EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 2, 2009, (213-230) ISSN 1307-5543 – www.ejpam.com

Some Properties of Contra-b-Continuous and Almost

Contra-*b***-Continuous Functions**

Ahmad Al-Omari^{1*} and Mohd. Salmi Md. Noorani²

¹ Department of Mathematics and Statistics, Faculty of Science
Mu'tah University, P.O.Box 7, Karak-Jordan.
² School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia
43600 UKM Bangi, Selangor, Malaysia.

Abstract. The notion of contra-continuous functions was introduced and investigated by Dontchev [5]. In this paper we apply the notion of *b*-open sets in topological space to present and study a new class of function called almost contra-*b*-continuous functions as a new generalization of contra-continuity.

AMS subject classifications: 54C05, 54C08, 54C10

Key words: contra-continuous, *b*-continuous, contra-*b*-continuous, *b*-regular graph, almost contra-*b*-continuous, strong S-closed

Email addresses: omarimutah1@yahoo.com (A. Al-Omari), msn@pkrisc.cc.ukm.my (S. Noorani)

http://www.ejpam.com

^{*}Corresponding author.

1. Introduction and Preliminaries

In 1996, Dontchev [5] introduced contra-continuous functions. Jafari and Noiri [8] introduced and studied contra-precontinuous functions. Ekici [10] introduced and studied almost contra-precontinuous functions. Recently [13] introduced and studied contra *b*-continuous functions. In this paper, we introduce a new class of functions called almost contra-*b*-continuous function. Moreover, we obtain basic properties and preservation theorem of almost contra-*b*-continuous function, contra-*b*-continuous function and relationships between almost contra-*b*-continuous function and *b*-regular graphs.

Throughout the paper, the space *X* and *Y* (or (X, τ) and (Y, σ)) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let *A* be a subset of *X*. The closure of *A* and the interior of *A* will be denoted by *Cl*(*A*) and *Int*(*A*), respectively.

Definition 1.1. A subset *A* of a space *X* is said to be

- 1. regular open [27] if A = Int(Cl(A));
- 2. α -open [20] if $A \subseteq Int(Cl(Int(A)))$;
- 3. semi-open [24] if $A \subseteq Cl(Int(A))$;
- 4. pre-open [25] if $A \subseteq Int(Cl(A))$;
- 5. β -open [2] if $A \subseteq Cl(Int(Cl(A)))$;
- 6. *b*-open [3] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.

The complement of a *b*-open set is said to be *b*-closed [3]. The intersection of all *b*-closed sets of *X* containing *A* is called the *b*-closure of *A* and is denoted by bCl(A). The union of all *b*-open sets of *X* contained *A* is called *b*-interior of *A* and

is denoted by bInt(A). The family of all *b*-open (resp. α -open, semi-open, preopen, β -open, regular open, *b*-closed, preclosed, β -closed, regular closed, closed) subsets of a space *X* is denoted by BO(X) (resp. $\alpha O(X)$, SO(X), PO(X), $\beta O(X)$, RO(X), BC(X), PC(X), $\beta C(X)$, RC(X), C(X) respectively) and the collection of all *b*-open subsets of *X* containing a fixed point *x* is denoted by BO(X, x). The sets $\alpha O(X, x)$, SO(X, x), PO(X, x), $\beta O(X, x)$, RO(X, x) and C(X, x) are defined analogously.

Definition 1.2. A function $f : X \to Y$ is called *b*-continuous [11] if for each $x \in X$ and each open set *V* of *Y* containing f(x), there exists $U \in BO(X, x)$ such that $f(U) \subseteq V$.

Definition 1.3. A function $f : X \to Y$ is called contra-continuous [5] (resp. contra-precontinuous [8], contra- β -continuous [4], contra-b-continuous [13]) if $f^{-1}(V)$ closed (resp. preclosed, β -closed, b-closed) in X for each open set V of Y.

2. Contra-b-Continuous Functions

In this section, we obtain some properties of contra-*b*-continuous functions, (for more properties the reader should refer to [1, 13, 17, 20]).

Lemma 2.1. [3] Let (X, τ) be a topological space.

- 1. The intersection of an open set and a b-open set is a b-open set.
- 2. The union of any family of b-open sets is a b-open set.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by G(f).

