EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 2, 2012, 129-140 ISSN 1307-5543 – www.ejpam.com

On $\omega\beta$ -Continuous Functions

Heyam Hussein Aljarrah*, Mohd Salmi Md Noorani

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, MALAYSIA

Abstract. A subset A of topological space (X,τ) is said to be $\omega\beta$ -open [3] if for every $x\in A$ there exists an β -open set U containing x such that U-A is a countable. In this paper, we introduce and study new class of function which is $\omega\beta$ -continuous functions by using the notion of $\omega\beta$ -open sets. This new class of function defines as a function $f:(X,\tau)\to (Y,\sigma)$ from a topological space (X,τ) into a topological space (Y,σ) is $\omega\beta$ -Continuous function if and only if for each $x\in X$ and each open set V in (Y,σ) containing f(x) there exists an $\omega\beta$ -open set U containing X such that $f(U)\subseteq V$. We give some characterizations of $\omega\beta$ -Continuous functions, define $\omega\beta$ -irresolute and $\omega\beta$ -open function. Finally, we find relationship between these type of function.

2010 Mathematics Subject Classifications: 54C05, 54C08, 54C10

Key Words and Phrases: $\omega\beta$ -open set, $\omega\beta$ -Continuous, $\omega\beta$ -irresolute, $\omega\beta$ -open functions, $\omega\beta$ -closed functions.

1. Introduction

Throughout the present paper, a space mean topological space on which no separation axiom is assumed unless explicitly stated. Let A be a subset of a space (X,τ) . The closure of A and interior of A in (X,τ) are denoted by Int(A) and cl(A), respectively. A subset A of a space (X,τ) is said to be b-open [4], (reps. β -open [7]) if $A \subseteq Int(cl(A)) \cup cl(Int(A))$, (resp. $A \subseteq cl(Int(cl(A)))$).

Recall that a subset A of a space (X, τ) is said to be $\omega\beta$ -open [3] (resp. ωb -open [9], ω -open [2]) set if for every $x \in A$ there exists an β -open (resp. b-open, open) set U containing x such that U - A is a countable. We write $\omega\beta O(X, \tau)$ (resp. $\omega bO(X, \tau)$, $\beta O(X, \tau)$, $\omega O(X, \tau)$, $bO(X, \tau)$) to denote the family of all $\omega\beta$ -open (resp. ωb -open, β -open, ω -open, b-open) subsets of (X, τ) .

Email addresses: hiamaljarah@yahoo.com (H. Aljarrah), msn@ukm.my (M. Noorani)

^{*}Corresponding author.

Definition 1. A function $f:(X,\tau) \to (Y,\sigma)$ is called ω -continuous [6] (resp. ωb -continuous [9]) if for every $x \in X$ and each open set V in (Y,σ) containing f(x) there exists an $\omega O(X,\tau)$ (resp. $\omega b O(X,\tau)$) set U containing x such that $f(U) \subseteq V$.

Lemma 1. [3] Let (X, τ) be a topological space:

- i. The union of any family of $\omega \beta O(X, \tau)$ sets is $\omega \beta O(X, \tau)$.
- ii. The intersection of an $\omega \beta O(X, \tau)$ set and open set is $\omega \beta O(X, \tau)$.

Theorem 1. [3] Let (Y, τ_Y) be a subspace of (X, τ) , $A \subseteq Y$ and Y is $\beta O(X, \tau)$ sets. Then $A \in \omega \beta O(X, \tau)$ if and only if $A \in \omega \beta O(Y, \tau_Y)$.

Theorem 2. [3] Let A be a subset of a topological space (X, τ) . Then $x \in \omega \beta cl(A)$ if and only if for every $\omega \beta O(X, \tau)$ set U containing $x, A \cap U \neq \phi$.

Theorem 3. [5] If $f:(X,\tau)\to (Y,\sigma)$ is an open continuous function, then $f^{-1}(cl(A))=cl(f^{-1}(A))$.

2. $\omega\beta$ – Continuous Functions

Definition 2. A function $f:(X,\tau) \to (Y,\sigma)$ is called $\omega\beta$ -continuous at a point $x \in X$, if for every open set V in (Y,σ) containing f(x) there exists an $\omega\beta O(X,\tau)$ set U containing x such that $f(U) \subseteq V$. If f is $\omega\beta$ -continuous at each point of X then f is said to be $\omega\beta$ -continuous on X.

Definition 3. Let (X, τ) be any space, a set $A \subseteq X$ is said to be $\omega \beta$ -neighborhood of a point x in X if and only if there exists a $\omega \beta O(X, \tau)$ set U containing x such that $U \subseteq A$.

Theorem 4. Let $f:(X,\tau)\to (Y,\sigma)$ be a function, where X and Y are topological space. Then the following are equivalent:

- i. The function f is $\omega\beta$ -continuous.
- ii. For each open set $V \subset Y$, $f^{-1}(V)$ is $\omega \beta O(X, \tau)$.
- iii. For each $x \in X$, the inverse of every neighborhood of f(x) is an $\omega\beta$ -neighborhood of x.
- iv. For each $x \in X$ and each neighborhood N_x of f(x), there is an $\omega\beta$ -neighborhood V of x such that $f(U) \subseteq N_x$.
- v. For each closed set $M \subset Y$, $f^{-1}(M)$ is $\omega \beta$ -closed in X.
- vi. For each subset $A \subset X$, $f(\omega \beta cl(A)) \subset cl(f(A))$.
- vii. For each subset $B \subset Y$, $\omega \beta cl(f^{-1}(B)) \subseteq (f^{-1}(cl(B)))$.

