Special Issue for the International Conference on Applied Analysis and Algebra 29 June - 02 July 2011, Istanbul Turkey

Some Spectral Properties of the Generalized Difference Operator Δ_{v}

Ali M. Akhmedov ${ }^{1, *}$, Saad R. El-Shabrawy ${ }^{2}$
1,2 Baku State University, Faculty of Mech. \& Math., Z. Khalilov Str., 23, AZ 1148, Baku, Azerbaijan
${ }^{2}$ Permanent Address: Mansoura University, Damietta Branch, Faculty of Science, Mathematics Department, New Damietta, Egypt.

Abstract

In this paper we consider the generalized difference operator Δ_{v} on the sequence spaces l_{1} and c_{0}. The operator Δ_{v} is represented by a lower triangular double band matrix whose nonzero entries are the elements of a sequence (v_{k}) with certain conditions. We mainly review several recent results concerning the fine spectrum of the operator Δ_{v} over the sequence spaces l_{1} and c_{0}. Also, we provide some new results. Following that we give some illustrative examples which motivate the main results. Finally, we give notes on the fine spectrum of the operator Δ_{v}. These notes attempt to present some ideas about changing the conditions on the sequence (v_{k}) in the fine spectrum of the operator Δ_{v}. The new results of this paper generalize and improve some recent results that appeared recently in the literature.

Key Words and Phrases: Spectrum of an operator; Generalized difference operator; The sequence spaces l_{1} and c_{0}.

1. Introduction

Several authors have studied the spectrum and fine spectrum of linear operators defined by some particular limitation matrices over some sequence spaces. We summarize the knowledge in the existing literature concerning the spectrum and the fine spectrum. The fine spectrum of the difference operator Δ over the sequence spaces c_{0} and c has been studied by Altay and Başar [9]. Akhmedov and Başar [1, 2] have studied the fine spectrum of the difference operator Δ over the sequence spaces l_{p} and $b v_{p}$, where $1 \leq p<\infty$. Note that the sequence space $b v_{p}$ was studied by Başar and Altay [12] and Akhmedov and Başar [2]. Malafosse [22]

[^0]has studied the spectrum and the fine spectrum of the difference operator Δ over the space s_{r}, where s_{r} denotes the Banach space of all sequences $x=\left(x_{k}\right)$ normed by
$$
\|x\|_{s_{r}}=\sup _{k \in \mathbb{N}} \frac{\left|x_{k}\right|}{r^{k}} \quad(r>0)
$$

The fine spectrum of the Zweier matrix operator Z^{s} over the sequence spaces l_{1} and $b v$ has been examined by Altay and Karakuş [11]. The fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c has been studied by Altay and Başar [10]. Also, the fine spectrum of the operator $B(r, s)$ over the sequence spaces l_{1} and $b v$ has been examined by Furkan et al. [18]. The fine spectrum of the operator $B(r, s)$ over the sequence spaces l_{p} and $b v_{p}$, where $1<p<\infty$ has been determined by Bilgiç and Furkan [13]. The fine spectrum of the operator $B(r, s, t)$ over the sequence spaces c_{0} and c has been studied by Furkan et al. [16]. Also, the fine spectrum of the operator $B(r, s, t)$ over the sequence spaces l_{p} and $b v_{p}$, where $1<p<\infty$ has been determined by Furkan et al. [17]. Panigrahi and Srivastava [23] have studied the fine spectrum of the generalized second order difference operator $\Delta_{u v}^{2}$ over the sequence space c_{0}. The fine spectrum of the generalized difference operator $\Delta_{a, b}$ over the sequence spaces c_{0} and c has been studied by Akhmedov and ElShabrawy $[3,5]$. The fine spectrum of the upper triangular double-band matrices over the sequence spaces c_{0} and c has been determined by Karakaya and Altun [20].

The operator Δ_{v} has been introduced firstly by Srivastava and Kumar [24]. The operator $\Delta_{v}:\left(l_{1} \rightarrow l_{1}, c_{0} \longrightarrow c_{0}\right)$ is defined as follows:

$$
\begin{equation*}
\Delta_{v} x=\Delta_{v}\left(x_{k}\right)=\left(v_{k} x_{k}-v_{k-1} x_{k-1}\right)_{k=0}^{\infty} \text { with } x_{-1}=v_{-1}=0 \tag{1}
\end{equation*}
$$

where the sequence $\left(v_{k}\right)$ is assumed to be either constant or strictly decreasing sequence of positive real numbers satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty} v_{k}=L>0 \text { and } \sup _{k} v_{k} \leq 2 L . \tag{2}
\end{equation*}
$$

It is easy to verify that the operator Δ_{v} is represented by a lower triangular double band matrix of the form

$$
\Delta_{v}=\left(\begin{array}{cccc}
v_{0} & 0 & 0 & \cdots \tag{3}\\
-v_{0} & v_{1} & 0 & \cdots \\
0 & -v_{1} & v_{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The fine spectrum of the generalized difference operator Δ_{v} over the sequence spaces c_{0} and l_{1} was investigated by Srivastava and Kumar [24, 25]. In [7, 8], Akhmedov and ElShabrawy have proved by counterexamples that some of the main results in [24, 25] are incorrect and the corresponding corrected results are provided. The fine spectrum of the operator Δ_{v} over the sequence space c has been examined by Akhmedov and El-Shabrawy [6]. Recently, El-Shabrawy [15] has studied the fine spectrum of the operator Δ_{v} over the sequence space l_{p}, where $1<p<\infty$. Akhmedov and El-Shabrawy [4] have modified the
definition of the operator Δ_{v} and have determined the fine spectrum of the modified operator Δ_{v} over the sequence spaces c and l_{p}, where $1<p<\infty$.

