An Iterative Method for (AGDDV I P) in Hilbert Space and the Homology Theory to Study the (GDDCPn) in Riemannian n-manifolds in the Presence of Fixed Point Inclusion
Keywords:
Quasidomonotone and potential operator, weakly -invex set, T--invex function, Hilbert spaces, Banach space, iterative sequence, Lipschitz function, generalized dominated differential variational inequality problemsAbstract
The main purpose of this paper is to study the convergence of variable step iterative methods for the defined problem absolutely generalized dominated differential variational inequality problems (AGDDV I P) in Hilbert spaces. The iterative process considered in the paper admit the presence of variable iteration parameters, which can be useful in numerical implementation to find solution of the problem (AGDDV I P). Finally, we study the existence theorems of the problems (GDDV I Pn) and (GDDCPn) in Riemannian n-manifolds modelled on the Hilbert space in the presence of coincidence index, fixed point theorem of Homology theory and one-point compactification of Topology theory.Downloads
Issue
Section
Differential Geometry
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
An Iterative Method for (AGDDV I P) in Hilbert Space and the Homology Theory to Study the (GDDCPn) in Riemannian n-manifolds in the Presence of Fixed Point Inclusion. (2011). European Journal of Pure and Applied Mathematics, 4(4), 340-360. https://www.ejpam.com/index.php/ejpam/article/view/1371