Proof. (i \rightarrow ii) Let V be open in Y and $x \in f^{-1}(V)$ then $f(x) \in V$, by (i), there exists an $\omega \beta O(X, \tau)$ set U_x in X containing x and $f(U_x) \subseteq V$. Then $x \in U_x \subseteq f^{-1}(V)$ and hence $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. By Lemma 1(i), $f^{-1}(V) \in \omega \beta O(X, \tau)$, which implies that f is $\omega \beta$ -continuous.

(ii \to iii) For $x \in X$, let V be the neighborhood of f(x) then $f(x) \in W \subseteq V$, where W is open in Y. By (ii), $f^{-1}(W) \in \omega \beta O(X, \tau)$, and $x \in f^{-1}(W) \subseteq f^{-1}(V)$. Then by Definition 3, $f^{-1}(V)$ is $\omega \beta$ —neighborhood of x.

(iii \rightarrow iv) For $x \in X$ and N_x be a neighborhood of f(x). Then $V = f^{-1}(N_x)$ is an $\omega\beta$ -neighborhood of x and $f(V) = f(f^{-1}(N_x)) \subset N_x$.

(iv \to v) For any $x \in X - f^{-1}(M)$, $f(x) \in Y - M$. Since M is closed, the set Y - M is neighborhood of f(x), hence there is a $\omega\beta$ -neighborhood V of x such that $f(V) \subset Y - M$, there exists an $\omega\beta O(X,\tau)$ set U_x in X containing x and $U_x \subseteq V \subseteq X - f^{-1}(M)$, take $(X - f^{-1}(M)) = \bigcup_{x \in f^{-1}(Y - M)} U_x$. By Lemma 1(i), the set $(X - f^{-1}(M)) \in \omega\beta O(X,\tau)$, which implies $f^{-1}(M)$ is $\omega\beta C(X,\tau)$.

 $(v \to vi)$ Let $A \subseteq X$, since cl(f(A)) is a closed set in Y by (vi), $f^{-1}(cl(f(A)))$ is an $\omega \beta C(X, \tau)$ set containing A, then $f(\omega \beta cl(A)) \subset cl(f(A))$.

(vi \rightarrow vii) Let $B \subset Y$. By (vi), $f(\omega\beta cl(f^{-1}(B))) \subseteq cl(B)$, so $\omega\beta cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. (vii \rightarrow i) Suppose on the contrary that f is not $\omega\beta$ —continuous. So there exist $x \in X$ and $V \in \sigma$ with $f(x) \in V$ such that for all $\omega\beta O(X,\tau)$ sets U with $x \in U$ and $f(U) \not\subset V$ i.e. $f(U) \cap (Y - V) \neq \phi$. Therefore, by Theorem 2, $x \in \omega\beta cl(f^{-1}(Y - V))$ and so by (vii), $f(x) \in cl(Y - V)$, thus for all open sets V in (Y,σ) containing f(x), the set $V \cap (Y - V) \neq \phi$,

a contradiction. Therefore, f is $\omega\beta$ –continuous.

Definition 4. For any subset A of a topological space (X, τ) the frontier of A, denoted by $\omega \beta F_r(A)$, is define as $\omega \beta cl(A) \cap \omega \beta cl(X - A)$.

Theorem 5. Let (X, τ) , (Y, σ) be a topological space and $f: (X, \tau) \to (Y, \sigma)$ be a function. Then $X - \omega \beta c(f) = \bigcup \{ \omega \beta F_r(f^{-1}(V)) : V \in \sigma, f(x) \in V, x \in X \}$ where $\omega \beta c(f)$ denotes the set of points at which f is $\omega \beta$ -continuous.

Proof. Let $x \in X - \omega \beta c(f)$. Then for every $\omega \beta O(X, \tau)$ set U containing x there exists open sets V in (Y, σ) containing f(x) such $f(U) \not\subset V$, Hence $U \cap (X - f^{-1}(V)) \neq \phi$ for every $\omega \beta O(X, \tau)$ set U containing x. Therefore, by Theorem 2 $x \in \omega \beta cl(X - f^{-1}(V))$. Then $x \in f^{-1}(V) \cap \omega \beta cl(X - f^{-1}(V)) \subseteq \omega \beta F_r(f^{-1}(V))$. Hence, $X - \omega \beta c(f) \subseteq \bigcup \{\omega \beta F_r(f^{-1}(V)), V \in \sigma, f(x) \in V, x \in X\}$. Conversely, let $x \notin X - \omega \beta c(f)$. Then for each open sets V in (Y, σ) containing f(x), $f^{-1}(V)$ is $\omega \beta O(X, \tau)$ containing x, thus

for every $V \in \sigma$ containing f(x), $x \in \omega \beta Int(f^{-1}(V))$ and hence $x \notin \omega \beta F_r(f^{-1}(V))$. So

 $\cup \{\omega\beta F_r(f^{-1}(V)) : V \in \sigma, f(x) \in V, x \in X\} \subseteq X - \omega\beta c(f).$ **Corollary 1.** A function $f: (X, \tau) \to (Y, \sigma)$ is $\omega\beta$ -continuous if and only if

Corollary 1. A function $f:(X,\tau) \to (Y,\sigma)$ is $\omega\beta$ -continuous if and only if $f^{-1}(\text{int}(G)) \subseteq \omega\beta$ int $(f^{-1}(G))$, for any subset $G \subseteq Y$.

