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Abstract. In the present article we consider the non-self adjoint Sturm-Liouville operators with periodic
and anti-periodic boundary conditions which are not strongly regular. We obtain the asymptotic formulas
for eigenvalues and eigenfunctions of these boundary value problems, when the peteintgah complex-
valued function. Then using these asymptotic formulas, the Riesz basiste$8,ii) of the root functions

are proved.
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1. Introduction

It is well known that the basisness of the root functions of a differential operator depends
on regularity of boundary conditions generating the given differential operator. The basisness in
the spacel,(0, 1) of the root functions of a linear differential operator of ordewith regular
(strongly regular, see. [1], p.71) boundary conditions is shown in [2, 3]. In [2,4,5] it is shown
that the root functions of a boundary problem which is generated by not strongly regular boundary
conditions may not be form a basisin (0, 1). In [6], one non-classical heat conduction problem
in homogeneous rod has been studied. This problem is reduced to the following boundary value
problem

—y(x) = y(z), O0<z<l,

y(0) =0, ¥'(0) =4'(1)

whose boundary conditions are regular, but not strongly regular. All the eigenvalues of this prob-
lem starting with the second one are double, the total number of associated functions is infinite.
Nevertheless, in the paper it was established that the chosen specially system of the root functions
forms an unconditional basis i (0, 1).
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After this work, in [7], the boundary-value problem generated by the differential equation

Y +aq(z)y =Ny (1.2)

and not strongly regular boundary conditions

y(0) —y(1) =0, ¥'(0)-y'(1)=0 (1.2)
or

y(0) +y(1) =0, y'(0)+y'(1)=0 (1.3)
was considered. Herg(x) € C¥[0,1] was a complex valued function satisfying the condition
q(0) # ¢q(1). In this paper, it was shown that the root functions of the boundary problems (1.1),
(1.2) and (1.1), (1.3) formed Riesz basigig(0, 1).

Let us present briefly the main definitions and fact which will be used in what follows.
Definition 1.1. A system{¢, },- , forms a basis in a Banach spaégif for any elemenyf € X
there exists a unique expansion of itin the elements of the system, i.e. théSeties convergent
j=1

to f in the norm of the spac¥.

Definition 1.2. [8,9] A system{¢,, } -, is called a Riesz basis of the Hilbert spaief there exists
a bounded linear invertible operatod such that the systefdy,, },~ , forms an orthonormal
basis inH.

Theorem 1.1.[8,9] If the sequencéy; };’;1 is complete in the Hilbert spadé, there corresponds

to it a complete biorthogonal sequen{:ﬁj}j?'il, and for anyf € H one has)_ |(f, ¢;)| < oo,
j=1

S (f, )2 < oo, then the sequen({e/zj};?‘;l forms a Riesz basis il .
j=1

We consider the boundary-value problems (1.1), (1.2) and (1.1), (1.3), where C9[0, 1]
1
is a complex-valued function. Without loss of generality, we can assumg iftajdz = 0.

In the present paper, in Section 2 we obtain the asymptotic formulasoof eigenvalues and eigen-
functions of the boundary problems (1.1), (1.2). In Section 3, using these asymptotic formulas and
Theorem 1.1, we prove the basisnesd.iff0, 1) of the root functions of the boundary problem
(1.1), (1.2). In Section 4, similar results are obtained for the boundary problem (1.1), (1.3).

2. The asymptotic formulas for eigenvalues and eigenfunctions of the periodic
problem

First we shall prove the following lemma.
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Lemma 2.1. All eigenvalues of the boundary-value problem (1.1), (1.2), starting from some num-
ber, are simple and form two infinite sequenags, A\x 2, K = N, N+1,---, wherelN is a positive
integer and

7) - ¢(0) + Zq%)dt

1
_ 2 _ il
Akl = —(2km) (k)2 + O(k3)’ (2.2)
1
q¢'(1) = ¢'(0) - [¢(t)dt )
_ 2 0 il
/\k,Q - (2]{771') + (4]€7T)2 + O(k‘3 )7 (22)
and the corresponding eigenfunctions are of the form
1
Yp1(x) = sin 2kmx + O(%), (2.3)
1
Yk2(x) = cos 2kmx + O(%) (2.4)

