EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 2, 2009, (213-230)
ISSN 1307-5543 - www.ejpam.com

Some Properties of Contra- b-Continuous and Almost Contra- b-Continuous Functions

Ahmad Al-Omari ${ }^{1 *}$ and Mohd. Salmi Md. Noorani ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, Faculty of Science
Mu'tah University, P.O.Box 7, Karak-Jordan.
${ }^{2}$ School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, Malaysia.

Abstract

The notion of contra-continuous functions was introduced and investigated by Dontchev [5]. In this paper we apply the notion of b-open sets in topological space to present and study a new class of function called almost contra- b-continuous functions as a new generalization of contra-continuity.

AMS subject classifications: 54C05, 54C08, 54C10
Key words: contra-continuous, b-continuous, contra- b-continuous, b-regular graph, almost contra-b-continuous, strong S-closed

[^0]
1. Introduction and Preliminaries

In 1996, Dontchev [5] introduced contra-continuous functions. Jafari and Noiri [8] introduced and studied contra-precontinuous functions. Ekici [10] introduced and studied almost contra-precontinuous functions. Recently [13] introduced and studied contra b-continuous functions. In this paper, we introduce a new class of functions called almost contra-b-continuous function. Moreover, we obtain basic properties and preservation theorem of almost contra- b-continuous function, contra- b continuous function and relationships between almost contra-b-continuous function and b-regular graphs.

Throughout the paper, the space X and Y (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let A be a subset of X. The closure of A and the interior of A will be denoted by $\operatorname{Cl}(A)$ and $\operatorname{Int}(A)$, respectively.

Definition 1.1. A subset A of a space X is said to be

1. regular open [27] if $A=\operatorname{Int}(\operatorname{Cl}(A))$;
2. α-open [20] if $A \subseteq \operatorname{Int}(C l(\operatorname{Int}(A)))$;
3. semi-open [24] if $A \subseteq C l(\operatorname{Int}(A))$;
4. pre-open [25] if $A \subseteq \operatorname{Int}(C l(A))$;
5. β-open [2] if $A \subseteq \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A)))$;
6. b-open [3] if $A \subseteq C l(\operatorname{Int}(A)) \cup \operatorname{Int}(C l(A))$.

The complement of a b-open set is said to be b-closed [3]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by $b \operatorname{Cl}(A)$. The union of all b-open sets of X contained A is called b-interior of A and
is denoted by $b \operatorname{Int}(A)$. The family of all b-open (resp. α-open, semi-open, preopen, β-open, regular open, b-closed, preclosed, β-closed, regular closed, closed) subsets of a space X is denoted by $B O(X)$ (resp. $\alpha O(X), S O(X), P O(X), \beta O(X), R O(X), B C(X)$, $P C(X), \beta C(X), R C(X), C(X)$ respectively) and the collection of all b-open subsets of X containing a fixed point x is denoted by $B O(X, x)$. The sets $\alpha O(X, x), S O(X, x)$, $P O(X, x), \beta O(X, x), R O(X, x)$ and $C(X, x)$ are defined analogously.

Definition 1.2. A function $f: X \rightarrow Y$ is called b-continuous [11] if for each $x \in$ X and each open set V of Y containing $f(x)$, there exists $U \in B O(X, x)$ such that $f(U) \subseteq V$.

Definition 1.3. A function $f: X \rightarrow Y$ is called contra-continuous [5] (resp. contra-precontinuous [8], contra- β-continuous [4], contra- b-continuous [13]) if $f^{-1}(V)$ closed (resp. preclosed, β-closed, b-closed) in X for each open set V of Y.

2. Contra- b-Continuous Functions

In this section, we obtain some properties of contra- b-continuous functions, (for more properties the reader should refer to $[1,13,17,20]$).

Lemma 2.1. [3] Let (X, τ) be a topological space.

1. The intersection of an open set and a b-open set is a b-open set.
2. The union of any family of b-open sets is $a b$-open set.

Recall that for a function $f: X \rightarrow Y$, the subset $\{(x, f(x)): x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 2.2. [13] The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be contra- b closed graph if for each $(x, y) \in(X, Y)-G(f)$, there exist $U \in B O(X, x)$ and a closed set V of Y containing y such that $(U \times V) \cap G(f)=\phi$.

Definition 2.3. [5] A space X is said to be strongly S-closed if every closed cover of X has a finite subcover

Theorem 2.4. If $\left(X, \tau_{b}\right)$ is a topological space and $f: X \rightarrow Y$ has a contra b-closed graph, then the inverse image of a strongly S-closed set A of Y is b-closed in X.