Definition 2.2. [13] The graph G(f) of a function $f : X \to Y$ is said to be contra-*b*closed graph if for each $(x, y) \in (X, Y) - G(f)$, there exist $U \in BO(X, x)$ and a closed set *V* of *Y* containing *y* such that $(U \times V) \cap G(f) = \phi$. **Definition 2.3.** [5] A space *X* is said to be strongly S-closed if every closed cover of *X* has a finite subcover

Theorem 2.4. If (X, τ_b) is a topological space and $f : X \to Y$ has a contra b-closed graph, then the inverse image of a strongly S-closed set A of Y is b-closed in X.

Proof. Assume that *A* is a strongly S-closed set of *Y* and $x \notin f^{-1}(A)$. For each $a \in A$, $(x, a) \notin G(f)$. By Lemma 3.3 in [13] there exist $U_a \in BO(X, x)$ and $V_a \in C(Y, a)$ such that $f(U_a) \cap V_a = \phi$. Since $\{A \cap V_a : a \in A\}$ is a closed cover of the subspace *A*, since *A* is S-closed, then there exists a finite subset $A_0 \subseteq A$ such that $A \subseteq \bigcup \{V_a : a \in A_0\}$. Set $U = \bigcap \{U_a : a \in A_0\}$, but (X, τ_b) is a topological space, then $U \in BO(X, x)$ and $f(U) \cap A \subseteq f(U_a) \cap [\bigcup (V_a : a \in A_0)] = \phi$. Therefore $U \cap f^{-1}(A) = \phi$ and hence and hence $x \notin bCl(f^{-1}(A))$. This show that $f^{-1}(A)$ is *b*-closed.

Theorem 2.5. Let *Y* be a strongly *S*-closed space. If (X, τ_b) is a topological space and a function $f : X \to Y$ has a contra *b*-closed graph, then *f* is contra *b*-continuous.

Proof. Suppose that *Y* is strongly S-closed and G(f) is contra *b*-closed. First we show that an open set of *Y* is strongly S-closed. Let *U* be an open set of *Y* and $\{V_i : i \in I\}$ be a cover of *U* by closed sets V_i of *U*. For each $i \in I$, there exists a closed set K_i of *X* such that $V_i = K_i \cap U$. Then the family $\{K_i : i \in I\} \cup (Y - U)$ is a closed cover of *Y*. Since *Y* is strongly S-closed, there exists a finite subset $I_0 \subseteq I$ such that $Y = \bigcup \{K_i : i \in I_0\} \cup (Y - U)$. Therefore we obtain $U = \bigcup \{V_i : i \in I_0\}$. This shows that *U* is strongly S-closed. By Theorem 2.4 $f^{-1}(U)$ is *b*-closed in *X* for every open *U* in *Y*. Therefore, *f* is contra *b*-continuous.

Theorem 2.6. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra b-continuous, then f is contra b-continuous.

Proof. Let *U* be an open set in *Y*, then $X \times U$ is an open set in $X \times Y$. Since *g* is contra *b*-continuous. It follows that $f^{-1}(U) = g^{-1}(X \times U)$ is an *b*-closed in *X*. Thus, *f* is contra *b*-continuous.

Theorem 2.7. If $f : X \to Y$ is contra b-continuous, $g : X \to Y$ is contra continuous, and Y is Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is b-closed in X.

Proof. Let $x \in X - E$. Then $f(x) \neq g(x)$. Since *Y* is Urysohn, there exist open sets *V* and *W* such that $f(x) \in V$, $g(x) \in W$ and $Cl(V) \cap Cl(W) = \phi$. Since *f* is contra *b*-continuous, then $f^{-1}(Cl(V))$ is *b*-open in *X* and *g* is contra continuous, then $g^{-1}(Cl(W))$ is open set in *X*. Let $U = f^{-1}(Cl(V))$ and $G = g^{-1}(Cl(W))$. Then *U* and *G* contain *x*. Set $A = U \cap G$. *A* is *b*-open in *X*. And $f(A) \cap g(A) \subseteq f(U) \cap g(G) \subseteq$ $Cl(V) \cap Cl(W) = \phi$. Hence $f(A) \cap g(A) = \phi$ and $A \cap E = \phi$ where *A* is *b*-open therefore $x \notin bCl(E)$. Thus *E* is *b*-closed in *X*.