Proof. NECESSITY. Let G be any subset of Y. Since f is $\omega\beta$ -continuous, $f^{-1}(\text{int}(G))$ is $\omega\beta O(X,\tau)$ set. As $f^{-1}(\text{int}(G)) \subseteq f^{-1}(G)$, then $f^{-1}(\text{int}(G)) \subseteq \omega\beta$ int $(f^{-1}(G))$.

SUFFICIENCY. Let $x \in X$ and $V \in \sigma$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so by assumption $x \in \omega \beta$ Int $(f^{-1}(V))$. There exists an $\omega \beta O(X, \tau)$ such that $x \in U \subseteq f^{-1}(V)$. Hence $f(x) \in f(U) \subseteq V$ and the result follows.

Note that if X is a countable set then every function $f:(X,\tau)\to (Y,\sigma)$ is $\omega\beta$ —continuous. The following diagram follows immediately from the definitions in which none of the implications is reversible.

Example 1. Let X = R with the topology $\tau = \tau_u$ and $Y = \{0, 1\}$ with the topology $\sigma = \{\phi, Y, \{0\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x \in \mathbb{R} - \mathbb{Q} \\ 0 & x \in \mathbb{Q} \end{cases}$$

Then f is $\omega\beta$ -continuous but it is neither continuous nor ω -continuous.

Example 2. Let $X = \{1, 2, 3\}$ with the topology $\tau = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}$ and $Y = \{a, b\}$ with the topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} b & x = \{1, 2\} \\ a & x = 3 \end{cases}$$

Then f is not β -continuous, but it can be easily seen that f is $\omega\beta$ -continuous.

Example 3. Let X = R with the topology $\tau = \tau_u$ and $Y = \{a, b\}$ with the topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} a & x \in [0,2) \cap \mathbb{R} - \mathbb{Q} \\ b & x \in [0,2) \cap \mathbb{Q} \end{cases}$$

Then f is $\omega\beta$ -continuous, but it is not ωb -continuous.

Proposition 1. If $f:(X,\tau)\to (Y,\sigma)$ is an $\omega\beta$ -continuous function and A is an open set in X, then the restriction $f|_A:(A,\tau_A)\to (Y,\sigma)$ is $\omega\beta$ -continuous.

Proof. Since f is an $\omega\beta$ -continuous, for any open set V in Y, $f^{-1}(V)$ is a $\omega\beta O(X,\tau)$ set. Hence by Lemma 1(ii), $f^{-1}(V)\cap A$ is a $\omega\beta O(X,\tau)$ since A is an open set. Therefore, by Theorem 1, $(f|_A)^{-1}(V)=f^{-1}(V)\cap A$ is $\omega\beta O(A,\tau_A)$ sets, which implies that $f|_A$ is $\omega\beta$ -continuous function.

Observe that the above theorem is not true if *A* were taken to be $\beta O(X, \tau)$ sets or $\omega O(X, \tau)$, as it shown in the next examples.

Example 4. Let X = R with the topology $\tau = \tau_{coc}$ and $Y = \{0, 1\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x \in (0,1] \\ 0 & x \notin (0,1] \end{cases}$$

It can be easily seen that f is $\omega\beta$ -continuous. We take A = (0,1]. Then $A \in \beta O(X,\tau)$ and $f|_A$ is not $\omega\beta$ -continuous since $(f|_A)^{-1}(1) = \{1\} \notin \omega\beta O(A,\tau_A)$.

Example 5. Let X = R with the topology $\tau = \tau_u$ and $Y = \{0, 1\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x = \sqrt{2} \\ 0 & x \in \mathbb{Q} \end{cases}$$

It can be easily seen that f is $\omega\beta$ -continuous. We take $A = \mathbb{R} - \mathbb{Q}$. Then $A \in \omega O(X, \tau)$ and $f|_A$ is not $\omega\beta$ -continuous since $(f|_A)^{-1}(Y) = \{\sqrt{2}\} \notin \omega\beta O(A, \tau_A)$.

Definition 5. [7] A cover $v = \{U_{\alpha} : \alpha \in \Delta\}$ of subset of X is called a $\beta O(X, \tau)$ cover if U_{α} is $\beta O(X, \tau)$ for each $\alpha \in \Delta$.

Now we prove the following proposition.

Proposition 2. Let $f:(X,\tau) \to (Y,\sigma)$ be any function and $A = \{A_\alpha : \alpha \in \Delta\}$ be a $\beta O(X,\tau)$ cover of X. If the restriction, $f|_{A_\alpha}:(A_\alpha,\tau_{A_\alpha}) \to (Y,\sigma)$ is $\omega\beta$ -continuous for each $\alpha \in \Delta$, then f is $\omega\beta$ -continuous.

Proof. Let V be any open set in Y. Since $f|_{A_\alpha}$ is $\omega\beta$ -continuous, then for each $\alpha\in\Delta$, we have $(f|_A)^{-1}(V)=f^{-1}(V)\cap A_\alpha\in\omega\beta O(A_\alpha,\tau_{A_\alpha})$. So by Theorem $1, f^{-1}(V)\cap A_\alpha\in\omega\beta O(X,\tau)$ for each $\alpha\in\Delta$. Take $f^{-1}(V)=\bigcup_{\alpha\in\Delta}(f^{-1}(V)\cap A_\alpha)$. By Lemma 1(i) $f^{-1}(V)\in\omega\beta O(X,\tau)$.

