Special Issue for the International Conference on Applied Analysis and Algebra 29 June - 02 July 2011, Istanbul Turkey

Majorization for Certain Analytic Functions

Osman ALTINTAS

Department of Mathematics, Faculty of Education, Başkent University, Ankara, Turkey

Abstract

In this paper two subclasses $S_{p, q}^{\delta}(\gamma, A, B)$ and $C_{p, q}^{\delta}(\gamma, A, B)$ of p-valently starlike and pvalently convex functions of complex order $\gamma \neq 0$ in the open unit disk U are introduced and for these classes several majorization problems are discussed. 2000 Mathematics Subject Classifications: 30C45 Key Words and Phrases: Analytic function, p-valent function, Starlike function, Convex function, Majorization problems, Fractional derivative.

1. Introduction and Definitions

Definition 1 ([see 5]). Let the functions $f(z)$ and $g(z)$ be analytic in the open unit disk

$$
U=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

We say that $f(z)$ is majorized by $g(z)$ and write

$$
\begin{equation*}
f(z) \ll g(z) \tag{1}
\end{equation*}
$$

if there exists a function $\phi(z)$ analytic in \cup, such that

$$
\begin{equation*}
|\phi(z)| \leq 1 \text { and } f(z)=\phi(z) g(z) . \tag{2}
\end{equation*}
$$

Also, we say that $f(z)$ is subordinate to $g(z)$ and write

$$
f(z) \prec g(z)
$$

if there exist a function $w(z)$ analytic in U, such that

$$
w(0)=0,|w(z)| \leq|z| \text { and } f(z)=g(w(z)) .
$$

[^0]http://www.ejpam.com 16 (c) 2012 EJPAM All rights reserved.

Definition 2 ([see 8]). The fractional derivative of order δ is defined by

$$
\begin{equation*}
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\delta}} d \zeta \quad(0 \leqslant \delta<1) \tag{3}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\delta}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 3 ([see 8]). Under the hypotheses of definition 2, the fractional derivative of order $(n+\delta)$ is defined by

$$
\begin{equation*}
D_{z}^{n+\delta} f(z)=\frac{d}{d z^{n}} D_{z}^{\delta} f(z) \tag{4}
\end{equation*}
$$

Several majorization problems investigated by Altıntaş and Owa [1], Altıntaş et al. [2] and [3].

Let A_{p} denote the class of functions f normalized by

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(P \in \mathbb{N}=\{1,2,3, \ldots\})
$$

which are analytic and $p-v a l e n t$ in U. Also let a function $f \in A_{p}$ is said to be in the class $S_{p, q}^{\delta}(\gamma, A, B)$ if and only if

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)}-p+q+\delta\right) \prec \frac{1+A Z}{1+B Z} \tag{5}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, p \in \mathbb{N}, q \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, 0 \leqslant \delta<1,-1 \leqslant B<A \leqslant 1$ and

$$
|\gamma(A-B)+(p-q-\delta) B| \leqslant|p-q-\delta|
$$

Furthermore a function $f \in A_{p}$ is said to be in the class $C_{p, q}^{\delta}(\gamma, A, B)$ if and only if

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(1+\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta\right) \prec \frac{1+A Z}{1+B Z} \tag{6}
\end{equation*}
$$

where $\gamma \in \mathbb{C} \backslash\{0\}, p \in \mathbb{N}, q \in \mathbb{N}_{0}, 0 \leqslant \delta<1,-1 \leqslant B<A \leqslant 1$ and

$$
|\gamma(A-B)+(p-q-\delta) B| \leqslant|p-q-\delta|
$$

We have the following relationships (from [3, 11, 2], respectively)

$$
\begin{aligned}
& S_{p, q}^{0}(\gamma, 1,-1)=S_{p, q}(\gamma) . \\
& C_{p, q}^{0}(\gamma, 1,-1)=C_{p, q}(\gamma) .
\end{aligned}
$$

$$
S_{p, 0}^{0}(\gamma, 1,-1)=S(\gamma) \text { and } C_{p, 0}^{0}(\gamma, 1,-1)=C(\gamma) .
$$

$S(\gamma)$ and $C(\gamma)$ were considered by Nasr and Aouf in [6].

$$
S_{p, 0}^{0}(1-\alpha, 1,-1)=S^{*}(\alpha) \text { and } C_{p, 0}^{0}(1-\alpha, 1,-1)=C(\alpha)
$$

denote respectively the class of starlike and convex functions of order $\alpha,(0 \leqslant \alpha<1)$ which were introduced by Robertson in [9].