A subset A of a topological space X is said to be b-dense in X if bCl(A) = X.

Theorem 2.8. Let $f : X \to Y$ is contra b-continuous and $g : X \to Y$ is contra continuous. If Y is Urysohn, and f = g on b-dense set $A \subseteq X$, then f = g on X.

Proof. Since f is contra b-continuous, g contra continuous functions and Y is Urysohn by the previous Theorem $E = \{x \in X : f(x) = g(x)\}$ is b-closed in X. We have f = g on b-dense set $A \subseteq X$. Since $A \subseteq E$ and A is b-dense set in X, then $X = bCl(A) \subseteq bCl(E) = E$. Hence f = g on X.

Definition 2.9. [11] A space *X* is called *b*-connected provided that *X* is not the union of two disjoint nonempty *b*-open sets.

Theorem 2.10. If $f : X \to Y$ is a contra *b*-continuous function from a *b*-connected space *X* onto any space *Y*, then *Y* is not a discrete space.

Proof. Suppose that *Y* is discrete. Let *A* be a proper nonempty open and closed subset of *Y*. Then $f^{-1}(A)$ is a proper nonempty *b*-clopen subset of *X*, which is a contradiction to the fact that *X* is *b*-connected.

218

3. Almost Contra-b-Continuous Functions

In this section, we introduce a new type of continuity called almost contra-*b*-continuity which is weaker than almost contra-precontinuity [8] and stronger than almost contra- β -continuity [4].

Definition 3.1. A function $f : X \to Y$ is said to be almost contra-*b*-continuous (resp. almost contra-precontinuous [8], almost contra- β -continuous [4]) $f^{-1}(V) \in BC(X)$ (resp. $f^{-1}(V) \in PC(X), f^{-1}(V) \in \beta C(X)$) for every $V \in RO(X)$.

Lemma 3.2. [3] Let A be a subset of a space X. Then

1. $bCl(A) = sCl(A) \cap pCl(A) = A \cup [Int(Cl(A)) \cap Cl(Int(A))];$

2. $bInt(A) = sInt(A) \cup pInt(A) = A \cap [Int(Cl(A)) \cup Cl(Int(A))]$.

Lemma 3.3. For a subset V of a topological space Y, the following hold: $\alpha Cl(V) = Cl(V)$ for every $V \in BO(Y)$.

Proof. Since $V \in BO(Y)$, then

$$V = bInt(V) = sInt(V) \cup pInt(V)$$

= $bInt(V) = V \cap [Int(Cl(V)) \cup Cl(Int(V)))$
= $Cl(V \cap [Int(Cl(V)) \cup Cl(Int(V)))$
 $\subseteq Cl(V) \cap Cl(Int(Cl(V)) \cup Cl(Int(V)))$
 $\subseteq Cl(V) \cap Cl(Int(Cl(V))) \cup Cl(Int(V))$
 $\subseteq (Cl(V) \cap Cl(Int(Cl(V)))) \cup (Cl(V) \cap (Cl(Int(V))))$
 $\subseteq Cl(Int(Cl(V))) \cup Cl(Int(V))$
 $\subseteq Cl(Int(Cl(V))) \cup Cl(Int(V))$
 $\subseteq Cl(Int(Cl(V))) \cup V = \alpha Cl(V)$

and also $\alpha Cl(V) \subseteq Cl(V)$ for every subset $V \subseteq X$. Hence $\alpha Cl(V) = Cl(V)$ for every $V \in BO(Y)$.

Definition 3.4. A subfamily m_X of the power set P(X) of a nonempty set X is called a minimal structure (briefly m-structure) on X [18] if; $\phi \in m_X$ and $X \in m_X$.

By $(X; m_X)$, we denote a nonempty set X with a minimal structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open (or briefly m-open) and the complement of an m_X -open set is said to be m_X -closed (or briefly m-closed).

Definition 3.5. A function $f : (X; m_X) \to (Y; \sigma)$ is said to be almost contra *m*continuous [18] if $f^{-1}(V) = m_X - Cl(f^{-1}(V))$ for every regular open set V of $(Y; \sigma)$.