Corollary 2. Let $f:(X,\tau)\to (Y,\sigma)$ be any function and $A=\{A_\alpha:\alpha\in\Delta\}$ a open cover of X. If the restriction, $f|_{A_\alpha}:(A_\alpha,\tau_{A_\alpha})\to (Y,\sigma)$ is $\omega\beta$ -continuous for each $\alpha\in\Delta$, then f is $\omega\beta$ -continuous.

The composition $g \circ f: (X, \tau) \to (Z, \rho)$ of a continuous function $f: (X, \tau) \to (Y, \sigma)$ and an $\omega\beta$ -continuous function $g: (Y, \sigma) \to (Z, \rho)$ is not necessarily $\omega\beta$ -continuous function as the following example shows. Thus, the composition of $\omega\beta$ -continuous functions need not be $\omega\beta$ -continuous.

Example 6. Let $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$, $Y = \{1,2\}$ with the topology $\sigma = \{\phi, Y, \{1\}\}$ and $Z = \{a,b\}$ with the topology $\rho = \{\phi, Z, \{a\}\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x \in \mathbb{R} - \mathbb{Q} \\ 2 & x \in \mathbb{Q} \end{cases}$$

and $g:(X,\sigma)\to (Y,\rho)$ be the function defined by

$$g(x) = \begin{cases} a & x = 2 \\ b & x = 1 \end{cases}$$

Then f is continuous (hence $\omega\beta$ —continuous) and g is $\omega\beta$ —continuous. However $g \circ f$ is not $\omega\beta$ —continuous, because $(g \circ f)^{-1}(\{a\}) = \mathbb{Q} \notin \omega\beta O(X, \tau)$.

Proposition 3. If $f:(X,\tau)\to (Y,\sigma)$ is $\omega\beta$ -continuous and $g:(Y,\sigma)\to (Z,\rho)$ is continuous, then $g\circ f:(X,\tau)\to (Z,\rho)$ is $\omega\beta$ -continuous.

Proof. Let $x \in X$ and $V \in \rho$ with $(g \circ f)(x) \in V$ and $f(x) \in Y$, since g is continuous, there exists open sets W in (Z, ρ) with $f(x) \in W$ and $g(W) \subseteq V$. Moreover f is $\omega \beta$ —continuous there exists $\omega \beta O(X, \tau)$ say U containing x such that $f(U) \subseteq W$. Now $(g \circ f)(U) \subseteq g(W) \subseteq V$.

We note that Proposition 3 is not true if g is assumed to be only ω -continuous or β -continuous as it is shown in the next example.

Example 7. Consider $X = \mathbb{R}$ with the topology $\tau = \tau_{coc}$, $Y = \{a, b, c\}$ with the topology $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}\}$ and $Z = \{1, 2, 3, 4\}$ with the topology $\rho = \{\phi, Z, \{1\}, \{1, 2\}, \{1, 2, 3\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function define by

$$f(x) = \begin{cases} a & x \in \mathbb{R} - \mathbb{Q} \\ c & x \in \mathbb{Q} \end{cases}$$

and $g:(Y,\sigma)\to(Z,\rho)$ be the function define by

$$g(x) = \begin{cases} 1 & x = a \\ 3 & x = b \\ 2 & x = c \end{cases}$$

Then f is $\omega\beta$ -continuous, g is ω -continuous and β -continuous function but $g \circ f$ is not $\omega\beta$ -continuous since $(g \circ f)^{-1}(2) = \mathbb{Q} \notin \omega\beta O(X, \tau)$.

Corollary 3. If $f:(X,\tau)\to\prod_{\alpha\in\Delta}X_\alpha$ is an $\omega\beta$ -continuous function from a space (X,τ) into a product space $\prod_{\alpha\in\Delta}X_\alpha$, then $P_\alpha\circ f$ is $\omega\beta$ -continuous for each $\alpha\in\Delta$, where P_α is the projection function from the product space $\prod_{\alpha\in\Delta}X_\alpha$ onto the space X_α for each $\alpha\in\Delta$.

Theorem 6. Let X and Y be a topological spaces, let $f:(X,\tau) \to (Y,\sigma)$ be a function and $g:(X,\tau) \to (X \times Y,\tau \times \sigma)$ be the graph function of f given by g(x)=(x,f(x)) for every point $x \in X$. Then g is $\omega\beta$ -continuous if and only if f is $\omega\beta$ -continuous.

Proof. Assume that g is $\omega\beta$ -continuous. Now $f = P_Y \circ g$ where $P_Y : X \times Y \to Y$, then f is $\omega\beta$ -continuous by Corollary 3. Conversely, assume that f is $\omega\beta$ -continuous. Let $x \in X$ and

W be any open set in $X \times Y$ containing g(x). Then there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $g(x) = (x, f(x)) \in U \times V \subseteq W$. Since f is $\omega \beta$ -continuous, there exists $\omega \beta O(X, \tau)$ sets U_1 in containing x such that $f(U_1) \subseteq V$. Put $H = U \cap U_1$. Then $H \in \omega \beta O(X, \tau)$, by Lemma 1(ii), such that $x \in H$ and $f(H) \subseteq V$. Therefore we have $g(H) \subseteq U \times V \subseteq W$. Thus g is $\omega \beta$ -continuous.

