EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 1, 2012, 16-24

ISSN 1307-5543 - www.ejpam.com

SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 June - 02 July 2011, Istanbul Turkey

Majorization for Certain Analytic Functions

Osman ALTINTAS

Department of Mathematics, Faculty of Education, Başkent University, Ankara, Turkey

Abstract. In this paper two subclasses $S_{p,q}^{\delta}(\gamma,A,B)$ and $C_{p,q}^{\delta}(\gamma,A,B)$ of p-valently starlike and p-valently convex functions of complex order $\gamma \neq 0$ in the open unit disk U are introduced and for these classes several majorization problems are discussed.

2000 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic function, p-valent function, Starlike function, Convex function, Majorization problems, Fractional derivative.

1. Introduction and Definitions

Definition 1 ([see 5]). Let the functions f(z) and g(z) be analytic in the open unit disk

$$U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$$

We say that f(z) is majorized by g(z) and write

$$f(z) \ll g(z) \tag{1}$$

if there exists a function $\phi(z)$ analytic in \cup , such that

$$|\phi(z)| \le 1 \text{ and } f(z) = \phi(z)g(z). \tag{2}$$

Also, we say that f(z) is subordinate to g(z) and write

$$f(z) \prec g(z)$$

if there exist a function w(z) analytic in U, such that

$$w(0) = 0, |w(z)| \le |z| \text{ and } f(z) = g(w(z)).$$

Email address: oaltintas@baskent.edu.tr (O. Altıntas)

Definition 2 ([see 8]). The fractional derivative of order δ is defined by

$$D_z^{\delta} f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\delta}} d\zeta \qquad (0 \le \delta < 1)$$
 (3)

where f(z) is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\delta}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 3 ([see 8]). *Under the hypotheses of definition 2, the fractional derivative of order* $(n + \delta)$ *is defined by*

$$D_z^{n+\delta} f(z) = \frac{d}{dz^n} D_z^{\delta} f(z). \tag{4}$$

Several majorization problems investigated by Altıntaş and Owa [1], Altıntaş et al. [2] and [3].

Let A_p denote the class of functions f normalized by

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$$
 $(P \in \mathbb{N} = \{1, 2, 3, ...\})$

which are analytic and p-valent in U. Also let a function $f \in A_p$ is said to be in the class $S_{p,q}^{\delta}(\gamma,A,B)$ if and only if

$$1 + \frac{1}{\gamma} \left(\frac{z f^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)} - p + q + \delta \right) \prec \frac{1 + AZ}{1 + BZ}$$
 (5)

where $\gamma \in \mathbb{C} \setminus \{0\}$, $p \in \mathbb{N}$, $q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $0 \le \delta < 1$, $-1 \le B < A \le 1$ and

$$|\gamma(A-B)+(p-q-\delta)B| \leq |p-q-\delta|.$$

Furthermore a function $f \in A_p$ is said to be in the class $C_{p,q}^{\delta}(\gamma,A,B)$ if and only if

$$1 + \frac{1}{\gamma} \left(1 + \frac{z f^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)} - p + q + \delta \right) \prec \frac{1 + AZ}{1 + BZ}$$
 (6)

where $\gamma \in \mathbb{C} \setminus \{0\}$, $p \in \mathbb{N}$, $q \in \mathbb{N}_0$, $0 \le \delta < 1$, $-1 \le B < A \le 1$ and

$$|\gamma(A-B) + (p-q-\delta)B| \le |p-q-\delta|.$$

We have the following relationships (from [3, 11, 2], respectively)

$$S_{p,q}^{0}(\gamma, 1, -1) = S_{p,q}(\gamma).$$

 $C_{p,q}^{0}(\gamma, 1, -1) = C_{p,q}(\gamma).$

$$S_{p,0}^0(\gamma,1,-1) = S(\gamma)$$
 and $C_{p,0}^0(\gamma,1,-1) = C(\gamma)$.

 $S(\gamma)$ and $C(\gamma)$ were considered by Nasr and Aouf in [6].

$$S_{p,0}^0(1-\alpha,1,-1) = S^*(\alpha)$$
 and $C_{p,0}^0(1-\alpha,1,-1) = C(\alpha)$

denote respectively the class of starlike and convex functions of order α , $(0 \le \alpha < 1)$ which were introduced by Robertson in [9].

2. Majorization Problems for the Class $S_{p,q}^{\delta}(\gamma,A,B)$

We begin by proving.