Theorem 3.6. [19] For a function $f : (X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

1. *f* is almost contra *m*-continuous;

2.
$$f^{-1}(Cl(V)) = m_X - Int(f^{-1}(Cl(V)))$$
 for every $V \in \beta(Y)$;

3.
$$f^{-1}(Cl(V)) = m_X - Int(f^{-1}(Cl(V)))$$
 for every $V \in SO(Y)$;

4.
$$f^{-1}(Int(Cl(V))) = m_X - Int(f^{-1}(Int(Cl(V))))$$
 for every $V \in PO(Y)$.

For more properties of almost contra *m*-continuous the reader should refer to [19].

Corollary 3.7. For a function $f : X \to Y$, the following properties are equivalent:

- 1. *f* is almost contra *b*-continuous;
- 2. $f^{-1}(Cl(V))$ is b-open in X for every $V \in BO(Y)$;
- 3. $f^{-1}(\alpha Cl(V))$ is b-open in X for every $V \in BO(Y)$.

Definition 3.8. [26] A function $f : X \to Y$ is said to be R-map if $f^{-1}(V)$ is regular open in *X* for each regular open set *V* of *Y*.

Recall that a function $f : X \to Y$ is almost-continuous if $f^{-1}(V)$ is open in X for each regular open set V of Y.

Theorem 3.9. If a function $f : X \to Y$ is almost contra-b-continuous and almost continuous, then f is R-map.

Proof. Let *V* be any regular open set in *Y*. Since *f* is almost contra-*b*-continuous and contra continuous $f^{-1}(V)$ is *b*-closed and open, Thus $bCl(f^{-1}(V)) = f^{-1}(V) = Int((f^{-1}(V)))$,

by Lemma 3.2 we have

$$bCl(f^{-1}(V)) = f^{-1}(V) \cup [Cl(Int(f^{-1}(V))) \cap Int(Cl(f^{-1}(V)))]$$

= $f^{-1}(V) \cup [Cl(f^{-1}(V)) \cap Int(Cl(f^{-1}(V)))]$
= $f^{-1}(V) \cup Int(Cl(f^{-1}(V)))$
= $Int(Cl(f^{-1}(V))) = f^{-1}(V).$

We obtain that f is R-map.

Definition 3.10. [11] A space *X* is said to be *b*-compact (resp. *b*-Lindelöf, countably *b*-compact) if every *b*-open (resp. *b*-open, countable *b*-open) cover of *X* has a finite (resp. a countable, a finite) subcover.

221

Definition 3.11. A space *X* is said to be S-Lindelöf [10] (resp. S-closed [21], countably S-closed [6]) if every regular closed (resp. regular closed, countable regular closed) cover of *X* has a countable (resp. a finite, a finite) subcover.

Theorem 3.12. Let $f : X \to Y$ be an almost contra-b-continuous surjection. The following statements hold:

- 1. *if X is b-compact, then Y is S-closed;*
- 2. if X is b-Lindelöf, then Y is S-Lindelöf;
- 3. if X is countably b-compact, then Y is countably S-closed.

Proof. We prove only (1). Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra-b -continuous, then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a b-open cover of X and hence there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$ therefore we have $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ and Y is S-closed.

Definition 3.13. [22] A space *X* is said to be nearly compact (resp. nearly countably compact, nearly Lindelöf) if every regular open (resp. countable regular open, regular open) cover of *X* has a finite (resp. a finite, a countably) subcover.

Theorem 3.14. Let $f : X \to Y$ be an almost contra-b-continuous and almost continuous surjection and X is S-closed(resp. nearly compact, nearly Lindelöf, nearly countably compact, countably S-closed, S-Lindelöf) then Y is S-closed (resp. nearly countably compact, nearly Lindelöf, nearly countably compact, countably S-closed, S-Lindelöf).

Proof. Let *V* be any regular closed set on *Y*. Then since *f* is almost contra-*b*continuous and almost continuous, then by Theorem 3.9 *f* is R-map. Hence $f^{-1}(V)$ is regular closed in *X*. Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of *Y*. Then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a regular closed cover of *X* and since *X* is S-closed, there exists a finite subset I_0 of *I* such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. since *f* is surjection, we obtain $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$. This shows that *Y* is S-closed. The other proofs are similar.

Theorem 3.15. If $f : X \to Y$ is contra-*b*-continuous and *A* is *b*-compact relative to *X*, then f(A) is strongly *S*-closed in *Y*.