Definition 6. [8] A function $f:(X,\tau) \to (Y,\sigma)$ is called pre-semi-preopen if the image of each semi-preopen set in X is a semi-preopen set in Y.

Theorem 7. Let $f:(X,\tau) \to (Y,\sigma)$ be an pre-semi-preopen surjection and let $g:(Y,\sigma) \to (Z,\rho)$ such that $g \circ f:(X,\tau) \to (Z,\rho)$ is $\omega\beta$ —containuous, then g is $\omega\beta$ —containuous.

Proof. At first we show if $f:(X,\tau)\to (Y,\sigma)$ be an pre-semi-preopen function and $U\in\omega\beta O(X,\tau)$, then $f(U)\in\omega\beta O(Y,\sigma)$. So let $U\in\omega\beta O(X,\tau)$ then for all $x\in U$ there exists $\beta O(X,\tau)$ sets U_1 in (X,τ) containing x and $U_1-U\subseteq C$ where C is a countable set. Thus $f(U_1)-f(U)\subseteq f(C)$ where f(C) is a countable set. This implies $f(U)\in\omega\beta O(Y,\sigma)$. Now, Let $y\in Y$ and let $V\in\rho$ with $g(y)\in V$. Choose $x\in X$ such that f(x)=y. Since $g\circ f$ is $\omega\beta$ —continuous there exists $U\in\omega\beta O(X,\tau)$ with $x\in U$ and $y\in U$ and $y\in U$. But $y\in U$ is pre-semi-preopen function therefore, by assumption, $y\in U$ 0 and $y\in U$ 1. So we get the result.

Corollary 4. Let $f_{\alpha}: (X_{\alpha}, \tau_{\alpha}) \to (Y_{\alpha}, \tau_{\alpha})$ be a function for each $\alpha \in \Delta$. If the product function $f = \prod_{\alpha \in \Delta} f_{\alpha}: \prod_{\alpha \in \Delta} X_{\alpha} \to \prod_{\alpha \in \Delta} Y_{\alpha}$ is $\omega\beta$ -continuous, then f_{α} is $\omega\beta$ -continuous.

Proof. At first we prove that any projection function is pre-semi-preopen function. Let $U \in \beta O(X,\tau)$ hence $f(U) \subseteq f(cl(\operatorname{int}(cl(U))))$, by using the assumption that f is open and continuous surjective, $f(U) \subseteq cl(\operatorname{int}(cl(f(U))))$. Thus $f(U) \in \beta O(Y,\sigma)$. Now For each $\beta \in \Delta$, let $p_{\beta}: \prod_{\alpha \in \Delta} X_{\alpha} \to X_{\beta}$ and $q_{\beta}: \prod_{\alpha \in \Delta} Y_{\alpha} \to Y_{\beta}$ be the projections, then we have $q_{\beta} \circ f = f_{\beta} \circ p_{\beta}$ for each $\beta \in \Delta$. Since f is $\omega \beta$ -continuous and q_{β} is continuous, by Proposition 3 $q_{\beta} \circ f$ is $\omega \beta$ -continuous and hence $f_{\beta} \circ p_{\beta}$ is $\omega \beta$ -continuous function. Since p_{β} is pre-semi-preopen function it follows from Theorem 7 that f_{β} is $\omega \beta$ -continuous function.

Theorem 8. [3] For any space X, the following properties are equivalent:

- i. X is β -Lindelőf.
- ii. Every $\omega \beta O(X, \tau)$ cover of X has a countable subcover.

Proposition 4. Let $f:(X,\tau)\to (Y,\sigma)$ be an $\omega\beta$ -continuous surjective function. If X is β -Lindelőf, then Y is Lindelőf.

Proof. Let $\{V_{\alpha}: \alpha \in \Delta\}$ be an open cover of Y. Then $\{f^{-1}(V_{\alpha}): \alpha \in \Delta\}$ is $\omega\beta O(X,\tau)$ cover of X (since f is $\omega\beta$ – continuous). Since X is β –Lindelőf, by Theorem 8, X has a countable subcover, say $f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), \ldots, f^{-1}(V_{\alpha_n}), \ldots$, Thus $V_{\alpha_1}, V_{\alpha_2}, \ldots, V_{\alpha_n}, \ldots$ is a subcover of $\{V_{\alpha}: \alpha \in \Delta\}$ of Y. This shows that Y is Lindelőf.

Corollary 5. Let $f:(X,\tau) \to (Y,\sigma)$ be a β -continuous (or ω -continuous) surjective function. If X is β -Lindelőf, then Y is Lindelőf.

3. $\omega\beta$ -Irresolute Functions

Definition 7. A function $f:(X,\tau) \to (Y,\sigma)$ is called $\omega\beta$ -irresolute if the inverse image of each $\omega\beta O(Y,\sigma)$ set is an $\omega\beta O(X,\tau)$ set.

Note that every $\omega\beta$ -irresolute function is $\omega\beta$ -continuous but the converse is not true, which is shown by the following example.