Proof. Assume that A is a strongly S-closed set of Y and $x \notin f^{-1}(A)$. For each $a \in A$, $(x, a) \notin G(f)$. By Lemma 3.3 in [13] there exist $U_{a} \in B O(X, x)$ and $V_{a} \in C(Y, a)$ such that $f\left(U_{a}\right) \cap V_{a}=\phi$. Since $\left\{A \cap V_{a}: a \in A\right\}$ is a closed cover of the subspace A, since A is S-closed, then there exists a finite subset $A_{0} \subseteq A$ such that $A \subseteq \cup\left\{V_{a}: a \in A_{0}\right\}$. Set $U=\cap\left\{U_{a}: a \in A_{0}\right\}$, but $\left(X, \tau_{b}\right)$ is a topological space, then $U \in B O(X, x)$ and $f(U) \cap A \subseteq f\left(U_{a}\right) \cap\left[\cup\left(V_{a}: a \in A_{0}\right)\right]=\phi$. Therefore $U \cap f^{-1}(A)=\phi$ and hence and hence $x \notin b \operatorname{Cl}\left(f^{-1}(A)\right)$. This show that $f^{-1}(A)$ is b-closed.

Theorem 2.5. Let Y be a strongly S-closed space. If $\left(X, \tau_{b}\right)$ is a topological space and a function $f: X \rightarrow Y$ has a contra b-closed graph, then f is contra b-continuous.

Proof. Suppose that Y is strongly S-closed and $G(f)$ is contra b-closed. First we show that an open set of Y is strongly S-closed. Let U be an open set of Y and $\left\{V_{i}: i \in I\right\}$ be a cover of U by closed sets V_{i} of U. For each $i \in I$, there exists a closed set K_{i} of X such that $V_{i}=K_{i} \cap U$. Then the family $\left\{K_{i}: i \in I\right\} \cup(Y-U)$ is a closed cover of Y. Since Y is strongly S-closed, there exists a finite subset $I_{0} \subseteq I$ such that $Y=\cup\left\{K_{i}: i \in I_{0}\right\} \cup(Y-U)$. Therefore we obtain $U=\cup\left\{V_{i}: i \in I_{0}\right\}$. This shows that U is strongly S-closed. By Theorem $2.4 f^{-1}(U)$ is b-closed in X for every open U in Y. Therefore, f is contra b-continuous.

Theorem 2.6. Let $f: X \rightarrow Y$ be a function and $g: X \rightarrow X \times Y$ the graph function of f, defined by $g(x)=(x, f(x))$ for every $x \in X$. If g is contra b-continuous, then f is contra b-continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra b-continuous. It follows that $f^{-1}(U)=g^{-1}(X \times U)$ is an b-closed in X. Thus, f is contra b-continuous.

Theorem 2.7. If $f: X \rightarrow Y$ is contra b-continuous, $g: X \rightarrow Y$ is contra continuous, and Y is Urysohn, then $E=\{x \in X: f(x)=g(x)\}$ is b-closed in X.

Proof. Let $x \in X-E$. Then $f(x) \neq g(x)$. Since Y is Urysohn, there exist open sets V and W such that $f(x) \in V, g(x) \in W$ and $C l(V) \cap C l(W)=\phi$. Since f is contra b-continuous, then $f^{-1}(C l(V))$ is b-open in X and g is contra continuous, then $g^{-1}(C l(W))$ is open set in X. Let $U=f^{-1}(C l(V))$ and $G=g^{-1}(C l(W))$. Then U and G contain x. Set $A=U \cap G$. A is b-open in X. And $f(A) \cap g(A) \subseteq f(U) \cap g(G) \subseteq$ $C l(V) \cap C l(W)=\phi$. Hence $f(A) \cap g(A)=\phi$ and $A \cap E=\phi$ where A is b-open therefore $x \notin b \operatorname{Cl}(E)$. Thus E is b-closed in X.

A subset A of a topological space X is said to be b-dense in X if $b C l(A)=X$.
Theorem 2.8. Let $f: X \rightarrow Y$ is contra b-continuous and $g: X \rightarrow Y$ is contra continuous. If Y is Urysohn, and $f=g$ on b-dense set $A \subseteq X$, then $f=g$ on X.

Proof. Since f is contra b-continuous, g contra continuous functions and Y is Urysohn by the previous Theorem $E=\{x \in X: f(x)=g(x)\}$ is b-closed in X. We have $f=g$ on b-dense set $A \subseteq X$. Since $A \subseteq E$ and A is b-dense set in X, then $X=b \operatorname{Cl}(A) \subseteq b \operatorname{Cl}(E)=E$. Hence $f=g$ on X.

Definition 2.9. [11] A space X is called b-connected provided that X is not the union of two disjoint nonempty b-open sets.