2. Majorization Problems for the Class $S_{p, q}^{\delta}(\gamma, A, B)$

We begin by proving.
Theorem 1. Let the function $f(z)$ be in the class A_{p} and suppose that $g \in S_{p, q}^{\delta}(\gamma, A, B)$. If $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z)$ in U for $q \in \mathbb{N}_{o}$ and $0 \leqslant \delta<1$, then

$$
\begin{equation*}
\left|f^{(q+\delta+1)}(z)\right| \leqslant\left|g^{(q+\delta+1)}(z)\right| \quad\left(|z| \leqslant r_{1}\right) \tag{7}
\end{equation*}
$$

where $r_{1}=r_{1}(p, q, \delta, \gamma, A, B)$ is the smallest positive root of the equation

$$
\begin{align*}
|\gamma(A-B)+(p-q-\delta) B| r^{3} & -(p-q-\delta+2|B|) r^{2}-[|\gamma(A-B)+(p-q-\delta) B| \\
& +2] r+p-q-\delta=0 \tag{8}
\end{align*}
$$

where $p \in \mathbb{N}, q \in \mathbb{N}_{0}, \gamma \in \mathbb{C} \backslash\{0\}, 0 \leqslant \delta<1$ and

$$
|\gamma(A-B)+(p-q-\delta) B| \leqslant|p-q-\delta| .
$$

Proof. Since $g \in S_{p, q}^{\delta}(\gamma, A, B)$, we obtain from (5)

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z g^{(q+\delta+1)}(z)}{g^{(q+\delta)}(z)}-p+q+\delta\right)=\frac{1+A \omega(z)}{1+B \omega(z)} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(0)=0 \text { and }|\omega(z)| \leqslant|z| \quad(z \in U) \tag{10}
\end{equation*}
$$

From (9) we readily obtain

$$
\begin{equation*}
\frac{z g^{(q+\delta+1)}(z)}{g^{(q+\delta)}(z)}=\frac{p-q-\delta+[\gamma(A-B)+(p-q-\delta) B] \omega(z)}{1+B \omega(z)} . \tag{11}
\end{equation*}
$$

Using (10) in (11) we find

$$
\begin{equation*}
\left|g^{(q+\delta)}(z)\right| \leqslant \frac{(1+|B||z|)|z|}{p-q-\delta-|\gamma(A-B)+(p-q-\delta) B||z|}\left|g^{(q+\delta+1)}(z)\right| . \tag{12}
\end{equation*}
$$

Since $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z)$ from (2) we have

$$
\begin{equation*}
f^{(q+\delta+1)}(z)=\phi(z) g^{(q+\delta+1)}(z)+\phi^{\prime}(z) g^{(q+\delta)}(z) \tag{13}
\end{equation*}
$$

$\phi(z)$ is satisfies the inequality [cf. Nehari 7, p. 168]:

$$
\begin{equation*}
\left|\phi^{\prime}(z)\right| \leqslant \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}(z \in U) \tag{14}
\end{equation*}
$$

and using (12) and (14) in (13), we get

$$
\begin{equation*}
\left|f^{(q+\delta+1)}(z)\right| \leqslant|\phi(z)|+\frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \frac{(1+|B||z|)|z|}{p-q-\delta-|\gamma(A-B)+(p-q-\delta) B||z|}\left|g^{(q+\delta+1)}(z)\right| \tag{15}
\end{equation*}
$$

which, upon setting

$$
|z|=r,|\phi(z)|=\rho \quad(0 \leqslant \rho \leqslant 1)
$$

leads us to the inequality

$$
\begin{equation*}
\left|f^{(q+\delta+1)}(z)\right| \leqslant \frac{\theta(\rho)}{\left(1-r^{2}\right)[p-q-\delta-|\gamma(A-B)+(p-q-\delta) B| r]} g^{(q+\delta+1)}(z) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.\theta(\rho)=-\left(r+|B| r^{2}\right) \rho^{2}+\left(1-r^{2}\right) p-q-\delta-|\gamma(A-B)+(p-q-\delta) B| r\right] \rho+\left(r+|B| r^{2}\right) \tag{17}
\end{equation*}
$$