Proof. Let $\{V_i : i \in I\}$ be any cover of f(A) by closed sets of the subspace f(A). for $i \in I$, there exists a closed set A_i of Y such that $V_i = A_i \cap f(A)$. For each $x \in A$, there exists $i(x) \in I$ such that $f(x) \in A_{i(x)}$ and by Theorem 3.1 in [13], there exists $U_x \in BO(X, x)$ such that $f(U_x) \subseteq A_{i(x)}$. Since the family $\{U_x : x \in A\}$ is a cover of Aby b-open sets of X, there exists a finite subset A_0 of A such that $A \subseteq \cup \{U_x : x \in A_0\}$. Therefore, we obtain $f(A) \subseteq \cup \{f(U_x) : x \in A_0\}$. which is a subset of $\cup \{A_{i(x)} : x \in A_0\}$. Thus $f(A) = \cup \{V_{i(x)} : x \in A_0\}$ and hence f(A) is strongly S-closed.

Corollary 3.16. If $f : X \to Y$ is contra-b-continuous surjection and X is b-compact then Y is strongly S-closed.

Definition 3.17. A function $f : X \to Y$ is almost weakly continuous [12] (resp. almost weakly *b*-continuous) if for each $x \in X$ and each open set *V* containing f(x) there exists $U \in PO(X, x)$ (resp. $U \in BO(X, x)$) such that $f(U) \subseteq Cl(V)$.

Definition 3.18. [9] A function $f : X \to Y$ is (θ, s) -continuous if the preimage of every regular open subset of Y is closed in X.

The following examples will show that the concepts of almost, contra-*b*-continuity, almost contra-*b*-continuity, almost weak *b*-continuity, almost contra-precontinuity, almost weak-continuity are independent from each other.

Example 3.19. Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and

 $\sigma = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}. \text{ Then } RC(X, \tau) = \{X, \phi, \{b, c\}, \{a, c\}\} \text{ and}$ BO(X, σ) = {X, $\phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}, \{a, b\}\}, PO(X, \sigma) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}.$ Let $f : (X, \sigma) \rightarrow (X, \tau)$ be the identity function. Then f is almost contra-bcontinuous function which is not almost contra-precontinuous, since $\{a, c\}$ is a regular closed set of (X, τ) and $f^{-1}(\{a, c\}) = \{a, c\} \notin PO(X, \sigma).$

Example 3.20. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $RC(X, \tau) = \{X, \phi, \{b, c\}, \{a, c\}\}$ and $BO(X, \tau) = \{X, \phi, \{a\}, \{b\}, \{b, c\}, \{a, c\}, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (X, \tau)$ be the identity function. Then f is almost contra-b-continuous function which is not contra-bcontinuous, since $\{c\}$ is a closed set of (X, τ) and $f^{-1}(\{c\}) = \{c\} \notin BO(X, \sigma)$.

Example 3.21. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $RC(X, \tau) = \{X, \phi, \{b, c\}, \{a, c\}\}$ and $Y = \{1, 2\}$ $(Y, \sigma) = \{Y, \phi, \{1\}\}$, $bO(Y, \sigma) = \{Y, \phi, \{1\}\}$ Let $f : (Y, \sigma) \rightarrow (X, \tau)$ be defined by f(1) = a and f(2) = c. Then function is almost weak-b-continuous, and f is not almost contra-b-continuous since $\{b, c\}$ is a regular closed set of (X, τ) and $f^{-1}(\{b, c\}) = \{2\} \notin BO(Y, \sigma)$.

Example 3.22. In Example 3.19 f is almost weak-b-continuous, and it is not almost weak-continuous, since if $a \in X$ and $f(a) \in \{a\}$ it clear that does not exist $U \in PO(X, x)$ such that $f(\{U\}) \subseteq Cl(\{a\}) = \{a, c\}$.

We have the following relation for the functions defined above:

DIAGRAM I

4. *b*-Regular Graphs

We introduce the following relatively new definition:

Definition 4.1. The graph G(f) of a function $f : X \to Y$ is said to be *b*-regular (resp. strongly contra-*b*-closed) graph if for each $(x, y) \in (X, Y) - G(f)$, there exist $U \in BO(X, x)$ and a regular open (resp, regular closed) set *V* of *Y* containing *y* such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.2. [13] The graph G(f) of $f : X \to Y$ is contra-b- closed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in BO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 4.3. [13] If $f : X \to Y$ is contra-b-continuous and Y is Urysohn, then G(f) is contra-b-closed in $X \times Y$.