Theorem 2.10. If $f: X \rightarrow Y$ is a contra b-continuous function from a b-connected space X onto any space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty open and closed subset of Y. Then $f^{-1}(A)$ is a proper nonempty b-clopen subset of X, which is a contradiction to the fact that X is b-connected.

3. Almost Contra-b-Continuous Functions

In this section, we introduce a new type of continuity called almost contra- b continuity which is weaker than almost contra-precontinuity [8] and stronger than almost contra- β-continuity [4].

Definition 3.1. A function $f: X \rightarrow Y$ is said to be almost contra- b-continuous (resp. almost contra-precontinuous [8], almost contra- β-continuous [4]) $f^{-1}(V) \in B C(X)$ (resp. $f^{-1}(V) \in P C(X), f^{-1}(V) \in \beta C(X)$) for every $V \in R O(X)$.

Lemma 3.2. [3] Let A be a subset of a space X. Then

1. $b \operatorname{Cl}(A)=s C l(A) \cap p C l(A)=A \cup[\operatorname{Int}(C l(A)) \cap \operatorname{Cl}(\operatorname{Int}(A))] ;$
2. $\operatorname{bInt}(A)=\operatorname{sInt}(A) \cup p \operatorname{Int}(A)=A \cap[\operatorname{Int}(C l(A)) \cup C l(\operatorname{Int}(A))$.

Lemma 3.3. For a subset V of a topological space Y, the following hold:
$\alpha C l(V)=C l(V)$ for every $V \in B O(Y)$.

Proof. Since $V \in B O(Y)$, then

$$
\begin{aligned}
V & =b \operatorname{Int}(V)=\operatorname{sInt}(V) \cup p \operatorname{Int}(V) \\
& =b \operatorname{Int}(V)=V \cap[\operatorname{Int}(\operatorname{Cl}(V)) \cup \operatorname{Cl}(\operatorname{Int}(V)) \\
& =\operatorname{Cl}(V \cap[\operatorname{Int}(\operatorname{Cl}(V)) \cup \operatorname{Cl}(\operatorname{Int}(V))) \\
& \subseteq \operatorname{Cl}(V) \cap \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(V)) \cup \operatorname{Cl}(\operatorname{Int}(V))) \\
& \subseteq C l(V) \cap \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(V))) \cup \operatorname{Cl}(\operatorname{Int}(V)) \\
& \subseteq(C l(V) \cap \operatorname{Cl}(\operatorname{Int}(C l(V)))) \cup(\operatorname{Cl}(V) \cap(C l(\operatorname{Int}(V))) \\
& \subseteq C l(\operatorname{Int}(C l(V))) \cup C l(\operatorname{Int}(V)) \\
& \subseteq \operatorname{Cl(\operatorname {Int}(\operatorname {Cl}(V)))} \\
& \subseteq \operatorname{Cl(\operatorname {Int}(\operatorname {Cl}(V)))\cup V=\alpha Cl(V)}
\end{aligned}
$$

and also $\alpha C l(V) \subseteq C l(V)$ for every subset $V \subseteq X$. Hence $\alpha C l(V)=C l(V)$ for every $V \in B O(Y)$.

Definition 3.4. A subfamily m_{X} of the power set $P(X)$ of a nonempty set X is called a minimal structure (briefly m-structure) on X [18] if; $\phi \in m_{X}$ and $X \in m_{X}$.

By $\left(X ; m_{X}\right)$, we denote a nonempty set X with a minimal structure m_{X} on X and call it an m-space. Each member of m_{X} is said to be m_{X}-open (or briefly m-open) and the complement of an m_{X}-open set is said to be m_{X}-closed (or briefly m-closed).

Definition 3.5. A function $f:\left(X ; m_{X}\right) \rightarrow(Y ; \sigma)$ is said to be almost contra m continuous [18] if $f^{-1}(V)=m_{X}-\operatorname{Cl}\left(f^{-1}(V)\right)$ for every regular open set V of $(Y ; \sigma)$.

Theorem 3.6. [19] For a function $f:\left(X, m_{X}\right) \rightarrow(Y, \sigma)$, the following properties are equivalent:

1. f is almost contra m-continuous;
2. $f^{-1}(C l(V))=m_{X}-\operatorname{Int}\left(f^{-1}(C l(V))\right)$ for every $V \in \beta(Y)$;
3. $f^{-1}(C l(V))=m_{X}-\operatorname{Int}\left(f^{-1}(C l(V))\right)$ for every $V \in S O(Y)$;
4. $f^{-1}(\operatorname{Int}(C l(V)))=m_{X}-\operatorname{Int}\left(f^{-1}(\operatorname{Int}(C l(V)))\right)$ for every $V \in P O(Y)$.

For more properties of almost contra m-continuous the reader should refer to [19].