takes on its maximum value at $\rho=1$ with $r=r_{1}(p, q, \delta, \gamma, A, B)$ gives by (8) if

$$
0 \leqslant \sigma \leqslant r_{1}(p, q, \delta, \gamma, A, B)
$$

then the function $\wedge(\rho)$ defined by

$$
\begin{equation*}
\wedge(\rho)=-\left(\sigma+\sigma^{2}|B|\right) \rho^{2}+\left(1-\sigma^{2}\right)[p-q-\delta-|\gamma(A-B)+(p-q-\delta) B| \sigma] \rho+\left(\sigma+\sigma^{2}|B|\right) \tag{18}
\end{equation*}
$$

is an increasing function on the interval $0 \leqslant \rho \leqslant 1$ so that

$$
\begin{aligned}
\wedge(\rho) \leqslant \wedge(1)= & \left(1-\sigma^{2}\right)[p-q-\delta-|\gamma(A-B)+(p-q-\delta) B| \sigma] \\
& \left(0 \leqslant \rho \leqslant 1 ; 0 \leqslant \sigma \leqslant r_{1}(p, q, \delta, \gamma, A, B)\right)
\end{aligned}
$$

Hence, by setting $\rho=1$ in (16), we conclude that Theorem 1 holds true for $|z| \leqslant r_{1}(p, q, \delta, \gamma, A, B)$ is given by (8). This completes the proof of Theorem 1.

Corollary 1 ([see 3]). Let the function $f(z)$ be in the class A_{p} and suppose that $g \in S_{p, q}^{0}(\gamma, 1,-1)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in U, then

$$
\left|f^{(q+1)}(z)\right| \leqslant\left|g^{(q+1)}(z)\right| \quad\left(|z| \leqslant R_{1}\right)
$$

where

$$
\begin{gather*}
R_{1}=R_{1}(p, q, \delta)=\frac{k-\sqrt{k^{2}-4(p-q)|2 \gamma-p+q|}}{2|2 \gamma-p+q|} \tag{19}\\
\left(k=p-q+2+|2 \gamma-p+q|, p \in \mathbb{N}, q \in \mathbb{N}_{0}, \gamma \in \mathbb{C} \backslash\{0\}\right) .
\end{gather*}
$$

Proof. If we set $\delta=0, A=1, B=-1$ in Theorem 1, then

$$
\left|f^{(q+1)}(z)\right| \leqslant\left|g^{(q+1)}(z)\right| \quad|z| \leqslant R_{1}
$$

where $R_{1}=R_{1}(p, q, \delta)$ is the smallest positive root of the equation

$$
|2 \gamma-p+q| r^{3}-(p-q+2) r^{2}-[|2 \gamma-p+q|+2] r+p-q=0
$$

$r=-1$ is the root of the above equation and we obtain

$$
\begin{equation*}
|2 \gamma-p+q| r^{2}-(|2 \gamma-p+q|+p-q+2) r+p-q=0 . \tag{20}
\end{equation*}
$$

and the positive root of the equation (20) is $R_{1}=R_{1}(p, q, \delta)$.
Corollary 2 ([see 2]). Let the function $f(z)$ be in the class A_{1} and suppose that $g \in S_{1,0}^{0}(\gamma, 1,-1)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant R_{2}\right)
$$

where

$$
R_{2}=R_{2}(\gamma)=\frac{3+|2 \gamma-1|-\sqrt{9+2|2 \gamma-1|+|2 \gamma-1|^{2}}}{2|2 \gamma-1|}
$$

Corollary 3 ([see 5]). Let $f(z)$ be in the class A_{1} and suppose that $g(z) \in S_{1,0}^{0}(1,1,-1)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant R_{3}\right)
$$

where $R_{3}=2-\sqrt{3}$.

