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Abstract. In this paper two subclasses Sg’q (v,A,B) and Cj’q (v,A,B) of p-valently starlike and p-
valently convex functions of complex order y # 0 in the open unit disk U are introduced and for
these classes several majorization problems are discussed.
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1. Introduction and Definitions

Definition 1 ([see 5]). Let the functions f (z) and g(z) be analytic in the open unit disk
U={z:2€Cand |z|<1}.

We say that f (z) is majorized by g(z) and write

fz) < g(2) 1)
if there exists a function ¢ () analytic in U, such that
| ¢(2) < 1and f(2) = ¢(2)g(2). (2)
Also, we say that f (z) is subordinate to g(z) and write
fz) < g(2)

if there exist a function w(z) analytic in U, such that

w(0)=0,|w(z)| <I|z| and f () = g (w(2)).
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Definition 2 ([see 8]). The fractional derivative of order & is defined by

4

1 d [ f©
(1-8)dz | (z-0)°
0

D2 f(z)= - d¢ (0<6<1) (3)

where f(z) is an analytic function in a simply connected region of the z—plane containing the
origin and the multiplicity of (z—{)™° is removed by requiring log (z — ) to be real when
z2—{>0.

Definition 3 ([see 8]). Under the hypotheses of definition 2, the fractional derivative of order

(n+ &) is defined by
d

dz"
Several majorization problems investigated by Altintas and Owa [1], Altintas et al. [2]
and [3].
Let A, denote the class of functions f normalized by

DM f (2) = —D?f (2). 4

f@=2+ > az" (PeEN={1,23,..})
n=p+1

which are analytic and p — valent in U. Also let a function f € A, is said to be in the class
qu (7,A,B) if and only if

. 1 (2 fard+1)(y) A 14+ AZ -
r U flatd)(z) b 1+BZ
wherey e C\ {0}, peN,qeNy=NU{0},0<6<1,-1<B<A<1and
[y(A-B)+(p—q-8)B|<|p—-q-35|.
Furthermore a function f € A, is said to be in the class Cg q (v,A,B) if and only if
1 z fla+5+2) () 1+AZ
1+-(1+——<—-p+q+6 | < 6)
Y fla+5+1) () 1+BZ

wherey e C\ {0}, peN,geN),0<6<1,-1<B<A<1and
[y(A-B)+(p—q—8)B|<|p—q-35|.
We have the following relationships (from [3, 11, 2], respectively)

0 _

Sp,q(Y’ 1: _1) - Sp,q(Y)'
0 _

C,q(v:1,=1)=Cp (7).
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Spo(r:1,=1) =S(y) and Cy(y,1,-1) = C().
S(v) and C(y) were considered by Nasr and Aouf in [6].
Spo(l—a,1,-1)=S*(a) and C, ,(1 ~ &,1,~1) = C(a)

denote respectively the class of starlike and convex functions of order a,(0 < a < 1) which
were introduced by Robertson in [9].

2. Majorization Problems for the Class SS q(y,A,B)
We begin by proving.

Theorem 1. Let the function f(z) be in the class A, and suppose that g € Sg q(y,A,B). If
£*9)(2) is majorized by g(97%)(2) in U for g €N, and 0 < § < 1, then

[fera) (sl <) %

< ’g(q+5+1)(z)

where r; =r1(p,q,6,7,A,B) is the smallest positive root of the equation

[Y(A=B)+(p—q—8)B|r®—(p—q -5 +2|B)r*— [|[y(A-B)+(p —q— 5)B]|
+2]r+p—q—6=0 8

wherepeN, qeN,, y€C\{0},0<6 <1and
[y(A-B)+(p—q—8)B|<|p—q-35|.