Corollary 3.7. For a function $f: X \rightarrow Y$, the following properties are equivalent:

1. f is almost contra b-continuous;
2. $f^{-1}(C l(V))$ is b-open in X for every $V \in B O(Y)$;
3. $f^{-1}(\alpha C l(V))$ is b-open in X for every $V \in B O(Y)$.

Definition 3.8. [26] A function $f: X \rightarrow Y$ is said to be R-map if $f^{-1}(V)$ is regular open in X for each regular open set V of Y.

Recall that a function $f: X \rightarrow Y$ is almost-continuous if $f^{-1}(V)$ is open in X for each regular open set V of Y.

Theorem 3.9. If a function $f: X \rightarrow Y$ is almost contra-b-continuous and almost continuous, then f is R-map.

Proof. Let V be any regular open set in Y. Since f is almost contra- b-continuous and contra continuous $f^{-1}(V)$ is b-closed and open, Thus
$\operatorname{bCl}\left(f^{-1}(V)\right)=f^{-1}(V)=\operatorname{Int}\left(\left(f^{-1}(V)\right)\right.$,
by Lemma 3.2 we have

$$
\begin{aligned}
b C l\left(f^{-1}(V)\right) & =f^{-1}(V) \cup\left[\operatorname{Cl}\left(\operatorname{Int}\left(f^{-1}(V)\right)\right) \cap \operatorname{Int}\left(C l\left(f^{-1}(V)\right)\right)\right] \\
& =f^{-1}(V) \cup\left[\operatorname{Cl}\left(f^{-1}(V)\right) \cap \operatorname{Int}\left(\operatorname{Cl}\left(f^{-1}(V)\right)\right)\right] \\
& =f^{-1}(V) \cup \operatorname{Int}\left(C l\left(f^{-1}(V)\right)\right) \\
& =\operatorname{Int}\left(C l\left(f^{-1}(V)\right)\right)=f^{-1}(V) .
\end{aligned}
$$

We obtain that f is R-map.

Definition 3.10. [11] A space X is said to be b-compact (resp. b-Lindelöf, countably b-compact) if every b-open (resp. b-open, countable b-open) cover of X has a finite (resp. a countable, a finite) subcover.

Definition 3.11. A space X is said to be S-Lindelöf [10] (resp. S-closed [21], countably S-closed [6]) if every regular closed (resp. regular closed, countable regular closed) cover of X has a countable (resp. a finite, a finite) subcover.

Theorem 3.12. Let $f: X \rightarrow Y$ be an almost contra-b-continuous surjection. The following statements hold:

1. if X is b-compact, then Y is S-closed;
2. if X is b-Lindelöf, then Y is S-Lindelöf;
3. if X is countably b-compact, then Y is countably S-closed.

Proof. We prove only (1). Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be any regular closed cover of Y. Since f is almost contra- b-continuous, then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a b-open cover of X and hence there exists a finite subset I_{0} of I such that $X=\cup\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$ therefore we have $Y=\cup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$ and Y is S-closed.

Definition 3.13. [22] A space X is said to be nearly compact (resp. nearly countably compact, nearly Lindelöf) if every regular open (resp. countable regular open, regular open) cover of X has a finite (resp. a finite, a countably) subcover.

Theorem 3.14. Let $f: X \rightarrow Y$ be an almost contra-b-continuous and almost continuous surjection and X is S-closed(resp. nearly compact, nearly Lindelöf, nearly countably compact, countably S-closed, S-Lindelöf) then Y is S-closed (resp. nearly countably compact, nearly Lindelöf, nearly countably compact, countably S-closed, S-Lindelöf).

Proof. Let V be any regular closed set on Y. Then since f is almost contra- b continuous and almost continuous, then by Theorem $3.9 f$ is R-map. Hence $f^{-1}(V)$ is regular closed in X. Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be any regular closed cover of Y. Then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I\right\}$ is a regular closed cover of X and since X is S-closed, there exists a finite subset I_{0} of I such that $X=\cup\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in I_{0}\right\}$. since f is surjection, we obtain $Y=\cup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$. This shows that Y is S-closed. The other proofs are similar.

Theorem 3.15. If $f: X \rightarrow Y$ is contra- b-continuous and A is b-compact relative to X, then $f(A)$ is strongly S-closed in Y.