3. Majorization Problems for the Class $C_{p, q}^{\delta}(\gamma, A, B)$.

The proof Theorem 2 is based upon the following Lemmas.
Lemma 1 ([see 10, Theorem 1]). If $f \in C_{p, q}^{\delta}(\gamma, A, B)(\gamma \in \mathbb{C} \backslash\{0\})$ then

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{1}{\gamma}\left(\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta+1\right)\right]>\frac{1-A}{1-B} \tag{21}
\end{equation*}
$$

Proof. If $f \in C_{p, q}^{\delta}(\gamma, A, B)$ then we have from (6)

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta+1\right)=\frac{1+A w(z)}{1+B w(z)} \tag{22}
\end{equation*}
$$

where $w(0)=0$ and $|w(z)| \leqslant|z|,(-1 \leqslant B<A \leqslant 1)$. We let

$$
\begin{equation*}
h(z)=\frac{1+A w(z)}{1+B w(z)} \tag{23}
\end{equation*}
$$

and

$$
h(z)=u+i v,|w(z)|^{2}=\left|\frac{h(z)-1}{A-B h(z)}\right|^{2} \leqslant 1
$$

and

$$
\begin{equation*}
\left(1-B^{2}\right) u^{2}-2(1-A B) u+1-A^{2} \leqslant 0 \tag{24}
\end{equation*}
$$

from (24) implies that

$$
\begin{equation*}
\frac{1-A}{1-B} \leqslant \operatorname{Reh}(z)=u \leqslant \frac{1+A}{1+B} \tag{25}
\end{equation*}
$$

The following lemma is proved in [3] for $\delta=0$.
Lemma 2. If $f \in C_{p, q}^{\delta}(\gamma, A, B)(\gamma \in \mathbb{C} \backslash\{0\})$ then $f \in S_{p, q}^{\delta}\left(\frac{1}{2} \gamma, A, B\right)$ that is

$$
\begin{equation*}
C_{p, q}^{\delta}(\gamma, A, B) \subset S_{p, q}^{\delta}\left(\frac{\gamma}{2}, A, B\right) \tag{26}
\end{equation*}
$$

Proof. We know that all convex function in U is starlike of order $\frac{1}{2}$ in U, [see 4, p. 7] or, equivalently

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>0 \Rightarrow \operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\frac{1}{2} \tag{27}
\end{equation*}
$$

If we let

$$
\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>\alpha \text { for } f(z) \longrightarrow f^{(q+\delta)}(z)
$$

and using Lemma 1, we have

$$
\begin{equation*}
\left.\operatorname{Re}\left[1+\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta+1\right)\right]>\frac{1-A}{1-B} \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{1}{1-\alpha}\left(\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta+1\right]>0\right. \tag{29}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
1+\frac{1}{1-\alpha}\left(\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-p+q+\delta+1=\frac{1-w(z)}{1+w(z)}\right. \tag{30}
\end{equation*}
$$

So, we have

$$
\begin{equation*}
1+\frac{1}{\gamma}\left(\frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)}-(p+q+\delta+1)=\frac{\gamma+(\gamma-2+2 \alpha) w(z)}{\gamma(1+w(z))} .\right. \tag{31}
\end{equation*}
$$

On the other hand we know that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}>\alpha \Rightarrow \operatorname{Re}\left(1+\frac{1}{1-\alpha} \frac{z f^{\prime}(z)}{f(z)}\right)>0 . \tag{32}
\end{equation*}
$$

Similarly using (27) and (29) we obtain the following relations.

$$
\begin{array}{r}
{\left[1+\frac{1}{1-\alpha}\left(\frac{z f^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)}-p+q+\delta\right)\right]>\frac{1}{2},} \\
1+\frac{1}{1-\alpha}\left(\frac{z f^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)}-p+q+\delta\right)=\frac{1}{1+w(z)}, \\
1+\frac{2}{\gamma}\left(\frac{z f^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)}-p+q+\delta\right)=\frac{\gamma+(\gamma-2+2 \alpha)}{\gamma(1+w(z))} . \tag{35}
\end{array}
$$

The inclusion property (26) is easily seen that from (31) and (35).
Upon replacing γ in Theorem 1 by $\frac{1}{2} \gamma$, if we apply Lemma 2 we have,
Theorem 2. Let the function $f(z)$ be in the class A_{p} and suppose that $g(z) \in C_{p, q}^{\delta}(\gamma, A, B)$. If $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z) \in U$, for $p \in \mathbb{N} q \in \mathbb{N}_{0}$ and $0 \leqslant \delta<1$ then

$$
\begin{equation*}
\left|f^{(q+\delta+1)}(z)\right| \leqslant\left|g^{(q+\delta+1)}(z)\right| \quad\left(|z| \leq r_{2}\right) \tag{37}
\end{equation*}
$$

where $r_{2}=r_{2}(p, q, \delta, \gamma, A, B)$ is the smallest positive root of the equation