Proof. We assume that(0) = ¢(1). The casey(0) # ¢(1) was investigated in [7]. Consider
the equation (1.3) or
y' +q(z)y + p’y =0, (2.5)
wherep = /=X and,/re’?/2 for —r < < «. From[1,10], itis well known that the eigenvalues
of the boundary problem (1.1), (1.2) are asymptotically located in pairs, i.e.

M1l = Ag2 + O(kl/z) = —(2k7r)2 {1 + %0 +0 (;631/2> }, (k=N,N+1,---).

It follows from the last relation that
Hk1 = 1/—)\k71:2kﬂ{1+21€+0<k3/2)}, (k:N’N+]_7)
Pk2 = /=2 —2kw{1+§2+0 < )}

Hence, there exists a positive numbgisuch that (. 1)| < ¢, and|S(ux,2)| < co. Thus, the
relation
fe,1s P2 € Q = {p s R(p) = 0,[S(w)] < co}

holds for allk = N,N + 1,---. ltis easy to verify that) C Sy — ic, = T, whereSy; =
{,u:Ogarg,uS %}

From [1,10], it is well known that in a regidfi of the complex plang the equation (2.5) has
two linear independent solutioRs (x, 1), v2(x, 1) satisfying the relations

6

(1) = {Z(“m() +0<1>}, (=12,

m=0 2wju)m
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6

(1) = prger® {uo<m> +> “’”(xz; 2t (@) 0<1>} =12,
m=1 w]ﬂ)

where

T

w1 =—wa =1, up(z) =1, up(z)= —/l (Upm—1(t)) dt, m =1,2,3,4,5,6.

It follows that

1
) T . 1 ’ o 2 1 " _on
o) = e {1 Gl =70+ { O]+ 1l (1) =0
+gq2(1) — %qQ(O) —q(0)g(1)] (2w1u)5[qm(1) —¢"(0) +7q(1)¢'(1)

1 1
Hd (V) = ¢0) [P+ 5 [P0+ 0 7>} ,
0 0
2%(0) | 240 1
2wip)? - (2wip)® (2w
1 ) 1
+W[2q (0) +8¢(0)q'(0)] — (2a;10)° 2

+10¢%(0) + 12¢(0)¢" (0) + 4¢3(0)] + O(/ﬂ)} ;

90;'(07#) = :uwj{l_(

L) = pges {1 I el )+ 0= [

1
(2w;p)*

[¢"(1) + ¢"(0) + ;qz(l) + ng(o) —q(0)q(1)]
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(2ij) ("' (1) + ¢"'(0) + 5¢(1)¢' (1) + 5¢(0)¢'(0) — q(0)¢'(1)

1
—g(W)¢'(0) + (g(1) + (0 »/“ dt—2/§3 dt+/£ t)dt)
0

—@ém[0%>+qﬂm»+f (1) + g’%> 7(0)q (1)

_l’_

+7q(1)q" (1) + 7q(0)¢"(0) — ¢(0)¢" (1) — q(1)¢"(0) + 5¢°(1)

7

21

7 1
+§q3(0) — §q(0)q2(1) — §Q(1)q2(0) + (¢'(1) + Q'(O))/qQ(t)dt

0

1
q( 7

Let us substitute all these expressions into the characteristic determinant

l\.’)\r—t
o\»—l
S

_ | Ui(p1) Uilp2)
aw=| oo oo |

whereUs (y) = y(1) — y(0), U2(y) = y'(1) — y'(0).
By elementary transformations, we obtain the relation

() A = JW{ o~ G | (0~ G 270 - 5P ()

¢*(0) + q(0)q(1)] — 1) [2(1)¢'(1) = q(0)q'(1) — q(0)q'(0)