Proof. Let $\left\{V_{i}: i \in I\right\}$ be any cover of $f(A)$ by closed sets of the subspace $f(A)$. for $i \in I$, there exists a closed set A_{i} of Y such that $V_{i}=A_{i} \cap f(A)$. For each $x \in A$, there exists $i(x) \in I$ such that $f(x) \in A_{i(x)}$ and by Theorem 3.1 in [13], there exists $U_{x} \in B O(X, x)$ such that $f\left(U_{x}\right) \subseteq A_{i(x)}$. Since the family $\left\{U_{x}: x \in A\right\}$ is a cover of A by b-open sets of X, there exists a finite subset A_{0} of A such that $A \subseteq \cup\left\{U_{x}: x \in A_{0}\right\}$. Therefore, we obtain $f(A) \subseteq \cup\left\{f\left(U_{x}\right): x \in A_{0}\right\}$. which is a subset of $\cup\left\{A_{i(x)}: x \in A_{0}\right\}$. Thus $f(A)=\cup\left\{V_{i(x)}: x \in A_{0}\right\}$ and hence $f(A)$ is strongly S-closed.

Corollary 3.16. If $f: X \rightarrow Y$ is contra-b-continuous surjection and X is b-compact then Y is strongly S-closed.

Definition 3.17. A function $f: X \rightarrow Y$ is almost weakly continuous [12] (resp. almost weakly b-continuous) if for each $x \in X$ and each open set V containing $f(x)$ there exists $U \in P O(X, x)$ (resp. $U \in B O(X, x)$) such that $f(U) \subseteq C l(V)$.

Definition 3.18. [9] A function $f: X \rightarrow Y$ is (θ, s)-continuous if the preimage of every regular open subset of Y is closed in X .

The following examples will show that the concepts of almost, contra- b-continuity, almost contra- b-continuity, almost weak b-continuity, almost contra-precontinuity, almost weak-continuity are independent from each other.

Example 3.19. Let $X=\{a, b, c\}, \tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ and
$\sigma=\{X, \phi,\{b\},\{c\},\{b, c\}\}$. Then $R C(X, \tau)=\{X, \phi,\{b, c\},\{a, c\}\}$ and
$B O(X, \sigma)=\{X, \phi,\{b\},\{c\},\{b, c\},\{a, c\},\{a, b\}\}, P O(X, \sigma)=\{X, \phi,\{b\},\{c\}$,
$\{b, c\}\}$. Let $f:(X, \sigma) \rightarrow(X, \tau)$ be the identity function. Then f is almost contra- b continuous function which is not almost contra-precontinuous, since $\{a, c\}$ is a regular closed set of (X, τ) and $f^{-1}(\{a, c\})=\{a, c\} \notin P O(X, \sigma)$.

Example 3.20. Let $X=\{a, b, c\}, \tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$. Then $R C(X, \tau)=\{X, \phi,\{b, c\},\{a, c\}\}$ and $B O(X, \tau)=\{X, \phi,\{a\},\{b\},\{b, c\},\{a, c\},\{a, b\}\}$, Let $f:(X, \tau) \rightarrow(X, \tau)$ be the identity function. Then f is almost contra-b-continuous function which is not contra-bcontinuous, since $\{c\}$ is a closed set of (X, τ) and $f^{-1}(\{c\})=\{c\} \notin B O(X, \sigma)$.

Example 3.21. Let $X=\{a, b, c\}, \tau=\{X, \phi,\{a\},\{b\},\{a, b\}\}$. Then $R C(X, \tau)=\{X, \phi,\{b, c\},\{a, c\}\}$ and $Y=\{1,2\}(Y, \sigma)=\{Y, \phi,\{1\}\}, b O(Y, \sigma)=\{Y, \phi,\{1\}\}$ Let $f:(Y, \sigma) \rightarrow(X, \tau)$ be defined by $f(1)=a$ and $f(2)=c$. Then function is almost weak-b-continuous, and f is not almost contra-b-continuous since $\{b, c\}$ is a regular closed set of (X, τ) and $f^{-1}(\{b, c\})=\{2\} \notin B O(Y, \sigma)$.

Example 3.22. In Example $3.19 f$ is almost weak-b-continuous, and it is not almost weak-continuous, since if $a \in X$ and $f(a) \in\{a\}$ it clear that does not exist $U \in P O(X, x)$ such that $f(\{U\}) \subseteq C l(\{a\})=\{a, c\}$.

We have the following relation for the functions defined above:

DIAGRAM I

4. b-Regular Graphs

We introduce the following relatively new definition:
Definition 4.1. The graph $G(f)$ of a function $f: X \rightarrow Y$ is said to be b-regular (resp. strongly contra-b-closed) graph if for each $(x, y) \in(X, Y)-G(f)$, there exist $U \in B O(X, x)$ and a regular open (resp, regular closed) set V of Y containing y such that $(U \times V) \cap G(f)=\phi$.

Lemma 4.2. [13] The graph $G(f)$ of $f: X \rightarrow Y$ is contra-b-closed in $X \times Y$ if and only if for each $(x, y) \in(X \times Y)-G(f)$, there exists $U \in B O(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V=\phi$.