Note that, if $\left(v_{k}\right)$ is a constant sequence, say $v_{k}=L \neq 0$ for all $k \in \mathbb{N}$, then the operator Δ_{v} is reduced to the operator $B(r, s)$ with $r=L, s=-L$ and the results for the spectrum and the fine spectrum of the operator Δ_{v} on the sequence spaces l_{1} and c_{0} follow immediately from the corresponding results in $[10,18]$. Then, throughout this paper, the case when $\left(v_{k}\right)$ is a constant sequence is not considered.

The rest of the paper is organized as follows. Section 2 presents some basic concepts of spectral theory concerning the spectrum and the fine spectrum of linear operators. Next, in Section 3, we mainly review several recent results concerning the fine spectrum of operator Δ_{v} over the sequence spaces l_{1} and c_{0}. Also, some new results are obtained. In Section 4 we give some illustrative examples to support the main results. In Section 5 we show some ideas about changing the conditions on the sequence (v_{k}) in the fine spectrum of the operator Δ_{v}.

2. Preliminaries

By w, we shall denote the space of all real or complex valued sequences. Any vector subspace of w is called a sequence space. We shall write l_{∞}, c, c_{0} and $b v$ for the spaces of all bounded, convergent, null and bounded variation sequences, respectively. Also by l_{1}, l_{p} and $b v_{p}$ we denote the spaces of all absolutely summable sequences, p-absolutely summable sequences and p-bounded variation sequences, respectively.

A triangle is a lower triangular matrix with all of the principal diagonal elements nonzero. Let λ and μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}=\{0,1,2, \ldots\}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by $A: \lambda \rightarrow \mu$ if for every sequence $x=\left(x_{k}\right) \in \lambda$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, \quad(n \in \mathbb{N}) . \tag{4}
\end{equation*}
$$

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By (λ, μ), we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda, \mu)$ if and only if the series on the right side of (4) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. We use the convention that any term with negative subscript is equal to naught.

We recall some basic concepts of spectral theory which are needed for our investigation [see 21, pp. 370-372].

Let X be a Banach space and $T: X \rightarrow X$ be a bounded linear operator. By $R(T)$, we denote the range of T, i.e.,

$$
R(T)=\{y \in X: y=T x, x \in X\} .
$$

By $B(X)$, we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*} of X defined by $\left(T^{*} f\right)(x)=f(T x)$ for all $f \in X^{*}$ and $x \in X$.

If $T: l_{1} \rightarrow l_{1}$ is a bounded linear operator with matrix A, then it is known that the adjoint operator $T^{*}: l_{1}^{*} \rightarrow l_{1}^{*}$ is defined by the transpose of the matrix A. It is well-known that the dual space l_{1}^{*} of l_{1} is isomorphic to l_{∞}. Also, if $T: c_{0} \rightarrow c_{0}$ is a bounded linear operator with matrix A then the adjoint operator $T^{*}: c_{0}^{*} \rightarrow c_{0}^{*}$ is defined by the transpose of the matrix A. The dual space c_{0}^{*} of c_{0} is isomorphic to the Banach space l_{1}.

Let $X \neq\{\theta\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T we associate the operator

$$
\begin{equation*}
T_{\lambda}=T-\lambda I, \tag{5}
\end{equation*}
$$

where λ is a complex number and I is the identity operator on $D(T)$. If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1}, that is

$$
\begin{equation*}
T_{\lambda}^{-1}=(T-\lambda I)^{-1} \tag{6}
\end{equation*}
$$

and call it the resolvent operator of T. Many properties of T_{λ} and T_{λ}^{-1} depend on λ, and spectral theory is concerned with those properties. For instance, we shall be interested in the set of all λ in the complex plane such that T_{λ}^{-1} exists. The boundedness of T_{λ}^{-1} is another property that will be essential. We shall also ask for what λ 's the domain of T_{λ}^{-1} is dense in X, to name just a few aspects.

Definition 1. Let $X \neq\{\theta\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. A regular value λ of T is a complex number such that
(R1) T_{λ}^{-1} exists,
(R2) T_{λ}^{-1} is bounded,
(R3) T_{λ}^{-1} is defined on a set which is dense in X.
The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point (discrete) spectrum $\sigma_{p}(T, X)$ is the set such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_{p}(T, X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_{c}(T, X)$ is the set such that T_{λ}^{-1} exists and satisfies (R3) but not (R2), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_{r}(T, X)$ is the set such that T_{λ}^{-1} exists (and may be bounded or not) but does not satisfy (R3), that is, the domain of T_{λ}^{-1} is not dense in X.

Hence if $(T-\lambda I) x=\theta$ for some $x \neq \theta$, then $\lambda \in \sigma_{p}(T, X)$, by definition, that is, λ is an eigenvalue of T. The vector x is then called an eigenvector of T corresponding to the eigenvalue λ.

Now, we may give:
Lemma 1 ([19, p. 59]). T has a dense range if and only if T^{*} is one to one.

3. Recent and New Results on the Fine Spectrum of the Operator Δ_{v} on l_{1} and c_{0}

In this section we mainly review several recent results concerning the fine spectrum of the operator Δ_{v} on the sequence spaces l_{1} and c_{0}. Also, we provide some new results. As we mentioned before, the case when $\left(v_{k}\right)$ is a constant sequence is not considered here. So, throughout this section, the sequence $\left(v_{k}\right)$ is assumed to be a strictly decreasing sequence of positive real numbers satisfying the conditions (2).