55
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in 2q(0) 1 . ,
o {1 T (2ip)?  (2ip)t [2¢”(0) + 2¢%(0)] — 6[2‘1(4)(0)

+12¢(0)g” (0) + 10g™(0) + 4¢°(0)] + o(:?)}

0

for u € T sufficiently large in absolute value.
Let b(y) be the coefficient of?*# in (2.6). Using the expansion

1

1 =1+z+2>+23+0(@zh), ©—0,
— T

it can be easily seen that the relation

1
2¢(0)

b ) = 1+(2w)2+(2i)3 / q2<t>dt+(zw;)gzq"(m—;q%lw

3 22 ¢"(0) = ¢'(0)¢'(1) — q(1)q" (1) + 194(0)¢"(0)

+q(0)q" (1) + q(1)¢"(0) — 2¢°(1) + 17¢°(0) + q(0)¢*(1)

1
1 1
+4q(1 2/(]2 t)dt)* +O7}
0

56

(2.6)

2.7)
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holds foru € T sufficiently large in absolute value.
Thus, forp € T sufficiently large in absolute value, the equatitafy:) = 0 is equivalent to
the equation

(i) 0™ () A(p)e™ = 0. (2.8)

Using (2.6), (2.7) and the relation$l) = ¢(0) andq’(1) # ¢'(0), from the equation (2.8), we
obtain two equations

2(1) = ¢(0) + zq2<t>dt

(4km)3

per = 2k + +O(—), (2.9)
(1) = ¢(0) - zq2<t>dt
(4k)3

By Rouche’s theorem, we have asymptotic expressions for theggetandyiy, 2, k = N, N+
1,---, of the equations (2.9) and (2.10), respectively, whegns a positive integer

1
)

PE2 = 2km — + O( (2.10)

M1 = 2k + W + O(%), (211)

¢(1) —4'(0)
(4k)3
Note thaty;, ; andyuy, » are simple roots of the equations (2.9) and (2.10), respectively. From the

relations (2.11), (2.12) and the relatiohg, = — 3, A2 = — .5, We obtain the formula

(2.1) and observe that these eigenvalues are simple.
Let us calculaté/s (o1 (x, pg,1)) andUs(p2(x, pg.1)). Since

L

+0(17). (2.12)

pr2 = 2km —

1
¢(1) = q'(0)+ [¢*(t)dt
itk ] = 0 +0 :
(2ipg1)? (uk ) )

we have
Ua(p1(z, pr,1)) = ©1(1, pe1) — 910, 1)
! ! _ 2
() + 4(0) q'(1) +4'(0) {q (t)dt 1
(2ip1)? (2ipr,)? Hi1
2¢(0) 24'(0) 1

g1 = ROy 2O o
Mk,l[ (27/,Uk;71)2 (QZHkJ)g (,ui . )]

)

1
- 1D o). (2.13)
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In a similar way, we obtain

Us(pa(, pig,1)) = Q/E;u_k (11;(20) " O(ﬂ% 1)'

)

Without loss of generality, we can assume #iat) — ¢’(0) # 0. SinceUs(¢;(z, pu,1)) # 0,
Jj=1,2,andq’(1)—¢’(0) # 0, we seek the eigenfunctian ; (x) corresponding to the eigenvalue
k.1 in the form

yk,l(x) _ (Qiluk,l)z ’ Sol(xa,uk;l) 802('1‘7/“6,1) ‘ ) (214)

2i[¢'(1) = ¢'(0)] | U2(p1(z, k1)) Uz(p2(@, pr1))
From the equalities

uy(x) uz ()

1+
Qwjpr)  (2wjpk)? 1,

0 (@, 1) = e

and the formulas (2.13), (2.14) we obtain

. 1
Y1(x) = sin py 12 + O(—).
HE1
Therefore, the eigenfunctiof ; (x) satisfies the asymptotic formula (2.5).
In a similar way, sincé/; (¢;(z, px1)) # 0, j = 1,2, andq’(1) — ¢'(0) # 0, we can seek the
eigenfunctionsy;, »(x) corresponding to the eigenvaluks; in the form

(2ipp,2)° ©1(, f11.2) @2, f1g.2)

Ue2(®) = =T = 0] | Uier (o iz) Uloa(e, i)

Thus, we obtain

1
Yk,2(z) = cos g 2 + O(——).
M2

This completes the proof of the lemma.