Theorem 1. Let the function f(z) be in the class A_p and suppose that $g \in S_{p,q}^{\delta}(\gamma,A,B)$. If $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z)$ in U for $q \in \mathbb{N}_0$ and $0 \le \delta < 1$, then

$$\left| f^{(q+\delta+1)}(z) \right| \le \left| g^{(q+\delta+1)}(z) \right| \quad (|z| \le r_1) \tag{7}$$

where $r_1 = r_1(p,q,\delta,\gamma,A,B)$ is the smallest positive root of the equation

$$\left| \gamma(A-B) + (p-q-\delta)B \right| r^3 - (p-q-\delta+2|B|)r^2 - \left[\left| \gamma(A-B) + (p-q-\delta)B \right| + 2 \right] r + p - q - \delta = 0$$
(8)

where $p \in \mathbb{N}$, $q \in \mathbb{N}_0$, $\gamma \in \mathbb{C} \setminus \{0\}$, $0 \le \delta < 1$ and

$$|\gamma(A-B) + (p-q-\delta)B| \le |p-q-\delta|.$$

Proof. Since $g \in S_{p,q}^{\delta}(\gamma, A, B)$, we obtain from (5)

$$1 + \frac{1}{\gamma} \left(\frac{z \ g^{(q+\delta+1)}(z)}{g^{(q+\delta)}(z)} - p + q + \delta \right) = \frac{1 + A\omega(z)}{1 + B\omega(z)} \tag{9}$$

where

$$\omega(0) = 0 \text{ and } |\omega(z)| \le |z| \qquad (z \in U). \tag{10}$$

From (9) we readily obtain

$$\frac{z \ g^{(q+\delta+1)}(z)}{g^{(q+\delta)}(z)} = \frac{p-q-\delta + \left[\gamma(A-B) + (p-q-\delta)B\right]\omega(z)}{1+B\omega(z)}.$$
 (11)

Using (10) in (11) we find

$$\left| g^{(q+\delta)}(z) \right| \le \frac{(1+|B||z|)|z|}{p-q-\delta-\left| \gamma(A-B)+(p-q-\delta)B\right||z|} \left| g^{(q+\delta+1)}(z) \right|. \tag{12}$$

Since $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z)$ from (2) we have

$$f^{(q+\delta+1)}(z) = \phi(z)g^{(q+\delta+1)}(z) + \phi'(z)g^{(q+\delta)}(z), \tag{13}$$

 $\phi(z)$ is satisfies the inequality [cf. Nehari 7, p. 168]:

$$\left|\phi'(z)\right| \leqslant \frac{1 - \left|\phi(z)\right|^2}{1 - \left|z\right|^2} \left(z \in U\right) \tag{14}$$

and using (12) and (14) in (13), we get

$$\left| f^{(q+\delta+1)}(z) \right| \le \left| \phi(z) \right| + \frac{1 - \left| \phi(z) \right|^2}{1 - |z|^2} \frac{(1 + |B||z|)|z|}{p - q - \delta - \left| \gamma(A - B) + (p - q - \delta)B \right||z|} \left| g^{(q+\delta+1)}(z) \right| \tag{15}$$

which, upon setting

$$|z| = r, |\phi(z)| = \rho$$
 $(0 \le \rho \le 1)$

leads us to the inequality

$$\left| f^{(q+\delta+1)}(z) \right| \le \frac{\theta(\rho)}{(1-r^2) \left\lceil p-q-\delta - \left| \gamma(A-B) + (p-q-\delta)B \right| r \right\rceil} g^{(q+\delta+1)}(z) \tag{16}$$

where

$$\theta(\rho) = -(r+|B|r^2)\rho^2 + (1-r^2)p - q - \delta - |\gamma(A-B) + (p-q-\delta)B|r]\rho + (r+|B|r^2)$$
(17)

takes on its maximum value at $\rho = 1$ with $r = r_1(p, q, \delta, \gamma, A, B)$ gives by (8) if

$$0 \le \sigma \le r_1(p,q,\delta,\gamma,A,B)$$

then the function $\wedge(\rho)$ defined by

$$\wedge(\rho) = -(\sigma + \sigma^2 |B|)\rho^2 + (1 - \sigma^2) \left[p - q - \delta - \left| \gamma (A - B) + (p - q - \delta)B \right| \sigma \right] \rho + (\sigma + \sigma^2 |B|)$$
(18)