Theorem 4.3. [13] If $f: X \rightarrow Y$ is contra-b-continuous and Y is Urysohn, then $G(f)$ is contra-b-closed in $X \times Y$.

The following results can be easily verified.

Lemma 4.4. Let $G(f)$ be the graph of f, for any subset $A \subseteq X$ and $B \subseteq Y$, we have $f(A) \cap B=\phi$ if and only if $(A \times B) \cap G(f)=\phi$

Lemma 4.5. The graph $G(f)$ of $f: X \rightarrow Y$ is b-regular in $X \times Y$ if and only if for each $(x, y) \in(X \times Y)-G(f)$, there exists $U \in B O(X, x)$ and $V \in R O(Y, y)$ such that $f(U) \cap V=\phi$.

Lemma 4.6. If A and B are open sets with $A \cap B=\phi$, then $C l(A) \cap \operatorname{Int}(C l(B))=\phi$

Theorem 4.7. If $f: X \rightarrow Y$ is almost contra-b-continuous and Y is T_{2}, then $G(f)$ is b-regular in $X \times Y$.

Proof. Let $(x, y) \in(X \times Y)-G(f)$. It follows that $f(x) \neq y$. Since Y is T_{2}, there exists open sets V and W containing $f(x)$ and y respectively, such that $V \cap W=\phi$. Then $\operatorname{Int}(C l(V)) \cap \operatorname{Int}(C l(W))=\phi$. Since f is almost contra- b-continuous, we have
$f^{-1}(\operatorname{Int}(\operatorname{Cl}(V)))$ is b-closed in X containing x. Take $U=f^{-1}(\operatorname{Int}(\operatorname{Cl}(V)))$. Then $f(U) \subseteq \operatorname{Int}(C l(V))$. Therefore $f(U) \cap \operatorname{Int}(C l(W))=\phi$, and $\operatorname{Int}(C l(W)) \in R O(Y)$. Hence $G(f)$ is b-regular in $X \times Y$.

Definition 4.8. [11] A space X is said to be $b-T_{1}$ if each pair of distinct points x and y of X, there exists b-open sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

Theorem 4.9. Let $f: X \rightarrow Y$ have a b-regular graph. If f is injection then X is $b-T_{1}$.
Proof. Let x and y be any two distinct points of X. Since f is injection, then we have $(x, f(y)) \in(X \times Y)-G(f)$. By definition of b-regular graph, there exist a b-closed set U of X and $V \in R O(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V=\phi$. therefore we have $U \cap f^{-1}(V)=\phi$ and $y \notin U$. Thus $y \in X-U$ and $x \notin X-U$ and $X-U \in B O(X)$. This implies that X is $b-T_{1}$.

Definition 4.10. [23] A space X is said to be weakly Hausdorff if each element of X is an intersection of regular closed sets.

Theorem 4.11. Let $f: X \rightarrow Y$ have a b-regular graph. If f is surjection then Y is weakly Hausdorff.

Proof. Let y_{1} and y_{2} be any two distinct points of Y. Since f is surjective $f(x)=y_{1}$ for some $x \in X$ and $\left(x, y_{2}\right) \in(X \times Y)-G(f)$. By definition of b-regular graph, there exist a b-closed set U of X and $F \in R O(Y)$ such that $\left(x, y_{2}\right) \in U \times F$ and $f(U) \cap F=\phi$. Since $f(x) \in f(U)$. Hence $y_{1} \notin F$. Then $y_{2} \notin Y-F \in R C(Y)$ and $y_{1} \in Y-F$. This implies that Y is weakly Hausdorff.

Lemma 4.12. The graph $G(f)$ of $f: X \rightarrow Y$ is strongly contra-b- closed graph in $X \times Y$ if and only if for each $(x, y) \in(X \times Y)-G(f)$, there exists $U \in B O(X, x)$ and $V \in R C(Y, y)$ such that $f(U) \cap V=\phi$.

Theorem 4.13. If $f: X \rightarrow Y$ is almost weakly-b-continuous and Y is Urysohn, then $G(f)$ is strongly contra-b-closed in $X \times Y$.

Proof. Suppose that $(x, y) \in(X \times Y)-G(f)$. Then $y \neq f(x)$. Since Y is Urysohn, there exist open sets V and W in Y containing y and $f(x)$, respectively, such that $C l(V) \cap C l(W)=\phi$. Since f is almost weakly- b-continuous there exists $U \in B O(X, x)$ such that $f(U) \subseteq C l(W)$. This shows that $f(U)) \cap C l(V)=f(U) \cap C l(\operatorname{Int}(V))=\phi$ with $\operatorname{Cl}(\operatorname{Int}(V)) \in \operatorname{RC}(Y, y)$ and hence by Lemma 4.12 we have $G(f)$ is strongly contra-b-closed.