Example 8. Let $X = \mathbb{R}$ with the topologies $\tau = \tau_{coc}$ and let $Y = \{1,2\}$ with the topology $\sigma = \{\phi, Y, \{2\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 2 & x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Then f is $\omega\beta$ -continuous but not $\omega\beta$ -irresolute since $f^{-1}(\{1\}) = \mathbb{Q} \notin \omega\beta O(X, \tau)$.

Theorem 9. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then the following conditions are equivalent:

- i. The function f is $\omega \beta$ -irresolute.
- ii. For each $x \in X$ and $V \in \omega \beta O(Y, \sigma)$ containing f(x), there exists $U \in \omega \beta O(X, \tau)$ containing x and $f(U) \subseteq V$.
- iii. For each $x \in X$, the inverse of every $\omega \beta$ -neighbourhood of f(x) is $\omega \beta$ -neighbourhood of x.
- iv. For each $x \in X$ and $\omega\beta$ -neighbourhood V of f(x), there exists $\omega\beta$ -neighbourhood U of x such that $f(U) \subseteq V$.

Proof. (i \rightarrow ii) Assume $x \in X$ and V is $\omega \beta O(Y, \sigma)$ containing f(x), since f is $\omega \beta$ -irresolute then $f^{-1}(V) \in \omega \beta O(X, \tau)$ containing x and hence $f(f^{-1}(V)) \subseteq V$.

(ii \rightarrow iii) Assume $x \in X$ and V is $\omega\beta$ -neighbourhood of f(x), by Definition 3 there exists $V_1 \in \omega\beta O(Y,\sigma)$ such that $f(x) \in V_1 \subseteq V$, there exists $U \in \omega\beta O(X,\tau)$ containing x and $f(U) \subseteq V_1$, $x \in U \subseteq f^{-1}(V_1) \subseteq f^{-1}(V)$. Hence by use Definition 3, $f^{-1}(V)$ is $\omega\beta$ -neighbourhood of x.

(iii \rightarrow iv) Let V is $\omega\beta$ -neighbourhood of f(x), by (iii), $f^{-1}(V)$ is $\omega\beta$ -neighbourhood of x and $f(f^{-1}(V)) \subseteq V$.

(iv \rightarrow i) For each $x \in X$, let $V \in \omega \beta O(Y, \sigma)$ containing f(x). Put $A = f^{-1}(V)$, let $x \in A$. Then $f(x) \in V$. Since $V \in \omega \beta O(Y, \sigma)$ then V is a $\omega \beta$ -neighbourhood of f(x). So by hypothesis, $A = f^{-1}(V)$ is $\omega \beta$ -neighbourhood of x. Hence by Definition 3 there exists $A_x \in \omega \beta O(X, \tau)$ such that $x \in A_x \subseteq A$. Thus, by Lemma 1(i) $A = \bigcup_{x \in A} A_x$ is $\omega \beta O(X, \tau)$ set. Therefore, f is $\omega \beta$ -irresolute.

Theorem 10. The following conditions are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$:

i. f is $\omega\beta$ -irresolute.

- ii. For each $\omega\beta C(Y,\sigma)$ subset C of Y, $f^{-1}(C)$ is $\omega\beta C(X,\tau)$.
- iii. For each subset A of X, $f(\omega\beta cl(A)) \subseteq \omega\beta cl(f(A))$.

Proof. (i \rightarrow ii) Let C be $\omega\beta C(Y,\sigma)$ subset of Y. Then $X - f^{-1}(C) \in \omega\beta O(X,\tau)$, which implies that $f^{-1}(C)$ is $\omega\beta C(X,\tau)$.

(ii \rightarrow iii) Let A be a subset of X, Since $A \subset f^{-1}(f(A))$, we have $A \subset f^{-1}(\omega\beta cl(f(A)))$. Now by (ii), $f^{-1}(\omega\beta cl(f(A)))$ is $\omega\beta C(X,\tau)$ set containing A then $\omega\beta cl(A) \subseteq f^{-1}(\omega\beta cl(f(A)))$, which implies $f(\omega\beta cl(A)) \subseteq \omega\beta cl(f(A))$.

(iii \rightarrow iv) Let $B \subset Y$, by (iii) $f(\omega\beta cl(f^{-1}(B))) \subseteq \omega\beta cl(f(f^{-1}(B))) \subseteq \omega\beta cl(B)$, hence $\omega\beta cl(f^{-1}(B)) \subseteq f^{-1}(\omega\beta cl(B))$.

(iv \to i) Suppose f is not $\omega\beta$ -irresolute. So there exist $x \in X$ and $V \in \omega\beta O(Y,\sigma)$ with $f(x) \in V$ such that for all $\omega\beta O(X,\tau)$ set U with $x \in U$ and $f(U) \not\subset (V)$ i.e. $f(U) \cap (Y-V) \neq \phi$. Therefore, by (vii), $x \in f^{-1}(\omega\beta cl(Y-V))$. So by Theorem 2, $f(x) \in \omega\beta cl(Y-V)$. Thus for all $\omega\beta O(Y,\sigma)$ sets V containing f(x), so $V \cap (Y-V) \neq \phi$, a contradiction. Therefore, f is $\omega\beta$ -irresolute.

Theorem 11. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then f is $\omega\beta$ -irresolute if and only if $f^{-1}(\omega\beta Int(B))\subseteq \omega\beta Int(f^{-1}(B))$.