Proof. Since g € qu(y,A,B), we obtain from (5)

1z g(q+5+1)(z) 1+Aw(2)
14— | ———=—"-p+q+6 |=—"— 9
Y ( e TN 1+Bow(z) )
where
w(0)=0and |w(2)| < |z| (z € U). (10)
From (9) we readily obtain
28" () p—q-5+[y(A-B)+(p—q—5)B] w(z) an
gatd(z) 1+ Bw(z) '
Using (10) in (11) we find
(1+ Bl z]) |2
(q+96) (q+6+1)
g (2)| < (2)]- (12)
‘ p—q—35—|y(A—=B)+(p—q—5)B|Iz|
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Since f4%9)(z) is majorized by g(4*%)(z) from (2) we have
FO D (2) = ()5 + ¢/ @ (e), (13

¢ () is satisfies the inequality [cf. Nehari 7, p. 168]:

2
1- b4
¢'(2)| < % (z €U) (14)
— |z
and using (12) and (14) in (13), we get
2
e+ <[ )] + 1-l¢o) Cr BlEDl g0+ ()
1=z p—q=6~—|y(A=B)+(p—q— 5Bl
(15)
which, upon setting
2l =r]¢E)|=p (0<p<D)
leads us to the inequality
‘f(q+5+1)(z) < Q(p) g(q+5+1)(z) (16)
(1-r)[p-q-8—|y(A-B)+(p—q—5)B|r]
where

8(p) = —(r+1BIr2)p?+(1—~r?p—q-5-|y(A=B)+(p — ¢ — 6)B| rlp+(r+IB|r?) (17)
takes on its maximum value at p = 1 with r =r(p,q, J,y,A, B) gives by (8) if
0<o<rp,q9,7,AB)
then the function A(p) defined by

Np)=—(oc+0?B)p*+(1—0?) [p—q—5—|y(A—B)+(p—q—5)B| o] p+(c+057|B)
(18)
is an increasing function on the interval 0 < p < 1 so that

ANp)<SAL)=(1-0?)[p—q—5—|r(A—B)+(p—q—5)B|o]
(O Sp < 130 Sos rl(P,q,&Y,A,B))-

Hence, by setting p = 1 in (16), we conclude that Theorem 1 holds true for |z| < r;(p,q, 5, 7,A, B)
is given by (8). This completes the proof of Theorem 1.

Corollary 1 ([see 3]). Let the function f(z) be in the class A, and suppose that
g€ qu(y, 1,-1). If fD(z) is majorized by g'9(z) in U, then

\f(q“)(z) (l2] <Ry)

<[
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where

k—y/k>—4(p—q)|2r —p+q|
2|2y —p+4]
,pEN,geNygy € C\{0}).

R,y =R4(p,q,6) = (19)

(k=p—q+2+|2y—p+q

Proof. If we set 6 =0,A=1, B=—1 in Theorem 1, then

e+

< ’g(qﬂ)(z)

lz| <R
where R; =R;(p,q, &) is the smallest positive root of the equation
l2r—p+q|rP—(p—q+2r*=[|2r—p+q|+2lr+p—-q=0
r = —1 is the root of the above equation and we obtain
|2y—p+q|r2—(|2y—p+q|+p—q+2)r+p—q=0. (20)
and the positive root of the equation (20) is R; =R;(p,q, d).

Corollary 2 ([see 2]). Let the function f (z) be in the class A, and suppose that g € S?’O(y, 1,-1).
If f(2) is majorized by g(z) in U, then

‘f/(Z) (12l <R,)

<|g@

where

342y — 1] = o+ 2[2r — 1|+ |2y -1
2[2y -1

Ry =Ry(y) =

Corollary 3 ([see 5]). Let f(z) be in the class A, and suppose that g(z) € S?’O(l, 1,-1). If f(2)
is majorized by g(z) in U, then

lF'@

<|lg@| (2l <Ry)

where Ry = 2 — /3.

3. Majorization Problems for the Class Cl‘fq(y,A,B).

The proof Theorem 2 is based upon the following Lemmas.