Theorem 4.14. If $f: X \rightarrow Y$ is almost contra-b-continuous, then f is almost weakly-bcontinuous.

Proof. Let $x \in X$ and V be any open set of Y containing $f(x)$. Then $\operatorname{Cl}(V)$ is a regular closed set of Y containing $f(x)$. Since f almost contra- b-continuous by Theorem 3.1 (3) in [19] there exists $U \in B O(X, x)$ such that $f(U) \subseteq C l(V)$. Therefore f is almost weakly- b-continuous.

Corollary 4.15. If $f: X \rightarrow Y$ is almost contra-b-continuous and Y is Urysohn, then $G(f)$ is strongly contra-b-closed.

Definition 4.16. [7] A function $f: X \rightarrow Y$ is called almost- b-continuous if $f^{-1}(V)$ b-open in X for every regular open set V of Y.

The following result can be easily verified.
Lemma 4.17. [7] A function $f: X \rightarrow Y$ is almost b-continuous, if and only if for each $x \in X$ and each regular open set V of Y containing $f(x)$, there exists $U \in B O(X, x)$ such that $f(U) \subseteq V$.

Theorem 4.18. If $f: X \rightarrow Y$ is almost b-continuous, and Y is Hausdorff, then $G(f)$ is strongly contra-b-closed.

Proof. Suppose that $(x, y) \in(X \times Y)-G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exist open sets V and W in Y containing y and $f(x)$, respectively, such that $V \cap W=\phi$, hence $\operatorname{Cl}(V) \cap \operatorname{Int}(\operatorname{Cl}(W))=\phi$. Since f is almost b-continuous, and W is regular open by Lemma 4.17 there exists $U \in B O(X, x)$ such that $f(U)=W \subseteq$ $\operatorname{Int}(C l(W))$. This shows that $f(U) \cap \operatorname{Cl}(V)=\phi$ and hence by Lemma 4.12 we have $G(f)$ is strongly contra-b-closed.

We recall that a topological space (X, τ) is said to be extremally disconnected (briefly E.D.) if the closure of every open set of X is open in X.

Theorem 4.19. Let Y be E.D. Then, a function $f: X \rightarrow Y$ is almost contra-b-continuous if and only if it is almost b-continuous.

Proof. Let $x \in X$ and V be any regular open set of Y containing $f(x)$. Since Y is E.D. then V is clopen. By Theorem 3.1 (3) in [19], there exists $U \in B O(X, x)$ such that $f(U) \subseteq V$. Then Lemma 4.17, implies that f is almost b-continuous. Conversely let F be any regular closed set of Y. Since Y is E.D. Then F is also regular open and $f^{-1}(F)$ is b-open in X. This show that f are almost contra- b-continuous.

The following examples will show that the concepts of almost-b-continuity and almost contra-b-continuity, is independent.

Example 4.20. Let $X=\{a, b, c\}=Y, \tau=\{\phi, X,\{a\},\{b\},\{a, b\}\}$ and $\sigma=\{\phi, Y,\{a\}\}$, then $R O(X, \tau)=\{\phi, X,\{a\},\{b\}\}, B O(Y, \sigma)=\{\phi, X,\{a\},\{a, b\}$, $\{a, c\}\}$. Then it is clear that (X, τ) is not extremally disconnected. Let function f : $(Y, \sigma) \rightarrow(X, \tau)$ as follows: $f(a)=c, f(b)=b$ and $f(c)=a$. Then f is almost-contra-b-continuous and f is not almost-b-continuous, since $\{a\}$ is regular open and $f^{-1}(\{a\})=\{c\}$ is not b-open. But if we define $g:(Y, \sigma) \rightarrow(X, \tau)$ as $g(y)=a$ for all $y \in Y$, then g almost-b-continuous but g is not almost-contra-b-continuous since $f^{-1}(\{a\})=\{a\}$ is not b-closed.

Definition 4.21. [11] A space X is said to be $b-T_{2}$ if for each pair of distinct points x and y in X, there exist $U \in B O(X, x)$ and $V \in B O(X, y)$ such that $U \cap V=\phi$.

Theorem 4.22. If $f: X \rightarrow Y$ is an injective almost contra-b-continuous function with the strongly contra-b-closed graph, then (X, τ) is $b-T_{2}$.