Proof. NECESSITY. Let B be any subset of Y. Since f is $\omega\beta$ -irrrsolute, we have $f^{-1}(\omega\beta Int(B))$ is $\omega\beta O(X,\tau)$ set. As $f^{-1}(\omega\beta Int(B)) \subseteq f^{-1}(B)$, then $f^{-1}(\omega\beta Int(B)) \subseteq \omega\beta Int(f^{-1}(B))$. SUFFICIENCY. Let $x \in X$ and $V \in \omega\beta O(Y,\sigma)$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so by assumption $x \in \omega\beta Int(f^{-1}(V))$. There exists an $\omega\beta O(X,\tau)$ sets such that $x \in U \subseteq f^{-1}(V)$. Hence $f(x) \in f(U) \subseteq V$ and the result follows.

Proposition 5. If $f:(X,\tau) \to (Y,\sigma)$ is $\omega\beta$ -irresolute and $g:(Y,\sigma) \to (Z,\rho)$ is $\omega\beta$ -continuous, then $g \circ f$ is $\omega\beta$ -continuous.

Proof. Let $x \in X$ and let V be any open set in (Z, ρ) containing g(f(x)). Since g is $\omega\beta$ —continuous, there exists an $\omega\beta O(Y, \sigma)$ set W containing f(x) such that $g(W) \subseteq V$. Put $U = f^{-1}(W)$ since f is $\omega\beta$ —irresolute, then $U \in \omega\beta O(X, \tau)$ such that $x \in U$ and $g(f(U)) \subseteq g(W) \subseteq V$. Hence $g \circ f$ is $\omega\beta$ —continuous.

Corollary 6. *If* $f:(X,\tau) \to (Y,\sigma)$ *is* $\omega\beta$ – *irresolute and* $g:(Y,\sigma) \to (Z,\rho)$ *is* ωb – *continuous, then* $g \circ f$ *is* $\omega\beta$ – *continuous.*

Recall that a function $f:(X,\tau)\to (Y,\sigma)$ is said to be ω -irresolute [1] if the inverse image of each $\omega O(Y,\sigma)$ set is an $\omega O(X,\tau)$.

Theorem 12. If $f:(X,\tau)\to (Y,\sigma)$ is ω -irresolute and every $\beta O(Y,\sigma)$ set is closed in the space (Y,σ) then f is $\omega\beta$ -irresolute.

Proof. Let U be any $\omega\beta O(Y,\sigma)$ set, then for all $y \in Y$, there exists $\beta O(Y,\sigma)$ sets U_1 containing x such that $U_1 - U$ is a countable, thus by assumption $U_1 \subseteq cl(Int(cl(U_1))) \subseteq Int(U_1)$, so U_1 is open sets in (Y,σ) , hence $U \in \omega O(Y,\sigma)$. Since f is ω -irresolute, then $f^{-1}(U) \in \omega O(X,\tau) \subseteq \omega\beta O(X,\tau)$.

Proposition 6. Let $f:(X,\tau) \to (Y,\sigma)$ be an open continuous function and every $\omega \beta O(Y,\sigma)$ is closed in the space (Y,σ) then f is $\omega \beta$ -irresolute.

Proof. Let $U \in \omega \beta O(Y, \sigma)$, by Theorem 3, $\omega \beta cl(f^{-1}(U)) \subseteq cl(f^{-1}(U)) = f^{-1}(cl(U)) \subseteq f^{-1}(\omega \beta cl(U))$, hence f is $\omega \beta$ -irresolute, by Theorem 10.

In [3], Aljarrah And Noorani define the $\omega\beta - T_2$ as if for each two distinct point $x, y \in X$, there exists $U, V \in \omega\beta O(X, \tau)$ such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Theorem 13. If $f:(X,\tau)\to (Y,\sigma)$ is an $\omega\beta$ -irresolute injective function and the space Y is $\omega\beta-T_2$, then X is $\omega\beta-T_2$.

Proof. Let x_1 and x_2 be two distinct points of X. Since f is injective and Y is $\omega\beta - T_2$, there exist $V_1, V_2 \in \omega\beta O(Y, \sigma)$ such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. Now $x_1 \in f^{-1}(V_1)$, $x_2 \in f^{-1}(V_2)$ and $f^{-1}(V_1 \cap V_2) = f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Since f is $\omega\beta$ -irresolute then $f^{-1}(V_1)$, $f^{-1}(V_2)$ is $\omega\beta O(X, \tau)$. Hence X is $\omega\beta - T_2$.

Definition 8. A space X is said to be $\omega\beta$ —connected if there exist disjoint $\omega\beta O(X, \tau)$ sets A and B such that $A \cup B = X$.

Proposition 7. *If* $f:(X,\tau) \to (Y,\sigma)$ *is an* $\omega\beta$ – *irresolute surjective function and* X *is* $\omega\beta$ – *connected, then* Y *is* $\omega\beta$ – *connected.*

Proof. Suppose Y is not $\omega\beta$ —connected. Then there exist disjoint $\omega\beta O(Y,\sigma)$ sets A and B such that $A \cup B = Y$. Since f is $\omega\beta$ —irresolute surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty $\omega\beta O(X,\tau)$ sets. Moreover $f^{-1}(A) \cup f^{-1}(B) = X$. This is show that (X,τ) is not $\omega\beta$ —connected, which is a contradiction. Hence (Y,σ) is $\omega\beta$ —connected.