is an increasing function on the interval $0 \le \rho \le 1$ so that

$$\land (\rho) \leq \land (1) = (1 - \sigma^2) \left[p - q - \delta - \left| \gamma (A - B) + (p - q - \delta) B \right| \sigma \right]$$

$$(0 \leq \rho \leq 1; 0 \leq \sigma \leq r_1(p, q, \delta, \gamma, A, B)).$$

Hence, by setting $\rho = 1$ in (16), we conclude that Theorem 1 holds true for $|z| \le r_1(p, q, \delta, \gamma, A, B)$ is given by (8). This completes the proof of Theorem 1.

Corollary 1 ([see 3]). Let the function f(z) be in the class A_p and suppose that $g \in S_{p,q}^0(\gamma,1,-1)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in U, then

$$\left|f^{(q+1)}(z)\right| \leqslant \left|g^{(q+1)}(z)\right| \qquad (|z| \leqslant R_1)$$

where

$$R_{1} = R_{1}(p, q, \delta) = \frac{k - \sqrt{k^{2} - 4(p - q)|2\gamma - p + q|}}{2|2\gamma - p + q|}$$
(19)

 $(k = p - q + 2 + \left| 2\gamma - p + q \right|, p \in \mathbb{N}, q \in \mathbb{N}_{0,\gamma} \in \mathbb{C} \setminus \{0\}).$

Proof. If we set $\delta = 0$, A = 1, B = -1 in Theorem 1, then

$$\left| f^{(q+1)}(z) \right| \leqslant \left| g^{(q+1)}(z) \right| \qquad |z| \leqslant R_1$$

where $R_1 = R_1(p, q, \delta)$ is the smallest positive root of the equation

$$|2\gamma - p + q| r^3 - (p - q + 2)r^2 - [|2\gamma - p + q| + 2]r + p - q = 0$$

r = -1 is the root of the above equation and we obtain

$$|2\gamma - p + q| r^2 - (|2\gamma - p + q| + p - q + 2)r + p - q = 0.$$
(20)

and the positive root of the equation (20) is $R_1 = R_1(p, q, \delta)$.

Corollary 2 ([see 2]). Let the function f(z) be in the class A_1 and suppose that $g \in S_{1,0}^0(\gamma, 1, -1)$. If f(z) is majorized by g(z) in U, then

$$\left|f^{'}(z)\right| \leqslant \left|g^{'}(z)\right| \qquad (|z| \leqslant R_2)$$

where

$$R_{2} = R_{2}(\gamma) = \frac{3 + \left|2\gamma - 1\right| - \sqrt{9 + 2\left|2\gamma - 1\right| + \left|2\gamma - 1\right|^{2}}}{2\left|2\gamma - 1\right|}$$

Corollary 3 ([see 5]). Let f(z) be in the class A_1 and suppose that $g(z) \in S_{1,0}^0(1,1,-1)$. If f(z) is majorized by g(z) in U, then

$$\left|f'(z)\right| \leqslant \left|g'(z)\right| \qquad (|z| \leqslant R_3)$$

where $R_3 = 2 - \sqrt{3}$.

3. Majorization Problems for the Class $C_{p,q}^{\delta}(\gamma,A,B)$.

The proof Theorem 2 is based upon the following Lemmas.

Lemma 1 ([see 10, Theorem 1]). *If* $f \in C_{p,q}^{\delta}(\gamma,A,B)$ ($\gamma \in \mathbb{C} \setminus \{0\}$) *then*

$$Re\left[1 + \frac{1}{\gamma} \left(\frac{zf^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)} - p + q + \delta + 1\right)\right] > \frac{1-A}{1-B}$$

$$(21)$$

Proof. If $f \in C_{p,q}^{\delta}(\gamma, A, B)$ then we have from (6)

$$1 + \frac{1}{\gamma} \left(\frac{zf^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)} - p + q + \delta + 1 \right) = \frac{1 + Aw(z)}{1 + Bw(z)}$$
 (22)

where w(0) = 0 and $|w(z)| \le |z|$, $(-1 \le B < A \le 1)$. We let

$$h(z) = \frac{1 + Aw(z)}{1 + Bw(z)} \tag{23}$$

and

$$h(z) = u + iv, \ |w(z)|^2 = \left| \frac{h(z) - 1}{A - Bh(z)} \right|^2 \le 1$$

and

$$(1 - B^2)u^2 - 2(1 - AB)u + 1 - A^2 \le 0 (24)$$

from (24) implies that

$$\frac{1-A}{1-B} \leqslant Reh(z) = u \leqslant \frac{1+A}{1+B}.$$
 (25)

The following lemma is proved in [3] for $\delta = 0$.

