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Abstract. In this paper, we introduced a quantum space generated by three noncommutative coordi-
nates with two commutation parameters. We also give a Hopf algebra structure in order to construct
a bicovariant differential calculus over this quantum space. Morever, it is shown that noncommuta-
tive derivative operators corresponding to the coordinates comprise a Weyl algebra deformed by the
commutation parameters.
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1. Introduction

There has been a lot of interest in recent years in ‘noncommutative geometry’ or the prin-
ciple of doing geometry on ‘coordinate rings’ which are noncommutative algebras (and hence
could not be the ring of functions on any actual space). Central to most approaches, includ-
ing that of Connes [8], is the notion of differential structure on a (possibly noncommutative)
algebra A, which is expressed directly as the specification of an A–A-bimodule Ω1 of 1-forms
equipped with an exterior derivative operator d obeying the Leibniz rule:

d : A→ Ω1; d( f g) = d( f )g + f d(g), f , g ∈ A. (1)

Recall that in classical geometry a differential form can be multiplied by a function; in non-
commutative geometry we allow possibly different but mutually noncommuting such multi-
plications from the left and the right (an A–A-bimodule). The reason is that if one supposed
f (d g) = (d g) f for all f , g then one would find d( f g−g f ) = 0 which would mean a large ker-
nel for a typical noncommutative algebra. In fact, we typically ask that ker d is 1-dimensional
and given by the constant function, which is a connectness condition on the noncommutative

∗Corresponding author.

Email addresses: mineki�yildiz.edu.tr (M. Özavşar), gyesilot�yildiz.edu.tr (G. Yeşilot)
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space. We also require that forms of the form f (d g) span all of Ω1 as in classical geome-
try. Higher differential forms can be formulated as a differential graded algebra (or exterior
algebra) generated by Ω1 and Ω0 = A with d extended by d2 = 0 and the graded Leibniz rule.

Quantum groups [10, 22, 21, 27, 13, 16, 17] and quantum spaces [22, 21, 28, 24] are
explicit realizations of noncommutative spaces. Many studied quantum groups in the context
of theory of the integrable models, conformal field theory [29, 15] and the classification of
knots and links [30, 12]. In particular, the quantum spaces have been envisioned by many
as a paradigm for the general programme of quantum deformed physics. The most hoped
for applications include a possible role in a future quantized theory of gravity [20]. For the
sake of this hope, many efforts have been accomplished in order to develop noncommutative
differential structures on noncommutative spaces [26, 25, 6, 23, 19, 11, 5, 1, 14, 9, 2, 4, 3,
18, 7]. Among them, as a fundamental work, the noncommutative differential calculus on
quantum groups is introduced by Woronowicz [26]. In Woronowicz’s approach, differential
structures on quantum groups is introduced in the context of Hopf algebra. In [18], the
graded differential Hopf algebra over a Hopf algebra is constructed by following some results
obtained in [26].

In this paper, we define a special quantum(3) equipped with a Hopf algebra structure. Fol-
lowing some ideas of Woronowicz contained in [26], we build a bicovariant differential calcu-
lus on this quantum(3) space. Based on this differential calculus, noncommutative derivative
operators and the correspoinding Weyl algebra are obtained.

2. Preliminary Notes

First we quote briefly some the basic definitions and statements which will be used in the
paper.

An algebra is a vector space A over a field K such that the algebra multiplication m :
A⊗ A−→ A is a bilinear map satisfying

m(a⊗ (b+ c)) = m(a⊗ b) +m(a⊗ c) (2)

m((a+ b)⊗ c) = m(a⊗ c) +m(b⊗ c) (3)

for all a, b, c ∈ A.
A coalgebra is a K-algebra A, together with linear homomorphisms ∆A : A −→ A⊗ A and

εA : A−→ K (the coproduct and the counit, respectively) which satisfy

(∆A⊗ id)∆A(a) = (id⊗∆A)∆A(a) (4)

µ((ǫA⊗ id)∆A(a)) = id(a) = µ′((id⊗ ǫA)∆A(a)), (5)

where µ : K ⊗ A−→ A and µ′ : A⊗ K −→ A are the canonical isomorphisms, defined by

µ(l ⊗ a) = la = µ′(a⊗ l), ∀a ∈ A, ∀l ∈ K ,

and id denotes identity map.
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A bialgebra is both a unital associative algebra and coalgebra, with the compatibility con-
ditions that ∆A and εA are both algebra maps with ∆(1A) = 1A⊗ 1A and ǫA(1A) = 1K .