3. The Riesz basisness ih,(0, 1) of the root functions for the periodic problem

Theorem 3.1. The root functions of the boundary problem (1.1), (1.2) form a Riesz basis in
Ly(0,1).

Proof. The system of the root functions of the boundary problem (1.1), (1.2) is complete and
minimal in Ly(0, 1). The minimality of this system follows from the fact that this system has a
biorthogonal system consisting of the root functions of the adjoint operator

q(z)v,
’Ul

(1) = 2'(0).

l*(’U) — U// +
v(0),



Khanlar R. Mamedov, Hamza Menken / Eur. J. Pure Appl. M&{2008), (51-60) 59

[e.e] oo
For any f € L»(0,1), with a direct computation we have that’ |(f, yk,l)|2 < 00, Y,
n=N n=N

I(f, yk,2)|2 < o0. On the other hand, the eigenfunctions of the adjoint operator have of the form

1

v (x) = 2sin 2kmx + O(%), (3.1)
1

vg2(z) = 2 cos 2kmx + O(E)’ (3.2)

and the inequalities)" |(f,vx.1)|* < oo and 3 |(f,vk2)> < oo hold. According to Theorem
= N

n=N n=
1.1, the root functions of the boundary problem (1.1), (1.2) form a Riesz ba&ign1). This
completes the proof.

4. The basisness il (0, 1) of the root functions for the anti-periodic
boundary-value problem

Similarly, the following results are obtained for the boundary problem (1.1), (1.3).

Lemma 4.1. All eigenvalues of the boundary value problem (1.1), (1.3), starting from some num-

ber, are simple and form two infinite sequengg, Ay 2, K = N, N +1,---, whereN is a positive
integer and
1
q¢'(1) = q'(0) = [¢*(z)dx .
_ 2 0 1
A1 = —[(2k + 1)7]” + 202k + )2 + O(k:3)’ (4.1)
1
¢(1) =)+ [¢*(z)dx .
=—[(2k+Dn)* = 0 — 4.2
and the corresponding eigenfunctions are of the form
Yp1(x) = sin(2k + 1)z + O(%), (4.3)

1
i)
Proof. In the anti-periodic case, in a similar way to the proof Lemma 2.1, we have the relations

Yk2(x) = cos(2k + 1)z + O( (4.4)

2(1) — ¢(0) - [g(@)da

i _ 1
= QWPO TOCa)
1
' q(1) —¢'(0) - £q2(93)d37 )
et +1=— e -i-O(E).
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From these relations we can obtain (4.1) and (4.2). Again in a similar way to the proof
Lemma 2.1, we obtain

Ur(er(@, 1)) = 1L, pr1) +1(0, pr,1)
_ 2[g'(1) —¢'(0)] 1
T T Qima)e? O(uél )

Ur(p2(@, k1)) = @2(L, 1) + 92(0, pg1)
2[¢'(1) = ¢'(0)] 1
= - , +0 .
G )
SinceU: (p;(x, uk1)) # 0,5 = 1,2, we can seek the eigenfunctigp ; (=) corresponding to the
eigenvalue\, ; in the form

Y (z) = _M 801(33,/%,1) <P2(9U,Mk,1)
’ [q(1) = ¢'(0)] | Urpr(@, pr))  Ur(pa(, 1))
Hence, we have .
%)7
i.e., the formula (4.3) satisfies. In similar way we can obtain the formula (4.4).

Yr1(x) = sin(2k + 1)z + O(

Theorem 4.1. The root functions of the boundary problem (1.1), (1.3) form a Riesz basis in
Ly(0,1).
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