions. Soochow Journal of Mathematics, 33(4):803-812, 2007.
[7] J-L. Liu and H.M. Srivastava. Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Mathematical Computer Modelling, 39(1):21-34, 2004.
[8] S.S. Miller and P.T. Mocanu. Differential subordinations and univalent functions. Michigan Mathematical Journal, 28(2):157-172, 1981.
[9] M. Nunokawa. On the order of strongly starlikeness of strongly convex functions. Procceding of the Japan Academy, Series A, Mathematical Science, 69(7):234-237, 1993.
[10] H. Silverman and E.M. Silvia. Subclasses of starlike functions subordinate to convex functions. Canadian Journal of Mathematics, 37(1):48-61, 1985.
[11] H.M. Srivastava and J. Patel. Applications of differential subordination to certain subclasses of meromorphically multivalent functions. Journal Inequality of Pure and Applied Mathematics, 6(3):Article 88, pp. 15, 2005. (electronic).
[12] B.A. Uralegaddi and C. Somanatha. Certain classes of meromorphic multivalent functions. Tamkang Journal of Mathematics, 23(3):223-231, 1992.
[13] D. Yang. On a class of meromorphic starlike multivalent functions. Bulletin Institute of Mathematics Academia Sinica, 24(2):151-157, 1996.

[^0]: *Corresponding author.

 Email addresses: adelaeg254@yahoo.com (A. Mostafa), mkaouf127@yahoo.com (M. Aouf)