A Hopf algebra is a bialgebra A together with a linear map SA : A −→ A, the antipode,
which satisfies

m((SA⊗ id)∆A(a)) = ǫA(a)1A= m((id⊗ SA)∆A(a)). (6)

Let Ω be a bimodule over any Hopf algebra A and ∆R : Ω−→ Ω⊗ A be a linear homomor-
phism. One says that (Ω,∆R) is a right-covariant bimodule if

∆R(ap+ p′a′) = ∆A(a)∆R(p) +∆R(p
′)∆A(a

′) (7)

for all a, a′ ∈ A and p, p′ ∈ Ω and

(∆R⊗ id) ◦∆R = (id⊗∆A) ◦∆R, m ◦ (id⊗ ǫA) ◦∆R = id. (8)

Let ∆L : Ω −→ A⊗ Ω be a linear homomorphism. One says that (Ω,∆L) is a left-covariant

bimodule if
∆L(ap+ p′a′) = ∆A(a)∆L(p) +∆L(p

′)∆A(a
′)

for all a, a′ ∈ A and p, p′ ∈ Ω and

(id⊗∆L) ◦∆L = (∆A⊗ id) ◦∆L, m ◦ (ǫA⊗ id) ◦∆L = id.

3. Quantum (3) Space with Two Parameters and its Hopf algebra

According to Manin’s terminology [22], we define the quantum(3) space with two param-
eters as a finitely generated quadratic algebra

A= C



x , y, z
�
/I , (9)

where I is an ideal generated by the following relations

x y = p y x , xz = qzx , yz = p−nqmz y, m, n ∈ Z, (10)

where p and q are non-zero complex parameters. If we require that x is invertible, then we
could provide a Hopf algebra on A by the following maps

∆(x) = x ⊗ x , ∆(y) = xm⊗ y + y ⊗ xm, ∆(z) = xn⊗ z + z ⊗ xn (11)

ǫ(x) = 1, ǫ(y) = 0, ǫ(z) = 0 (12)

S(x) = x−1, S(y) = x−m y x−m, S(z) = x−nzx−n, (13)

which satisfy the axioms (4), (5) and (6).
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4. Differential algebra over A

To construct exterior algebra of differential n-forms, we need commutation relations be-
tween x , y, z and d x , d y, dz. For this, we first assume the following noncommutative rela-
tions:

xd x = ad x x , xd y = f11d y x + f12d x y, xdz = g11dzx + g12d xz (14)

yd x = f21d x y + f22d y x , yd y = bd y y, ydz = h11dz y + h12d yz (15)

zd x = g21d xz+ g22dzx , zd y = h21d yz + h22dz y, zdz = cdzz, (16)

where a, b, c, fi j , gi j ,hi j ∈ C/{0} for i, j = 1,2. It is natural to consider that the commutation
coefficients must depend on the deformation parameters p,q. To see this, one gives the bi-
covariant structure [26] on the Hopf algebra A; (Ω1,∆R) is a right-covariant bimodule on the
Hopf algebra A under the following linear homomorphism ∆R defined as

∆R : Ω1 −→ Ω1⊗ A (17)

∆R(da) = (d ⊗ id)∆(a),∀a ∈ A. (18)

Thus, it acts on d x , d y, dz in the following form:

∆R(d x) = d x ⊗ x (19)

∆R(d y) =

m−1∑

k=0

akd x xm−1⊗ y + d y ⊗ xm (20)

∆R(dz) =

n−1∑

k=0

akd x xn−1⊗ z + dz ⊗ xn, (21)

where ∆R acts on A as ∆. In similar way, a left-covariant bimodule structure on the Hopf
algebra A is defined in the following way

∆L : Ω1 −→ A⊗Ω1 (22)

∆L(da) = (id⊗ d)∆(a),∀a ∈ A. (23)

Hence, using the fact that ∆L and ∆R preserve the commutation relations (14-16) and con-
sistency of the exterior differential operator d with the noncommutative relations (10), we
obtain the commutation coefficients in terms of p and q as follows

xd x = d x x , xd y = pd y x , xdz = qdzx (24)

yd x = p−1d x y, yd y = d y y, ydz = p−nqmdz y (25)

zd x = q−1d xz, zd y = pnq−md yz, zdz = dzz. (26)