4. $\omega\beta$ -Open and $\omega\beta$ -Closed Functions

Definition 9. A function $f:(X,\tau) \to (Y,\sigma)$ is called $\omega\beta$ -open (resp. $\omega\beta$ -closed) if the image of each open (resp. closed) set in (X,τ) is an $\omega\beta O(Y,\sigma)$ (resp. $\omega\beta C(Y,\sigma)$).

Note that every open (closed) function is $\omega\beta$ -open (resp. $\omega\beta$ -closed) function, but the converse is not true, which is shown by the following example.

Example 9. Let $X = \{a, b\}$ with the topology $\tau = \{\phi, X, \{a\}\}$ and $Y = \{1, 2, 3\}$ with the topology $\sigma = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function define by f(x) = 3 for all $x \in X$. Then f is $\omega\beta$ -open and $\omega\beta$ -closed function, but it is neither open nor closed function.

Proposition 8. A function $f:(X,\tau)\to (Y,\sigma)$ is $\omega\beta$ -open if and only if for each $x\in X$ and each open set U of X containing x, there exists an $\omega\beta O(Y,\sigma)$ set W containing f(x) such that $W\subset f(U)$.

Theorem 14. Let $f:(X,\tau)\to (Y,\sigma)$ be a function from space (X,τ) into a space (Y,σ) . Then f is $\omega\beta$ -closed if and only if $\omega\beta cl(f(A))\subseteq f(\omega\beta cl(A))$ for each set A subset of (X,τ) .

REFERENCES 139

Proof. Let f is $\omega\beta$ -closed function and A any subset of X. Then $f(A) \subset f(\omega\beta cl(A)) \in \omega\beta C(Y,\sigma)$, it follows that $\omega\beta cl(f(A)) \subset f(\omega\beta cl(A))$. Conversely, assume that $B \in \omega\beta C(X,\tau)$. Then $\omega\beta cl(f(B)) \subset f(\omega\beta cl(B)) = f(B)$. Thus we obtain that $\omega\beta cl(f(B)) = f(B)$, so f is $\omega\beta$ -closed function.

Proposition 9. Let $f:(X,\tau) \to (Y,\sigma)$ be a continuous surjection function and let $g:(Y,\sigma) \to (Z,\rho)$ be such that $g \circ f:(X,\tau) \to (Z,\rho)$ is $\omega\beta$ -open function, then g is $\omega\beta$ -open.

Proof. Let $y \in Y$ and let $V \in \rho$ with $g(y) \in V$. Choose $x \in X$ such that f(x) = y. Since $g \circ f$ is $\omega \beta$ -open function, then $g(V) = g \circ f(f^{-1}(V)) \in \omega \beta O(Z, \rho)$. This is show that g is $\omega \beta$ -open function.

The following examples show that the $\omega\beta$ -open function is independent with $\omega\beta$ -irresolute and $\omega\beta$ -continuous function.

Example 10. Let $X = \mathbb{R}$ with the topologies $\tau = \tau_{coc}$ and let $Y = \{1,2\}$ with the topology $\rho = \{\phi, Y, \{2\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases} 1 & x \in \mathbb{R} - \mathbb{Q} \\ 2 & x \in \mathbb{Q} \end{cases}$$

Then f is not $\omega\beta$ –continuous, but it can easily seen that f(x) is $\omega\beta$ –open function.

Example 11. Let $X = \{1,2\}$ with the topology $\tau = \{\phi, X, \{1\}\}$ and let $Y = \mathbb{R}$ with the topologies $\sigma = \tau_{coc}$. Let $f: (X,\tau) \to (Y,\sigma)$ be the function defined by

$$f(x) = \begin{cases} \mathbb{R} - \mathbb{Q} & x = 2 \\ \mathbb{Q} & x = 1 \end{cases}$$

Then f is not $\omega\beta$ -open, but it can easily seen that f is $\omega\beta$ -continuous and $\omega\beta$ -irresolute function.

Example 12. Consider the function f in the Example 8 which is $\omega\beta$ —open, but not $\omega\beta$ —irresolute.

ACKNOWLEDGEMENTS: This work is financially supported by the Malaysian Ministry of Science, Technology and Environment, Science Fund Grant no. UKM-ST-06-FRGS0146-2010.

References

- [1] K Al-Zoubi. Semi ω containuous functions. Abhath Al-yarmouk, 12(1):119–131, 2003.
- [2] K Al-Zoubi and B Al-Nashef. The topology of ω open subsets. *Al-Manarah Journal*, 9(2):169–179, 2003.
- [3] H Aljarrah and M Noorani. On $\omega\beta$ open sets. submitted.

REFERENCES 140

- [4] D Andrijevic. On b-open sets. Mat. Vesnik, 48:59-64, 1996.
- [5] S Crossley and S Hildebrand. Semi-topological properties. *Fund. Math.*, 74(3):233–254, 1972.
- [6] H Hdeib. ω continuous functions. *Dirasat*, XVI:136–142, 1996.
- [7] M Monesf, S el Deeb, and R Mahmoud. β —open sets and β —continuous mapping. *Bull. Fac. Sci. Assiut univ.*, C 12:77–90, 1983.
- [8] G Navalagi. Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces. *Internat. J. Math. Math. Sci.*, 29(2):58–98, 2002.
- [9] T Noiri, A Al-omari, and M Noorani. On $\omega b-$ open sets and b-lindelof spaces. *Eur. J. Pure Appl. Math.*, 1:3–9, 2008.