3.1. The Fine Spectrum of the Operator Δ_{v} on l_{1}

Srivastava and Kumar [25] investigated the fine spectrum of the operator Δ_{v} on the sequence space l_{1}. But, incorrect results are obtained. Akhmedov and El-Shabrawy [8] have proved by a counterexample that the results concerning the point spectrum and the residual spectrum are incorrect. In this subsection we summarize the main results.

Theorem 1. The operator $\Delta_{v}: l_{1} \longrightarrow l_{1}$ is a bounded linear operator and
(i) $\left\|\Delta_{v}\right\|_{l_{1}}=2 v_{0}$.
(ii) $\sigma\left(\Delta_{v}, l_{1}\right)=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\}$.
(iii) $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\phi$.
(iv) $\sigma_{p}\left(\Delta_{v}^{*}, l_{1}^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\}$.
(v) $\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\}$.
(vi) $\sigma_{c}\left(\Delta_{v}, l_{1}\right)=\phi$.

The results (i), (ii), (iv) and (vi) of Theorem 1 have been given by Srivastava and Kumar [25] and the results (iii) and (v) of Theorem 1 have been proved by Akhmedov and ElShabrawy [8].

To help understanding we give the following example which disproves the statements of Srivastava and Kumar [25] concerning the point spectrum and the residual spectrum of the operator Δ_{v} on l_{1}.
Example 1. Consider the sequence (v_{k}), where $v_{k}=\frac{k+2}{k+1}, k \in \mathbb{N}$. Clearly, $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers satisfying the conditions (2); where $\lim _{k \rightarrow \infty} v_{k}=L=1$, $\sup v_{k}=v_{0}=2 \leq 2 L$. We can prove that $v_{0}=2 \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. Indeed, suppose for contrary that there exists $x=\left(x_{k}\right) \neq \theta$ in l_{1} such that $\Delta_{v} x=v_{0} x$. Then

$$
\left(v_{0}-v_{0}\right) x_{0}=0 \text { and }-v_{k} x_{k}+\left(v_{k+1}-v_{0}\right) x_{k+1}=0,
$$

for all $k \in \mathbb{N}$. If $x_{0}=0$, then $x_{k}=0$, for all $k \geq 1$, and so we have a contradiction since $x \neq \theta$. Also, if $x_{0} \neq 0$ then we can easily see that

$$
\left|x_{k}\right| \geq\left|x_{0}\right|, \text { for all } k \geq 1
$$

and so we have a contradiction since $x \in l_{1}$. Then $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. Similarly, we can prove that $v_{k} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$ for all $k \geq 1$. Thus $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\phi$.

Now, the operator $\Delta_{v}-v_{0} I$ on l_{1} is defined by

$$
\begin{equation*}
\left(\Delta_{v}-v_{0} I\right) x=\left(0,-v_{0} x_{0}+\left(v_{1}-v_{0}\right) x_{1},-v_{1} x_{1}+\left(v_{2}-v_{0}\right) x_{2}, \ldots\right), \tag{7}
\end{equation*}
$$

where $x=\left(x_{k}\right) \in l_{1}$. The operator $\left(\Delta_{v}-v_{0} I\right)^{-1}$ exists since $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. But $\left(\Delta_{v}-v_{0} I\right)^{-1}$ does not satisfy (R3). Indeed, consider the sequence $y=(1,0,0, \ldots)$ in l_{1} and let y be the center of a small ball, say, of radius $1 / 3$. Clearly, by (7), this ball does not intersect the range of the operator $\Delta_{v}-v_{0} I$. Then, the operator $\Delta_{v}-v_{0} I$ does not have a dense range in l_{1}. Hence, by definition, $v_{0} \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$.

3.2. The Fine Spectrum of the Operator Δ_{v} on c_{0}

Srivastava and Kumar [24] investigated the fine spectrum of the operator Δ_{v} on the sequence space c_{0}. But, incorrect results are also obtained. Akhmedov and El-Shabrawy [7] have proved by a counterexample that the results concerning the point spectrum, the residual spectrum and the continuous spectrum are incorrect. In this subsection we summarize the main results.

Theorem 2. The operator $\Delta_{v}: c_{0} \longrightarrow c_{0}$ is a bounded linear operator and
(i) $\left\|\Delta_{v}\right\|_{c_{0}}=v_{0}+v_{1}$.
(ii) $\sigma\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\}$.
(iii) $\sigma_{p}\left(\Delta_{v}, c_{0}\right)=\varnothing$.

The bounded linearity of the operator Δ_{v} on c_{0} has been given by the Srivastava and Kumar [24] and the norm of the operator Δ_{v} on c_{0} has been revised by Akhmedov and ElShabrawy [7]. Also, the result (ii) of Theorem 2 has been proved by Srivastava and Kumar [24] and the result (iii) of Theorem 2 has been proved by Akhmedov and El-Shabrawy [7].

The results concerning the point spectrum of the adjoint operator Δ_{v}^{*} of Δ_{v} are given by the following theorem.

Theorem 3 ([7]).
(i) $\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup\left\{v_{0}\right\} \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$,
(ii) $\left\{\lambda \in \mathbb{C}: \sup _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\} \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$,
(iii) $\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right) \subseteq\left\{\lambda \in \mathbb{C}: \inf _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\}$.

We give the following example to support the results in Theorem 3.