The following results can be easily verified.

Lemma 4.4. Let G(f) be the graph of f, for any subset $A \subseteq X$ and $B \subseteq Y$, we have $f(A) \cap B = \phi$ if and only if $(A \times B) \cap G(f) = \phi$

Lemma 4.5. The graph G(f) of $f : X \to Y$ is b-regular in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in BO(X, x)$ and $V \in RO(Y, y)$ such that $f(U) \cap V = \phi$.

Lemma 4.6. If A and B are open sets with $A \cap B = \phi$, then $Cl(A) \cap Int(Cl(B)) = \phi$

Theorem 4.7. If $f : X \to Y$ is almost contra-b-continuous and Y is T_2 , then G(f) is b-regular in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since *Y* is T_2 , there exists open sets *V* and *W* containing f(x) and *y* respectively, such that $V \cap W = \phi$. Then $Int(Cl(V)) \cap Int(Cl(W)) = \phi$. Since *f* is almost contra-*b*-continuous, we have

 $f^{-1}(Int(Cl(V)))$ is *b*-closed in *X* containing *x*. Take $U = f^{-1}(Int(Cl(V)))$. Then $f(U) \subseteq Int(Cl(V))$. Therefore $f(U) \cap Int(Cl(W)) = \phi$, and $Int(Cl(W)) \in RO(Y)$. Hence G(f) is *b*-regular in $X \times Y$.

Definition 4.8. [11] A space *X* is said to be $b \cdot T_1$ if each pair of distinct points *x* and *y* of *X*, there exists *b*-open sets *U* and *V* containing *x* and *y* respectively such that $y \notin U$ and $x \notin V$.

Theorem 4.9. Let $f : X \to Y$ have a b-regular graph. If f is injection then X is $b - T_1$.

Proof. Let *x* and *y* be any two distinct points of *X*. Since *f* is injection, then we have $(x, f(y)) \in (X \times Y) - G(f)$. By definition of *b*-regular graph, there exist a *b*-closed set *U* of *X* and $V \in RO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \phi$. therefore we have $U \cap f^{-1}(V) = \phi$ and $y \notin U$. Thus $y \in X - U$ and $x \notin X - U$ and $X - U \in BO(X)$. This implies that *X* is *b*-*T*₁.

Definition 4.10. [23] A space *X* is said to be weakly Hausdorff if each element of *X* is an intersection of regular closed sets.

Theorem 4.11. Let $f : X \to Y$ have a b-regular graph. If f is surjection then Y is weakly Hausdorff.

Proof. Let y_1 and y_2 be any two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. By definition of b-regular graph, there exist a b-closed set U of X and $F \in RO(Y)$ such that $(x, y_2) \in U \times F$ and $f(U) \cap F = \phi$. Since $f(x) \in f(U)$. Hence $y_1 \notin F$. Then $y_2 \notin Y - F \in RC(Y)$ and $y_1 \in Y - F$. This implies that Y is weakly Hausdorff.

Lemma 4.12. The graph G(f) of $f : X \to Y$ is strongly contra-b- closed graph in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in BO(X, x)$ and $V \in RC(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 4.13. If $f : X \to Y$ is almost weakly-b-continuous and Y is Urysohn, then G(f) is strongly contra-b-closed in $X \times Y$.

Proof. Suppose that $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since *Y* is Urysohn, there exist open sets *V* and *W* in *Y* containing *y* and f(x), respectively, such that $Cl(V) \cap Cl(W) = \phi$. Since *f* is almost weakly-*b*-continuous there exists $U \in BO(X, x)$ such that $f(U) \subseteq Cl(W)$. This shows that $f(U)) \cap Cl(V) = f(U) \cap Cl(Int(V)) = \phi$ with $Cl(Int(V)) \in RC(Y, y)$ and hence by Lemma 4.12 we have G(f) is strongly contra-*b*-closed.