$$
\begin{gathered}
\left|\frac{1}{2} \gamma(A-B)+(p-q-\delta) B\right| r^{3}-(p-q-\delta+2|B|) r^{2}-\left[\frac{1}{2} \gamma(A-B)+(p-q-\delta)|B|\right. \\
+2] r+p-q-\delta=0
\end{gathered}
$$

where $p \in \mathbb{N}, q \in \mathbb{N}_{0}, \gamma \in \mathbb{C} \backslash\{0\}, 0 \leqslant \delta<1$, and

$$
\left|\frac{1}{2} \gamma(A-B)+(p-q-\delta) B\right| \leqslant|p-q-\delta| .
$$

Corollary 4 ([see 3]). Let the function $f(z)$ be in the class A_{p} and suppose that $g(z) \in C_{p, q}^{0}(\gamma, 1,-1)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in U, then

$$
\left|f^{(q+1)}(z)\right| \leqslant\left|g^{(q+1)}(z)\right| \quad\left(|z| \leq R_{1}\right)
$$

where

$$
\begin{aligned}
& R_{1}=R_{1}(p, q, \delta)=\frac{\mu-\sqrt{\mu^{2}-4(p-q)|\gamma-p+q|}}{2|\gamma-p+q|} \\
& \mu=2+p-q+|\gamma-p+q|, p \in \mathbb{N}, q \in \mathbb{N}_{0}, \gamma \in \mathbb{C} \backslash\{0\}
\end{aligned}
$$

Proof. We let $\delta=0, A=1, B=-1$ in Theorem 2.
Corollary 5 ([see 2]). Let the function $f(z)$ be in the class A_{1} and suppose that $g(z) \in C_{1.0}^{0}(1,1,-1)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant R_{2}\right)
$$

where

$$
R_{2}=R_{2}(\gamma)=\frac{3+|\gamma-1|-\sqrt{9-2|\gamma-1|+|\gamma-1|^{2}}}{2|\gamma-1|}
$$

Proof. We let $p=1, q=0, \delta=0, A=1, B=-1$ in Theorem 2.
Corollary 6 ([see 5]). Let the function $f(z)$ be in the class A_{1} and suppose that $g(z) \in C_{1.0}^{0}(1,1,-1)$. If $f(z)$ is majorized by $g(z)$ in U, then

$$
\left|f^{\prime}(z)\right| \leqslant\left|g^{\prime}(z)\right| \quad\left(|z| \leqslant \frac{1}{3}\right)
$$

Proof. We let limit for $\gamma \longrightarrow 1$ in Corollary 5 or $\gamma \longrightarrow \frac{1}{2} \gamma$ in Corollary 1.

References

[1] O Altintaş and S Owa. Majorization and quasi-subordinations for certain analytic functions. Japan Acad. Ser. A Math. Sci., 68:181-185, 1992.
[2] O Altintaş, Ö Özkan, and H Srivastava. Majorization by starlike functions of complex order. Complex Variables Theory Appl, 46:207-218, 2001.
[3] O. Altintaş and H Srivastava. Some majorization problems associated with p- valently starlike and convex functions of complex order. East Asian Math. Journal, 17(2):175183, 2001.
[4] T MacGregor. The radius of converity for starlike functions of order $\frac{1}{2}$. Amer. Math. Soc, 14:71-76, 1963.
[5] T MacGregor. Majorization by univalent functions. Duke Math.J, 34:95-102, 1967.
[6] M Nasr and M Aouf. Starlike function of complex order. J. Natur. Sci. Math, 25:1-12, 1985.
[7] Z Nehari. Conformal Mopping, McGraw-Hill Book Company. New York, Toronto and London, 1952.
[8] S Owa. On the distortion theorems I. Complex Variables Theory Appl, 18:53-59, 1978.
[9] M Robertson. On the theory of univalent functions. Ann. of Math., 37(2):1359-1363, 1936.
[10] H Srivastava, O Altıntaş, and S Serenbay. Coffecient bounds for certain subclass of starlike functions of complex order. Applied Mathematics Letters, 24(8), August 2011.
[11] P Wiatrowski. On the coefficients of some family of holomorphic functions. Nauk. MatPrzyrod., 39(2):75-85, 1970.

[^0]: Email address: oaltintas@baskent.edu.tr (O. Altıntaş)