Example 2. Consider the sequence $\left(v_{k}\right)$, where $v_{k}=\frac{(k+3)^{2}}{(k+2)^{2}+(k+3)^{2}}, k \in \mathbb{N}$. We can show that $1 \in \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$. But $1 \notin\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup\left\{v_{0}\right\}$ and $1 \notin\left\{\lambda \in \mathbb{C}: \sup _{n}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\}$. On the other hand if $v_{k}=\frac{k+3}{2 k+5}, k \in \mathbb{N}$, then $1 \in\left\{\lambda \in \mathbb{C}: \inf _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\}$. But $1 \notin \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$.

The following theorem gives some results on the residual spectrum of the operator Δ_{v} on c_{0}.
Theorem 4 ([7]).
(i) $\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup\left\{v_{0}\right\} \subseteq \sigma_{r}\left(\Delta_{v}, c_{0}\right)$,
(ii) $\left\{\lambda \in \mathbb{C}: \sup _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\} \subseteq \sigma_{r}\left(\Delta_{v}, c_{0}\right)$,
(iii) $\sigma_{r}\left(\Delta_{v}, c_{0}\right) \subseteq\left\{\lambda \in \mathbb{C}: \inf _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right|<1\right\}$.

For the continuous spectrum of the operator Δ_{v} on c_{0}, we have the following theorem.
Theorem 5 ([7]).
(i) $\sigma_{c}\left(\Delta_{v}, c_{0}\right) \subseteq\{\lambda \in \mathbb{C}:|\lambda-L|=L\} \backslash\left\{v_{0}\right\}$,
(ii) $\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\} \cap\left\{\lambda \in \mathbb{C}: \inf _{k}\left|\frac{\lambda-v_{k}}{v_{k}}\right| \geq 1\right\} \subseteq \sigma_{c}\left(\Delta_{v}, c_{0}\right)$.

Also, we have the following theorem.
Theorem 6 ([7]).
(i) $\sigma_{r}\left(\Delta_{v}, c_{0}\right)=\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$.
(ii) $\sigma_{c}\left(\Delta_{v}, c_{0}\right)=\sigma\left(\Delta_{v}, c_{0}\right) \backslash \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$.

Now, we give the following new results:
Theorem 7. $\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup H$, where

$$
H=\left\{\lambda \in \mathbb{C}:|\lambda-L|=L, \sum_{k=0}^{\infty}\left|\prod_{i=0}^{k} \frac{\lambda-v_{i}}{v_{i}}\right|<\infty\right\} .
$$

Proof. Suppose that $\Delta_{v}^{*} f=\lambda f$ for $f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \neq \theta$ in $c_{0}^{*} \cong l_{1}$. Then, by solving the system of equations

$$
\begin{gathered}
v_{0} f_{0}-v_{0} f_{1}=\lambda f_{0} \\
v_{1} f_{1}-v_{1} f_{2}=\lambda f_{1} \\
\vdots \\
v_{k} f_{k}-v_{k} f_{k+1}=\lambda f_{k} \\
\vdots
\end{gathered}
$$

we obtain

$$
f_{k+1}=\frac{v_{k}-\lambda}{v_{k}} f_{k}, \text { for all } k \in \mathbb{N}
$$

Then we must take $f_{0} \neq 0$, since otherwise we would have $f=\theta$. It is clear that, for all $k \in \mathbb{N}$, the vector $f=\left(f_{0}, f_{1}, \ldots, f_{k}, 0,0, \ldots\right)$ is an eigenvector of the operator Δ_{v}^{*} corresponding to the eigenvalue $\lambda=v_{k}$, where $f_{0} \neq 0$ and $f_{n}=\frac{v_{n-1}-\lambda}{v_{n-1}} f_{n-1}$ for all $n=1,2,3, \ldots, k$. Thus $\left\{v_{k}: k \in \mathbb{N}\right\} \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$. On the other hand if $\lambda \neq v_{k}$ for all $k \in \mathbb{N}$, then we can see that $\sum_{k}\left|f_{k}\right|<\infty$ if $\lim _{k \rightarrow \infty}\left|\frac{f_{k+1}}{f_{k}}\right|=\left|\frac{\lambda-L}{L}\right|<1$. Also, it can be proved that $H \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$. Thus

$$
\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup H \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right) .
$$

The second inclusion can be proved analogously.
Theorem 8. $\sigma_{r}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup H$.
Proof. The proof follows immediately from Theorems 6(i) and 7.
Theorem 9. $\sigma_{c}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|=L\} \backslash H$.
Proof. The proof follows immediately from Theorems 2(ii), 2(iii) and 8.

4. Illustrative Examples

In this section we give some illustrative examples on the fine spectrum of the operator Δ_{v} on the sequence spaces l_{1} and c_{0}.

In the following example, we consider a strictly decreasing sequence (v_{k}) of positive real numbers satisfying the conditions (2). It will be shown that the following equalities are not hold;

$$
\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}
$$

and

$$
\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\} \backslash\left\{v_{0}, v_{1}, v_{2}, \ldots\right\} .
$$

Example 3 ([8]). Consider the sequence (v_{k}), where $v_{k}=\frac{k+3}{2 k+5}, k \in \mathbb{N}$. Clearly, $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers satisfying the conditions (2); where
$\lim _{k \rightarrow \infty} v_{k}=L=1 / 2, \sup _{k} v_{k}=3 / 5 \leq 1=2 L$. We can prove that $v_{0}=3 / 5 \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. Indeed, suppose for contrary that there exists $x=\left(x_{k}\right) \neq \theta$ in l_{1} such that $\Delta_{v} x=v_{0} x$. Then

$$
\left(v_{0}-v_{0}\right) x_{0}=0 \text { and }-v_{k} x_{k}+\left(v_{k+1}-v_{0}\right) x_{k+1}=0,
$$

for all $k \in \mathbb{N}$. If $x_{0}=0$, then $x_{k}=0$, for all $k \geq 1$, and so we have a contradiction since $x \neq \theta$. Also, if $x_{0} \neq 0$ then

$$
\lim _{k \rightarrow \infty}\left|\frac{x_{k+1}}{x_{k}}\right|=\left|\frac{L}{L-v_{o}}\right|=5>1,
$$

and so we have a contradiction since $x \in l_{1}$. Then $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. Similarly, we can prove that $v_{k} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$ for all $k \geq 1$, and so $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\phi$.