Lemma 1 ([see 10, Theorem 1]). If f € Cg,q(y,A,B) (y e C\ {0}) then

Re |1+ B TG) 5+1 1-4 21
e +; m—p‘l‘Q‘l‘ + >ﬁ (21)
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Proof If f € Cg, q(y,A,B) then we have from (6)

1 zf@+o+2)(g) 1+ Aw(z)
;(W—p+q+5+l)=— (22)

1
+ 1+ Bw(z)
where w(0) =0 and |w(2)| < |z|, (—1<B<A<1). Welet

1 + Aw(z)

W)= ———= 23
(2) 1+ Bw(z) (23)
and
@) =u+iv, @ = | TE L]
Z)=u-+iv, w(z)|" = A—Bh)| S
and
(1-B>u?-2(1-AB)u+1-A%*<0 (24)
from (24) implies that
1-A 1+A
—— <Reh(zg)=u< ——. (25)
1-B 1+B
The following lemma is proved in [3] for 6 = 0.
Lemma?2. If f € cgq(y,A,B) (y eC\ {0}) then f € Sg’q(%y,A,B) that is
5 s (T
Cp7q(Y,A,B) - Sp,q(E’A’B) (26)

Proof. We know that all convex function in U is starlike of order % in U, [see 4, p. 7] or,
equivalently

Re[1+zj:,—($)] >o:>Re[ZJ{(§))] >%. 27)
If we let .
Re[1+ Zf, (z)] > q for f(z) — fT9)(z),
f'(=)
and using Lemma 1, we have
zf (@+0+2)(z) 1-A
Re[1+m—p+q+6+l)]>m (28)

or
1 Zf(q+6+2)(z)

Re[1+— TG —p+q+6+1]>0. (29)
This implies that
1 zf@+o+2)(y) 1—w(z)
1 — o0+1=——-. 30
* 1—a( flato+1)(5) prafox 1+w(z) (30)
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So, we have
1 zf@+o+2)(y) Y+ (y—24+2a)w(z)
—(———————-(p+q+6+1)= . 31
y( flaro+1)(y) (p+q ) r(1+w(2)) (31)
On the other hand we know that
zf'(z) 1 zf'(2)
>a=Re(l+ —— )> 0. (32)
f(=) 1-a f(2)
Similarly using (27) and (29) we obtain the following relations.
1 zf(q+5+1)(z) 1
1 - o - 33
1+ Fareg) PTat N> (33)
P (Zf G +q+6)= (34)
1—a fltd)(y) P 1+ w(z)
2 zf@rotl)(y) y+(r—2+42a)
s B s e 55
(36)

The inclusion property (26) is easily seen that from (31) and (35).

Upon replacing y in Theorem 1 by %y, if we apply Lemma 2 we have,

Theorem 2. Let the function f(z) be in the class A, and suppose that g(z) € Czi q(y,A,B). If
£@+8)(z) is majorized by g9+ (z) € U, for peNqeNyand 0 < § < 1 then

\f(q+5+1>(z) (12 < 1) 37)

< ‘g(q+5+1)(2)

where ro = 19(p,q,0,7,A,B) is the smallest positive root of the equation

1 1
SrA-B)+(p-q-5)B r®—(p—q—5+2[B)r’— [SrA=-B)+(p—-q-05)B|

+2]lr+p—q—-6=0

wherepeN, qeN, y€C\{0},0<6 <1, and

S|p—q—5.

1
IEY(A—B)Jr(p—q —6)B

Corollary 4 ([see 3]). Let the function f(z) be in the class A, and suppose that
glz) e C[?’q(y, 1,-1). If fD(z) is majorized by g'9(z) in U, then

e+

<[

(lzl <Ry)
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where

p— 2 =4p—-q|r—p+q|
2|y —p+q|
,PEN’QGNO’YEC\{O}

Ry =R1(p,q,5) =

p=2+p—q+|r—p+q
Proof. Welet 5 =0,A=1, B=—1 in Theorem 2.

Corollary 5 ([see 2]). Let the function f (z) be in the class A, and suppose that g(z) € C?.O(l, 1,-1).
If f(2) is majorized by g(z) in U, then

f@|<|f@|  G<ry)

where

34|y —1]—y/o-2fy—1|+[r -1
2|y—1|

Ry =Ry(y) =
Proof. Weletp=1,q=0,6=0,A=1, B=—1 in Theorem 2.

Corollary 6 ([see 5]). Let the function f (z) be in the class A, and suppose that g(z) € Cf‘o(l, 1,-1).
If f(2) is majorized by g(z) in U, then

)

(2l < &
Zl s =
3

e

<|g@

Proof. We let limit for y — 1 in Corollary 5 or y — %}f in Corollary 1.
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