The Exterior Tricomi and Frankl Problems for Quaterelliptic-Quaterhyperbolic Equations with Eight Parabolic Lines
Abstract
The famous Tricomi equation was established in 1923 by F. G. Tricomi who is the pioneer of parabolic elliptic and hyperbolic boundary value problems and related problems of variable type. In 1945 F. I. Frankl established a generalization of these problems for the well-known Chaplygin equation subject to a certain Frankl condition. In 1953 and 1955 M. H. Protter generalized these problems even further by improving the Frankl condition. In 1977 we generalized these results in several ndimensional simply connected domains. In 1990 we proposed the exterior Tricomi problem in a doubly connected domain. In 2002 we considered uniqueness of quasi-regular solutions for a bi-parabolic elliptic bi-hyperbolic Tricomi problem. In 2006 G. C. Wen investigated the exterior Tricomi problem for general mixed type equations. In this paper we establish uniqueness of quasi-regular solutions for the exterior Tricomi and Frankl problems for quaterelliptic - quaterhyperbolic mixed type partial differential equations of second order with eight parabolic degenerate lines and propose certain open problems. These mixed type boundary value problems are very important in fluid mechanics.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.