Now, the operator $\Delta_{v}-v_{0} I$ on l_{1} is defined by

$$
\begin{equation*}
\left(\Delta_{v}-v_{0} I\right) x=\left(0,-v_{0} x_{0}+\left(v_{1}-v_{0}\right) x_{1},-v_{1} x_{1}+\left(v_{2}-v_{0}\right) x_{2}, \ldots\right), \tag{8}
\end{equation*}
$$

where $x=\left(x_{k}\right) \in l_{1}$. The operator $\left(\Delta_{v}-v_{0} I\right)^{-1}$ exists since $v_{0} \notin \sigma_{p}\left(\Delta_{v}, l_{1}\right)$. But $\left(\Delta_{v}-v_{0} I\right)^{-1}$ does not satisfy (R3). Indeed, consider the sequence $y=(1,0,0, \ldots)$ in l_{1} and let y be the center of a small ball, say, of radius $1 / 3$. Clearly, by (8), this ball does not intersect the range of the operator $\Delta_{v}-v_{0} I$. Then, the operator $\Delta_{v}-v_{0} I$ does not have a dense range in l_{1}. Hence, by definition, $v_{0} \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$.

The following example disproves the statements of Srivastava and Kumar [24] concerning the point spectrum, the residual spectrum and the continuous spectrum of the operator Δ_{v} on c_{0}. More precisely, we consider a strictly decreasing sequence (v_{k}) of positive real numbers satisfying the conditions (2) and it will be shown that the following equalities are not hold;

$$
\begin{gathered}
\sigma_{p}\left(\Delta_{v}, c_{0}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}, \\
\sigma_{r}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \backslash\left\{v_{0}, v_{1}, v_{2}, \ldots\right\}, \\
\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\}, \\
\sigma_{c}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|=L\} \backslash\left\{v_{0}\right\} .
\end{gathered}
$$

Example 4 ([7]). Consider the sequence $\left(v_{k}\right)$, where $v_{k}=\frac{(k+3)^{2}}{(k+2)^{2}+(k+3)^{2}}, k \in \mathbb{N}$. The sequence $\left(v_{k}\right)$ is a strictly decreasing sequence of positive real numbers satisfying the conditions (2); where $\lim _{k \rightarrow \infty} v_{k}=L=1 / 2, \sup _{k} v_{k}=9 / 13 \leq 1=2 L$. We can prove, as in Example 3, that $v_{k} \notin \sigma_{p}\left(\Delta_{v}, c_{0}\right)$ for all $k \in \mathbb{N}$. Also, we can prove that $v_{0} \in \sigma_{r}\left(\Delta_{v}, c_{0}\right)$.

On the other hand, for $\lambda=1$, we have

$$
\frac{\lambda-v_{k}}{v_{k}}=\frac{1-v_{k}}{v_{k}}=\left(\frac{k+2}{k+3}\right)^{2} .
$$

If we suppose that $\Delta_{v}^{*} f=(1) f$ for some $f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \neq \theta$ in $c_{0}^{*} \cong l_{1}$, then we obtain that $f_{k}=\frac{v_{k-1}-1}{v_{k-1}} f_{k-1}, k \geq 1$. If we take $f_{0}=0$, then $f=\theta$ and we have a contradiction since $f \neq \theta$. If $f_{0} \neq 0$, then

$$
\sum_{k=0}^{\infty}\left|f_{k}\right|=\left|f_{0}\right|+\left|f_{0}\right| \sum_{k=1}^{\infty}\left|\frac{1-v_{0}}{v_{0}}\right|\left|\frac{1-v_{1}}{v_{1}}\right| \ldots\left|\frac{1-v_{k-1}}{v_{k-1}}\right|=\left|f_{0}\right|+4\left|f_{0}\right| \sum_{k=1}^{\infty}\left(\frac{1}{k+2}\right)^{2}<\infty .
$$

Then $1 \in \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$, and consequently $1 \notin \sigma_{c}\left(\Delta_{v}, c_{0}\right)$.
In the following example, we consider a sequence of positive real numbers (not necessarily strictly decreasing) satisfying the conditions (2) and we calculate the spectrum, the point spectrum, the residual spectrum and the continuous spectrum of the operator Δ_{v} on c_{0}.