Proof. Let x and y be distinct points of X. Since f is injective, we have $f(x) \neq$ $f(y)$. Then we have $(x, f(y)) \in(X \times Y)-G(f)$. Since $G(f)$ is strongly contra- b closed, by Lemma 4.12 there exists $U \in B O(X, x)$ and a regular closed set V containing $f(y)$ such that $f(U) \cap V=\phi$. Since f is almost contra- b-continuous, by Theorem 3.1 (3) in [19] there exists $G \in B O(X, y)$ such that $f(G) \subseteq V$. Therefore we have $f(U) \cap f(G)=\phi$, hence $U \cap G=\phi$. This shows that (X, τ) is $b-T_{2}$.

ACKNOWLEDGEMENTS. This work is financially supported by the Ministry of Higher Education, Malaysia under FRGS grant no: UKM-ST-06-FRGS0008-2008. We also would like to thank the referees for useful comments and suggestions.

References

[1] A.Al-Omari and M.S.M.Noorani, "On generalzed b-closed sets", Bull. Malaysian Math. Sc. Soc. 32(1)(2009) 1-12.
[2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, " β-open sets and β-continuous mappings", Bull. Fac. Sci. Assuit Univ. 12 (1983), 77-90.
[3] D. Andrijević, "On b-open sets", Mat. Vesnik 48 (1996), 59-64.
[4] M. Caldas and S. Jafri, "Some properties of contra- β-continuous functions", Mem. Fac. Sci. Koch Univ. (Math) 22 (2001), 19-28.
[5] J. Dontchev, "Contra-continuous functions and strongly S-closed spaces", Internat.J. Math. Math. Sci. 19 (1996), 303-310.
[6] K. Dlaska, N. Ergun and M. Ganster, "Countably S-closd spaces", Math. Slovaca 44 (1994), 337-348.
[7] A. Keskin and T. Noiri, "Almost b-continuous functions ", Chaos Solitions Fractals (2007), doi:10.1016/j.chaos.2007.11.012
[8] S. Jafari and T. Noiri, "On contra-precontinuous functions", Bull. Malaysian Math. Sc. Soc. 25 (2002), 115-128.
[9] J.E. Joseph and M.H. Kwack, "On S-closed spaces", Proc. Amer. Math. Soc. 80(1980),341-348.
[10] E. Ekici, "Almost contra-precontinuous functions", Bull. Malaysian Math. Sc. Soc. 27(1) (2004), 53-65.
[11] E. Ekici and M. Caldas, "Slightly γ-continuous functions", Bol. Soc. Paran. Mat. 22(2) (2004), 63-74.
[12] V. Popa and T. Noiri, "Almost weakly continuous functions", Demonstratio Math. 25 (1992), 241-251.
[13] A.A. Nasef, "Some properties of contra- γ-continuous functions", Chaos Solitons Fractals 24 (2005), 471-477.
[14] O. Njåstad, "On some classes of nearly open sets", Pacific J. Math. 15 (1965), 961-970.
[15] T. Noiri, "On almost continuous functions", Indian J. Pure Appl. Math. 20 (1989), 571576.
[16] V. Popa and T. Noiri, "On the definitions of some generalized forms of continuity under minimal conditions", Mem. Fac. Sci. Kochi Univ. Ser. Math. 22 (2001), 31-41.
[17] T. Noiri and V. Popa, "A unified theory of contra-continuity for functions", Ann. Univ. Sci. Budapest 44 (2002), 115-137.
[18] T. Noiri and V. Popa, "On m-quasi irresolute functions", Math. Moravica 9 (2005), 25-41.
[19] T. Noiri and V. Popa, "A unified theory of almost contra-continuity for functions", Kochi J. Math. 3 (2008), 125-138.
[20] T. Noiri, A. Al-Omari and M.S.M. Noorani, "Weakly b-open functions", Mathematica Balkanica 23 (2009),Fasc (1-2) 1-14.
[21] T. Thompson, "S-closed spaces", Proc. Amer. Math. Soc. 60 (1976), 335-338.
[22] M. Singal and A. Mathur, "On nearly-compact spaces", Boll. Un. Mat. Ital. Serie 9 (46)(1969), 702-710.
[23] T. Soundararajan, "Weakly Hausdorff spaces and the cardinality of topological spaces in General topology and its relation to modern analysis and algebra", Boll.Un.III, Proc. Conf. Kanpur(1968) Academia, Prague (1971), 301-306.
[24] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly 70 (1963), 36-41.
[25] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous functions", Proc. Math. Phys. Soc. Egypt 51 (1982), 47-53.
[26] F.H. Khwdr and T. Noiri, "On θ-irresolute functions", Indian J. of Math. 28(3) (1986), 211-217.
[27] S. Willard, General Topology spaces, Addison Wesley, 1970.

[^0]: *Corresponding author.

 Email addresses: omarimutah1@yahoo.com (A. Al-Omari), msn@pkrisc.cc.ukm.my (S. Noorani)
 (c) 2009 EJPAM All rights reserved.