Theorem 4.14. If $f : X \to Y$ is almost contra-b-continuous, then f is almost weakly-bcontinuous.

Proof. Let $x \in X$ and V be any open set of Y containing f(x). Then Cl(V) is a regular closed set of Y containing f(x). Since f almost contra-b-continuous by Theorem 3.1 (3) in [19] there exists $U \in BO(X, x)$ such that $f(U) \subseteq Cl(V)$. Therefore f is almost weakly-b-continuous.

Corollary 4.15. If $f : X \to Y$ is almost contra-b-continuous and Y is Urysohn, then G(f) is strongly contra-b-closed.

Definition 4.16. [7] A function $f : X \to Y$ is called almost-*b*-continuous if $f^{-1}(V)$ *b*-open in *X* for every regular open set *V* of *Y*.

The following result can be easily verified.

Lemma 4.17. [7] A function $f : X \to Y$ is almost b-continuous, if and only if for each $x \in X$ and each regular open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(U) \subseteq V$.

Theorem 4.18. If $f : X \to Y$ is almost b-continuous, and Y is Hausdorff, then G(f) is strongly contra-b-closed.

Proof. Suppose that $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since Y is Hausdorff, there exist open sets V and W in Y containing y and f(x), respectively, such that $V \cap W = \phi$, hence $Cl(V) \cap Int(Cl(W)) = \phi$. Since f is almost b-continuous, and W is regular open by Lemma 4.17 there exists $U \in BO(X, x)$ such that $f(U) = W \subseteq Int(Cl(W))$. This shows that $f(U) \cap Cl(V) = \phi$ and hence by Lemma 4.12 we have G(f) is strongly contra-b-closed.

We recall that a topological space (X, τ) is said to be extremally disconnected (briefly E.D.) if the closure of every open set of *X* is open in *X*.

Theorem 4.19. Let Y be E.D. Then, a function $f : X \to Y$ is almost contra-b-continuous if and only if it is almost b-continuous.

Proof. Let $x \in X$ and V be any regular open set of Y containing f(x). Since Y is E.D. then V is clopen. By Theorem 3.1 (3) in [19], there exists $U \in BO(X, x)$ such that $f(U) \subseteq V$. Then Lemma 4.17, implies that f is almost b-continuous. Conversely let F be any regular closed set of Y. Since Y is E.D. Then F is also regular open and $f^{-1}(F)$ is b-open in X. This show that f are almost contra-b-continuous.

The following examples will show that the concepts of almost-*b*-continuity and almost contra-*b*-continuity, is independent.

Example 4.20. Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, Y, \{a\}\}$, then $RO(X, \tau) = \{\phi, X, \{a\}, \{b\}\}$, $BO(Y, \sigma) = \{\phi, X, \{a\}, \{a, b\}, \{a$

 $\{a,c\}\}$. Then it is clear that (X,τ) is not extremally disconnected. Let function f: $(Y,\sigma) \to (X,\tau)$ as follows: f(a) = c, f(b) = b and f(c) = a. Then f is almostcontra-b-continuous and f is not almost-b-continuous, since $\{a\}$ is regular open and $f^{-1}(\{a\}) = \{c\}$ is not b-open. But if we define $g : (Y,\sigma) \to (X,\tau)$ as g(y) = a for all $y \in Y$, then g almost-b-continuous but g is not almost-contra-b-continuous since $f^{-1}(\{a\}) = \{a\}$ is not b-closed. REFERENCES

Definition 4.21. [11] A space *X* is said to be b- T_2 if for each pair of distinct points *x* and *y* in *X*, there exist $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $U \cap V = \phi$.

Theorem 4.22. If $f : X \to Y$ is an injective almost contra-b-continuous function with the strongly contra-b-closed graph, then (X, τ) is $b \cdot T_2$.

Proof. Let x and y be distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Then we have $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is strongly contra-bclosed, by Lemma 4.12 there exists $U \in BO(X, x)$ and a regular closed set V containing f(y) such that $f(U) \cap V = \phi$. Since f is almost contra-b-continuous, by Theorem 3.1 (3) in [19] there exists $G \in BO(X, y)$ such that $f(G) \subseteq V$. Therefore we have $f(U) \cap f(G) = \phi$, hence $U \cap G = \phi$. This shows that (X, τ) is $b \cdot T_2$.