Example 5. Consider the sequence $\left(v_{k}\right)$, where $v_{k}=\frac{(k+2)^{2}}{(k+2)^{2}+(k+3)^{2}}, k \in \mathbb{N}$. We can prove that the operator $\Delta_{v}: c_{0} \longrightarrow c_{0}$ is a bounded linear operator with the norm $\left\|\Delta_{v}\right\|_{c_{0}}=1$ and

$$
\begin{aligned}
& \sigma\left(\Delta_{v}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}, \\
& \sigma_{p}\left(\Delta_{v}, c_{0}\right)=\varnothing . \\
& \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right|<\frac{1}{2}\right\}, \\
& \sigma_{r}\left(\Delta_{v}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right|<\frac{1}{2}\right\}, \\
& \sigma_{c}\left(\Delta_{v}, c_{0}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right|=\frac{1}{2}\right\} .
\end{aligned}
$$

In Example 5, we see that although the sequence $\left(v_{k}\right)$ is not strictly decreasing, the residual spectrum and the continuous spectrum in addition to the spectrum and the point spectrum of the operator Δ_{v} are completely determined. In fact, If $\left(v_{k}\right)$ is assumed to be a sequence of positive real numbers (not necessarily strictly decreasing) satisfying the conditions (2), then we can have results similar to those in Section 3.2. This means that the condition that (v_{k}) is a strictly decreasing is not an effective condition. In the next section we modify the definition of the operator Δ_{v} in two ways by dropping the condition that $\left(v_{k}\right)$ is strictly decreasing sequence of positive real numbers and replacing the conditions (2) by another conditions.

5. Notes on the Fine Spectrum of the Operator Δ_{v} on c_{0} and l_{1}

In this section we are going to show some ideas about changing the conditions on the sequence (v_{k}) in the fine spectrum of the operator Δ_{v}. We consider two modifications of the operator Δ_{v}. More precisely, we modify the definition of the operator Δ_{v} by changing the conditions on the sequence (v_{k}) in two ways. First, we consider the sequence (v_{k}) of nonzero real numbers such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} v_{k}=L>0 \text { and } \sup _{k} v_{k} \leq L, \tag{9}
\end{equation*}
$$

and we study the fine spectrum of the modified operator Δ_{v} on c_{0}. Second, we consider the sequence (v_{k}) of nonzero real numbers such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} v_{k}=L>0, v_{k} \geq L \text { and } v_{k} \neq 2 L, \text { for all } k \in \mathbb{N}, \tag{10}
\end{equation*}
$$

and we study the fine spectrum of the modified operator Δ_{v} on l_{1}.
We should indicate the reader that we use the same symbol for the operator Δ_{v} and its modifications here, since they have the same matrix representation and the difference between them lies in the conditions on the sequence $\left(v_{k}\right)$.

5.1. The fine Spectrum of the Modified Operator Δ_{v} on c_{0}

In this subsection we calculate the fine spectrum of the modified operator Δ_{v}, which is represented by the matrix in (3) such that the conditions (9) are satisfied, on the sequence space c_{0}. The modified operator Δ_{v} of this form has been introduced and studied by Akhmedov and El-Shabrawy [4] over the sequence spaces c and l_{p}, where $1<p<\infty$. The results of this section improve the corresponding results in Section 3.2.

We begin by determining when a matrix A induces a bounded linear operator from c_{0} to itself.

Lemma 2 ([26, p. 129]). The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in$ $B\left(c_{0}\right)$ from c_{0} to itself if and only if
(i) The rows of A are in l_{1} and their l_{1} norms are bounded,
(ii) The columns of A are in c_{0}.

The operator norm of T is the supremum of the l_{1} norms of the rows.
Corollary 1. The modified operator $\Delta_{v}: c_{0} \rightarrow c_{0}$ is a bounded linear operator with the norm $\left\|\Delta_{v}\right\|_{c_{0}}=\sup _{k}\left(\left|v_{k}\right|+\left|v_{k-1}\right|\right)$.

Theorem 10. Let $D=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\}$ and $E=\left\{v_{k}: k \in \mathbb{N},\left|v_{k}-L\right|>L\right\}$. Then $\sigma\left(\Delta_{v}, c_{0}\right)=D \cup E$.

Proof. First, we prove that $\left(\Delta_{v}-\lambda I\right)^{-1}$ exists and is in $B\left(c_{0}\right)$ for $\lambda \notin D \cup E$ and then the operator $\Delta_{v}-\lambda I$ is not invertible for $\lambda \in D \cup E$.
Let $\lambda \notin D \cup E$. Then, $|\lambda-L|>L$ and $\lambda \neq v_{k}$ for all $k \in \mathbb{N}$. So, $\Delta_{v}-\lambda I$ is triangle, and hence $\left(\Delta_{v}-\lambda I\right)^{-1}$ exists. We can calculate that

$$
\left(\Delta_{v}-\lambda I\right)^{-1}=\left(\begin{array}{cccc}
\frac{1}{\left(v_{0}-\lambda\right)} & 0 & 0 & \cdots \\
\frac{1}{\left(v_{0}-\lambda\right)\left(v_{1}-\lambda\right)} & \frac{1}{\left(v_{1}-\lambda\right)} & 0 & \cdots \\
\frac{v_{0}}{v_{1}} v_{1} \\
\left(v_{0}-\lambda\right)\left(v_{1}-\lambda\right)\left(v_{2}-\lambda\right) & \frac{1}{\left(v_{1}-\lambda\right)\left(v_{2}-\lambda\right)} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Then, the rows of $\left(\Delta_{v}-\lambda I\right)^{-1}$ are in l_{1} and the supremum of the l_{1} norms of the rows of $\left(\Delta_{v}-\lambda I\right)^{-1}$ is $\sup _{k} S_{k}$, where

$$
S_{k}=\left[\frac{1}{\left|v_{k}-\lambda\right|}+\frac{\left|v_{k-1}\right|}{\left|v_{k}-\lambda\right|\left|v_{k-1}-\lambda\right|}+\ldots .+\frac{\left|v_{k-1}\right|\left|v_{k-2}\right| \ldots\left|v_{0}\right|}{\left|v_{k}-\lambda\right|\left|v_{k-1}-\lambda\right| \ldots\left|v_{0}-\lambda\right|}\right], \quad k \in \mathbb{N} .
$$

Then, we can easily prove that $\sup _{k} S_{k}<\infty$. Also, it is clear that the columns of $\left(\Delta_{v}-\lambda I\right)^{-1}$ are in c_{0}. From Lemma $2,\left(\Delta_{v}-\lambda I\right)^{-1} \in\left(c_{0}, c_{0}\right)$. Thus $\sigma\left(\Delta_{v}, c_{0}\right) \subseteq D \cup E$.