Lemma 2. If $f \in C_{p,q}^{\delta}(\gamma,A,B)$ $(\gamma \in \mathbb{C} \setminus \{0\})$ then $f \in S_{p,q}^{\delta}(\frac{1}{2}\gamma,A,B)$ that is

$$C_{p,q}^{\delta}(\gamma, A, B) \subset S_{p,q}^{\delta}(\frac{\gamma}{2}, A, B)$$
 (26)

Proof. We know that all convex function in U is starlike of order $\frac{1}{2}$ in U, [see 4, p. 7] or, equivalently

$$Re\left[1 + \frac{zf''(z)}{f'(z)}\right] > 0 \Rightarrow Re\left[\frac{zf'(z)}{f(z)}\right] > \frac{1}{2}.$$
 (27)

If we let

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] > \alpha \text{ for } f(z) \longrightarrow f^{(q+\delta)}(z),$$

and using Lemma 1, we have

$$\operatorname{Re}\left[1 + \frac{zf^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)} - p + q + \delta + 1\right] > \frac{1-A}{1-B}$$
 (28)

or

$$\operatorname{Re}\left[1 + \frac{1}{1 - \alpha} \left(\frac{zf^{(q + \delta + 2)}(z)}{f^{(q + \delta + 1)}(z)} - p + q + \delta + 1\right] > 0.$$
 (29)

This implies that

$$1 + \frac{1}{1 - \alpha} \left(\frac{zf^{(q + \delta + 2)}(z)}{f^{(q + \delta + 1)}(z)} - p + q + \delta + 1 = \frac{1 - w(z)}{1 + w(z)}.$$
 (30)

So, we have

$$1 + \frac{1}{\gamma} \left(\frac{zf^{(q+\delta+2)}(z)}{f^{(q+\delta+1)}(z)} - (p+q+\delta+1) = \frac{\gamma + (\gamma - 2 + 2\alpha)w(z)}{\gamma(1+w(z))}.$$
(31)

On the other hand we know that

$$\frac{zf'(z)}{f(z)} > \alpha \Rightarrow \operatorname{Re}(1 + \frac{1}{1 - \alpha} \frac{zf'(z)}{f(z)}) > 0. \tag{32}$$

Similarly using (27) and (29) we obtain the following relations.

$$\left[1 + \frac{1}{1 - \alpha} \left(\frac{zf^{(q + \delta + 1)}(z)}{f^{(q + \delta)}(z)} - p + q + \delta\right)\right] > \frac{1}{2},\tag{33}$$

$$1 + \frac{1}{1 - \alpha} \left(\frac{zf^{(q + \delta + 1)}(z)}{f^{(q + \delta)}(z)} - p + q + \delta \right) = \frac{1}{1 + w(z)},\tag{34}$$

$$1 + \frac{2}{\gamma} \left(\frac{zf^{(q+\delta+1)}(z)}{f^{(q+\delta)}(z)} - p + q + \delta \right) = \frac{\gamma + (\gamma - 2 + 2\alpha)}{\gamma(1 + w(z))}.$$
 (35)

(36)

The inclusion property (26) is easily seen that from (31) and (35).

Upon replacing γ in Theorem 1 by $\frac{1}{2}\gamma$, if we apply Lemma 2 we have,

Theorem 2. Let the function f(z) be in the class A_p and suppose that $g(z) \in C_{p,q}^{\delta}(\gamma,A,B)$. If $f^{(q+\delta)}(z)$ is majorized by $g^{(q+\delta)}(z) \in U$, for $p \in \mathbb{N}$ $q \in \mathbb{N}_0$ and $0 \le \delta < 1$ then

$$\left| f^{(q+\delta+1)}(z) \right| \le \left| g^{(q+\delta+1)}(z) \right| \qquad (|z| \le r_2) \tag{37}$$

where $r_2 = r_2(p, q, \delta, \gamma, A, B)$ is the smallest positive root of the equation

$$\left| \frac{1}{2} \gamma (A - B) + (p - q - \delta)B \right| r^3 - (p - q - \delta + 2|B|)r^2 - \left[\frac{1}{2} \gamma (A - B) + (p - q - \delta)|B| + 2 \right] r + p - q - \delta = 0$$

where $p \in \mathbb{N}$, $q \in \mathbb{N}_0$, $\gamma \in \mathbb{C} \setminus \{0\}$, $0 \le \delta < 1$, and

$$\left|\frac{1}{2}\gamma(A-B)+(p-q-\delta)B\right| \leqslant \left|p-q-\delta\right|.$$