ACKNOWLEDGEMENTS. This work is financially supported by the Ministry of Higher Education, Malaysia under FRGS grant no: UKM-ST-06-FRGS0008-2008. We also would like to thank the referees for useful comments and suggestions.

References

- A.Al-Omari and M.S.M.Noorani, "On generalzed *b*-closed sets", *Bull. Malaysian Math.* Sc. Soc. **32**(1)(2009) 1-12.
- [2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, "β-open sets and β-continuous mappings", Bull. Fac. Sci. Assuit Univ. 12 (1983), 77-90.
- [3] D. Andrijević, "On b-open sets", Mat. Vesnik 48 (1996), 59-64.
- [4] M. Caldas and S. Jafri, "Some properties of contra-β-continuous functions", *Mem. Fac. Sci. Koch Univ. (Math)* 22 (2001), 19-28.
- [5] J. Dontchev, "Contra-continuous functions and strongly S-closed spaces", Internat.J. Math. Math. Sci. 19 (1996), 303-310.
- [6] K. Dlaska, N. Ergun and M. Ganster, "Countably S-closd spaces", *Math. Slovaca* 44 (1994), 337-348.

- [7] A. Keskin and T. Noiri, "Almost b-continuous functions ", Chaos Solitions Fractals (2007), doi:10.1016/j.chaos.2007.11.012
- [8] S. Jafari and T. Noiri, "On contra-precontinuous functions", Bull. Malaysian Math. Sc. Soc. 25 (2002), 115-128.
- [9] J.E. Joseph and M.H. Kwack, "On S-closed spaces", Proc. Amer. Math. Soc. 80(1980),341-348.
- [10] E. Ekici, "Almost contra-precontinuous functions", Bull. Malaysian Math. Sc. Soc. 27(1) (2004), 53-65.
- [11] E. Ekici and M. Caldas, "Slightly γ -continuous functions", *Bol. Soc. Paran. Mat.* **22**(2) (2004), 63-74.
- [12] V. Popa and T. Noiri, "Almost weakly continuous functions", *Demonstratio Math.* 25 (1992), 241-251.
- [13] A.A. Nasef, "Some properties of contra-γ-continuous functions", *Chaos Solitons Fractals* 24 (2005), 471-477.
- [14] O. Njåstad, "On some classes of nearly open sets", Pacific J. Math. 15 (1965), 961-970.
- [15] T. Noiri, "On almost continuous functions", *Indian J. Pure Appl. Math.* 20 (1989), 571-576.
- [16] V. Popa and T. Noiri, "On the definitions of some generalized forms of continuity under minimal conditions", Mem. Fac. Sci. Kochi Univ. Ser. Math. 22 (2001), 31-41.
- [17] T. Noiri and V. Popa, "A unified theory of contra-continuity for functions", *Ann. Univ. Sci. Budapest* 44 (2002), 115-137.
- [18] T. Noiri and V. Popa, "On *m*-quasi irresolute functions", Math. Moravica 9 (2005), 25-41.
- [19] T. Noiri and V. Popa, "A unified theory of almost contra-continuity for functions", *Kochi J. Math.* 3 (2008), 125-138.
- [20] T. Noiri, A. Al-Omari and M.S.M. Noorani, "Weakly b-open functions", Mathematica Balkanica 23 (2009), Fasc (1-2) 1-14.
- [21] T. Thompson, "S-closed spaces", Proc. Amer. Math. Soc. 60 (1976), 335-338.
- [22] M. Singal and A. Mathur, "On nearly-compact spaces", Boll. Un. Mat. Ital. Serie 9 (4-6)(1969), 702-710.

- [23] T. Soundararajan, "Weakly Hausdorff spaces and the cardinality of topological spaces in General topology and its relation to modern analysis and algebra", *Boll.Un.III, Proc. Conf. Kanpur*(1968) Academia, Prague (1971), 301-306.
- [24] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly 70 (1963), 36-41.
- [25] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous functions", *Proc. Math. Phys. Soc. Egypt* 51 (1982), 47-53.
- [26] F.H. Khwdr and T. Noiri, "On θ -irresolute functions", *Indian J. of Math.* **28**(3) (1986), 211-217.
- [27] S. Willard, General Topology spaces, Addison Wesley, 1970.