Conversely, suppose that $\lambda \notin \sigma\left(\Delta_{v}, c_{0}\right)$. Then $\left(\Delta_{v}-\lambda I\right)^{-1} \in B\left(c_{0}\right)$. Since $\left(\Delta_{v}-\lambda I\right)^{-1}$ transform of the unit sequence $e=(1,0,0, \ldots)$ is in c_{0}, we have $\lim _{k \rightarrow \infty}\left|\frac{v_{k}}{v_{k+1}-\lambda}\right|=\left|\frac{L}{L-\lambda}\right| \leq 1$ and $\lambda \neq v_{k}$ for all $k \in \mathbb{N}$. Then $\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \subseteq \sigma\left(\Delta_{v}, c_{0}\right)$ and $\left\{v_{k}: k \in \mathbb{N}\right\} \subseteq \sigma\left(\Delta_{v}, c_{0}\right)$. But $\sigma\left(\Delta_{v}, c_{0}\right)$ is compact set, and so it is closed. Then $D=\{\lambda \in \mathbb{C}:|\lambda-L| \leq L\} \subseteq \sigma\left(\Delta_{v}, c_{0}\right)$ and $E=\left\{v_{k}: k \in \mathbb{N},\left|v_{k}-L\right|>L\right\} \subseteq \sigma\left(\Delta_{v}, c_{0}\right)$. This completes the proof.

The point spectrum of the operator Δ_{v} on c_{0} is given by the following theorem.
Theorem 11. $\sigma_{p}\left(\Delta_{v}, c_{0}\right)=E$.
Proof. Suppose $\Delta_{v} x=\lambda x$ for $x \neq \theta=(0,0,0, \ldots)$ in c_{0}. Then by solving the system of equations

$$
\left.\begin{array}{c}
v_{0} x_{0}=\lambda x_{0} \\
-v_{0} x_{0}+v_{1} x_{1}=\lambda x_{1} \\
-v_{1} x_{1}+v_{2} x_{2}=\lambda x_{2} \\
\vdots
\end{array}\right\}
$$

we obtain

$$
\left(v_{0}-\lambda\right) x_{0}=0 \text { and }-v_{k} x_{k}+\left(v_{k+1}-\lambda\right) x_{k+1}=0, \text { for all } k \in \mathbb{N} .
$$

Hence, for all $\lambda \notin\left\{v_{k}: k \in \mathbb{N}\right\}$, we have $x_{k}=0$ for all $k \in \mathbb{N}$, which contradicts our assumption. This shows that $\sigma_{p}\left(\Delta_{v}, c_{0}\right) \subseteq\left\{v_{k}: k \in \mathbb{N}\right\}$. Also, if $\lambda=L$, then we can easily prove that $\lambda \notin \sigma_{p}\left(\Delta_{v}, c_{0}\right)$. Thus $\sigma_{p}\left(\Delta_{v}, c_{0}\right) \subseteq\left\{v_{k}: k \in \mathbb{N}\right\} \backslash\{L\}$. Now, we will prove that

$$
\lambda \in \sigma_{p}\left(\Delta_{v}, c_{0}\right) \text { if and only if } \lambda \in E
$$

If $\lambda \in \sigma_{p}\left(\Delta_{v}, c_{0}\right)$, then $\lambda=v_{j} \neq L$ for some $j \in \mathbb{N}$ and there exists $x \in c_{0}, x \neq \theta$ such that $\Delta_{v} x=v_{j} x$. Then

$$
\lim _{k \rightarrow \infty}\left|\frac{x_{k+1}}{x_{k}}\right|=\left|\frac{L}{L-v_{j}}\right| \leq 1 .
$$

But $\left|\frac{L}{L-v_{j}}\right| \neq 1$. Then $\lambda=v_{j} \in\left\{v_{k}: k \in \mathbb{N},\left|v_{k}-L\right|>L\right\}=E$. Thus $\sigma_{p}\left(\Delta_{v}, c_{0}\right) \subseteq E$.
Conversely, let $\lambda \in E$. Then there exists $i \in \mathbb{N}$ such that $\lambda=v_{i} \neq L$ and so we can take $x \neq \theta$ such that $\Delta_{v} x=v_{i} x$ and

$$
\lim _{k \rightarrow \infty}\left|\frac{x_{k+1}}{x_{k}}\right|=\left|\frac{L}{L-v_{i}}\right|<1
$$

that is, $x \in c_{0}$. Thus $E \subseteq \sigma_{p}\left(\Delta_{v}, c_{0}\right)$. This completes the proof.
We give the following lemma which is required in the proof of the next theorem.
Lemma 3. Let $\lambda \in\{\lambda \in \mathbb{C}:|\lambda-L|=L\}$. Then the series

$$
\sum_{k}\left|\frac{\left(v_{0}-\lambda\right)\left(v_{1}-\lambda\right) \ldots\left(v_{k}-\lambda\right)}{v_{0} v_{1} \ldots v_{k}}\right|,
$$

is not a convergent series.