Corollary 4 ([see 3]). Let the function f(z) be in the class A_p and suppose that $g(z) \in C_{p,q}^0(\gamma,1,-1)$. If $f^{(q)}(z)$ is majorized by $g^{(q)}(z)$ in U, then

$$\left| f^{(q+1)}(z) \right| \leqslant \left| g^{(q+1)}(z) \right| \qquad (|z| \le R_1)$$

REFERENCES 23

where

$$\begin{split} R_1 &= R_1(p,q,\delta) = \frac{\mu - \sqrt{\mu^2 - 4(p-q)\left|\gamma - p + q\right|}}{2\left|\gamma - p + q\right|} \\ \mu &= 2 + p - q + \left|\gamma - p + q\right|, p \in \mathbb{N}, q \in \mathbb{N}_0, \gamma \in \mathbb{C} \setminus \{0\} \end{split}$$

Proof. We let $\delta = 0$, A = 1, B = -1 in Theorem 2.

Corollary 5 ([see 2]). Let the function f(z) be in the class A_1 and suppose that $g(z) \in C_{1.0}^0(1, 1, -1)$. If f(z) is majorized by g(z) in U, then

$$\left|f^{'}(z)\right| \leqslant \left|g^{'}(z)\right| \qquad (|z| \leqslant R_2)$$

where

$$R_{2} = R_{2}(\gamma) = \frac{3 + \left| \gamma - 1 \right| - \sqrt{9 - 2 \left| \gamma - 1 \right| + \left| \gamma - 1 \right|^{2}}}{2 \left| \gamma - 1 \right|}$$

Proof. We let p = 1, q = 0, $\delta = 0$, A = 1, B = -1 in Theorem 2.

Corollary 6 ([see 5]). Let the function f(z) be in the class A_1 and suppose that $g(z) \in C_{1.0}^0(1, 1, -1)$. If f(z) is majorized by g(z) in U, then

$$\left|f'(z)\right| \leqslant \left|g'(z)\right| \qquad (|z| \leqslant \frac{1}{3})$$

Proof. We let limit for $\gamma \longrightarrow 1$ in Corollary 5 or $\gamma \longrightarrow \frac{1}{2}\gamma$ in Corollary 1.

References

- [1] O Altintaş and S Owa. Majorization and quasi-subordinations for certain analytic functions. *Japan Acad. Ser. A Math. Sci.*, 68:181–185, 1992.
- [2] O Altintaş, Ö Özkan, and H Srivastava. Majorization by starlike functions of complex order. *Complex Variables Theory Appl*, 46:207–218, 2001.
- [3] O. Altintaş and H Srivastava. Some majorization problems associated with p- valently starlike and convex functions of complex order. *East Asian Math. Journal*, 17(2):175–183, 2001.
- [4] T MacGregor. The radius of converity for starlike functions of order $\frac{1}{2}$. *Amer. Math. Soc*, 14:71–76, 1963.
- [5] T MacGregor. Majorization by univalent functions. Duke Math. J, 34:95–102, 1967.
- [6] M Nasr and M Aouf. Starlike function of complex order. *J. Natur. Sci. Math*, 25:1–12, 1985.

REFERENCES 24

[7] Z Nehari. Conformal Mopping, McGraw-Hill Book Company. New York, Toronto and London, 1952.

- [8] S Owa. On the distortion theorems I. Complex Variables Theory Appl, 18:53–59, 1978.
- [9] M Robertson. On the theory of univalent functions. *Ann. of Math.*, 37(2):1359–1363, 1936.
- [10] H Srivastava, O Altıntaş, and S Serenbay. Coffecient bounds for certain subclass of starlike functions of complex order. *Applied Mathematics Letters*, 24(8), August 2011.
- [11] P Wiatrowski. On the coefficients of some family of holomorphic functions. *Nauk. Mat-Przyrod.*, 39(2):75–85, 1970.