Applying the exterior differential operator to the noncommutative relations in (24-26), one
has

d x ∧ d x = 0, d y ∧ d y = 0, dz ∧ dz = 0 (27)
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and

d x ∧ d y = −pd y ∧ d x (28)

d x ∧ dz = −qdz ∧ d x (29)

d y ∧ dz = −p−nqmdz ∧ d y. (30)

Finally, we have
Ω = Ω0 ⊕Ω1 ⊕Ω2⊕Ω3 ⊕ 0⊕ 0.... (31)

and the following coproduct yields a graded Hopf algebra over Ω

∆̂ = ∆L +∆R, (32)

which implies

∆̂(d x) = d x ⊗ x + x ⊗ d x (33)

∆̂(d y) = md x xm−1⊗ y + d y ⊗ xm+ xm⊗ d y + y ⊗md x xm−1 (34)

∆̂(dz) = nd x xn−1⊗ z + dz⊗ xn+ xn⊗ dz + z ⊗ nd x xn−1. (35)

Note that the multiplication of two elements in Ω⊗Ω is given by the graded tensor product
as follows

(X ⊗ Y )(Z ⊗ T ) = (−1)
bY bZ X Z ⊗ Y T, (36)

where bw, the parity of a differential n- form w in Ω, is given by bw = n.
Partial derivative operators corresponding to the differantial calculus (24-26) act on A as

follows
∂x (x

i y jzk) = i x i−1 y jzk

∂y(x
i y jzk) = jpi x i y j−1zk

∂z(x
i y jzk) = kp−njqmj+i x i y jzk−1.

(37)

To show the actions (37), let f ∈ A. From (24-26) and the Leibniz rule there exists the unique
fa ∈ A, a ∈
�

x , y, z
	

such that

d( f ) = d x fx + d y f y + dz fz . (38)

We, therefore, could assume that there exists a linear operator ∂a : A−→ A such that
∂a( f ) = fa. Thus, the differential operator d could be then given by

d = dx∂x + d y∂y + dz∂z .

Hence, the action of the derivative operator ∂a on the monomial x i y jzk is deduced by applying
the Leibniz rule inductively to x i y jzk and substituting differential calculus (24-26) as follows

d(x i y jzk) = d(x i y j)zk + x i y jd(zk)

= dx(i x i−1 y jzk) + d y( jpi x i y j−1zk)
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+ dz(kp−njqmj+i x i y jzk−1).

This results in (37), and we extend the action of ∂a on the monomial to f by its linearity.
When p,q → 1, the algebra A becomes the usual commutative algebra and these operators
reduce to the usual partial derivative operators.

To obtain Weyl algebra corresponding to these operators, we need commutation relations
between x , y, z and the corresponding operators. Let f ∈ A. From the Leibniz rule, we have

d(x f ) = d x f + x(d x∂x + d y∂y + dz∂z)( f ). (39)

Substituting (24) to (39) implies

(d x∂x + d y∂y + z + ∂z)(x f ) = [d x(1+ x∂x) + pd y x∂y + qdzx∂z]( f ). (40)

This last equation results in

∂x x = 1+ x∂x ,∂y x = px∂y ,∂z x = qx∂z. (41)

In similar way, the following relations could be obtained

∂x y = p−1 y∂x ,∂y y = 1+ y∂y ,∂z y = p−nqm y∂z (42)

∂xz = q−1 x∂x ,∂yz = pnq−mz∂y ,∂zz = 1+ z∂z . (43)

Moreover, using the nilpotency rule d2 = 0 and (27-30) implies relations:

∂x∂y = p∂y∂x , ∂x∂z = q∂z∂x , ∂y∂z = pnq−m∂z∂y , (44)

which are compatible with the actions (37); for example,

(∂x∂y)(x
i y jzk) = ∂x(∂y(x

i y jzk))

= ∂x( jp
i x i y j−1zk)

= jipi x i−1 y j−1zk

= pipi−1 j x i−1 y j−1zk

= p∂y(i x
i−1 y jzk)

= p∂y(∂x(x
i y jzk))

= (p∂y∂x)(x
i y jzk).

Finally, one could easily see Weyl algebra corresponding to A as C
¬

x , y, z,∂x ,∂y ,∂z

¶
modulo

the commutation relations (10) and (41-44). We also get the usual Weyl algebra in three
commutative variables when p,q→ 1.
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