Proof. Let $\lambda=\lambda_{1}+i \lambda_{2} \in \mathbb{C}$ such that $|\lambda-L|=L$. Then

$$
|\lambda|^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}=2 \lambda_{1} L
$$

Also,

$$
\begin{aligned}
\left|v_{k}-\lambda\right|^{2} & =v_{k}^{2}+\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)-2 \lambda_{1} v_{k} \\
& =v_{k}^{2}-2 \lambda_{1}\left(v_{k}-L\right) \\
& \geq v_{k}^{2} .
\end{aligned}
$$

Therefore

$$
\left|\frac{v_{k}-\lambda}{v_{k}}\right| \geq 1, \text { for all } k \in \mathbb{N} .
$$

This completes the proof.
Theorem 12. $\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup E$.
Proof. Suppose that $\Delta_{v}^{*} f=\lambda f$ for $f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \neq \theta$ in $c_{0}^{*} \cong l_{1}$. Then, by solving the system of equations

$$
\begin{gathered}
v_{0} f_{0}-v_{0} f_{1}=\lambda f_{0} \\
v_{1} f_{1}-v_{1} f_{2}=\lambda f_{1} \\
\vdots \\
v_{k} f_{k}-v_{k} f_{k+1}=\lambda f_{k} \\
\vdots
\end{gathered}
$$

we obtain

$$
f_{k+1}=\frac{v_{k}-\lambda}{v_{k}} f_{k}, k \in \mathbb{N} .
$$

Therefore, we must take $f_{0} \neq 0$, since otherwise we would have $f=\theta$.
It is clear that, for all $k \in \mathbb{N}$, the vector $f=\left(f_{0}, f_{1}, \ldots, f_{k}, 0,0, \ldots\right)$ is an eigenvector of the operator Δ_{v}^{*} corresponding to the eigenvalue $\lambda=v_{k}$, where $f_{0} \neq 0$ and $f_{n}=\frac{v_{n-1}-\lambda}{v_{n-1}} f_{n-1}$, for all $n=1,2, \ldots, k$. Thus $\left\{v_{k}: k \in \mathbb{N}\right\} \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$. Also, if $\lambda \neq v_{k}$ for all $k \in \mathbb{N}$, then $f_{k} \neq 0$ for all $k \in \mathbb{N}$, and so, $\sum_{k}\left|f_{k}\right|<\infty$ if $\lim _{k \rightarrow \infty}\left|\frac{f_{k+1}}{f_{k}}\right|=\left|\frac{\lambda-L}{L}\right|<1$. Thus $\{\lambda \in \mathbb{C}:|\lambda-L|<L\} \cup E \subseteq \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$.

Conversely, if $\lambda \in \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$, then there exists $f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \neq \theta$ in $c_{0}^{*} \cong l_{1}$, $\Delta_{v}^{*} f=\lambda f$. Then, $f_{k+1}=\frac{v_{k}-\lambda}{v_{k}} f_{k}, k \in \mathbb{N}$ and $\sum_{k}\left|f_{k}\right|<\infty$. Therefore $\lim _{k \rightarrow \infty}\left|\frac{f_{k+1}}{f_{k}}\right|=\left|\frac{\lambda-L}{L}\right|<1$ or $\lambda \in\left\{v_{k}: k \in \mathbb{N}\right\}$ (note that $|\lambda-L|=L$ contradicts with $\sum_{k}\left|f_{k}\right|<\infty$, by using Lemma 3. This completes the proof.

Theorem 13. $\sigma_{r}\left(\Delta_{v}, c_{0}\right)=\sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right) \backslash \sigma_{p}\left(\Delta_{v}, c_{0}\right)$.

Proof. The proof follows immediately from the definition of the residual spectrum and Lemma 1.

Theorem 14. $\sigma_{r}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|<L\}$.
Proof. The proof follows immediately from Theorems 11, 12 and 13.

Theorem 15. $\sigma_{c}\left(\Delta_{v}, c_{0}\right)=\sigma\left(\Delta_{v}, c_{0}\right) \backslash \sigma_{p}\left(\Delta_{v}^{*}, c_{0}^{*}\right)$.
Proof. The proof follows immediately from Theorems 11, 12 and 13.

Theorem 16. $\sigma_{c}\left(\Delta_{v}, c_{0}\right)=\{\lambda \in \mathbb{C}:|\lambda-L|=L\}$.
Proof. The proof follows immediately from Theorems 10, 12 and 15.

5.2. The Fine Spectrum of the Modified Operator Δ_{v} on l_{1}

In this subsection we calculate the fine spectrum of the operator Δ_{v}, which is represented by the matrix in (3) such that the conditions (10) are satisfied, on the sequence space l_{1}. The results of this section generalize the corresponding results in Section 3.1.

We begin by determining when a matrix A induces a bounded linear operator from l_{1} to itself.

Lemma 4 ([14, p. 253, Theorem 34.16]). The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(l_{1}\right)$ from l_{1} to itself if and only if the supremum of l_{1} norms of the columns of A is bounded.

Corollary 2. The operator $\Delta_{v}: l_{1} \rightarrow l_{1}$ is a bounded linear operator with the norm

$$
\left\|\Delta_{v}\right\|_{l_{1}}=2 \sup _{k} v_{k} .
$$

By using arguments similar to those used in Section 5.1, we can prove the following main theorem.

Theorem 17. (i) $\sigma\left(\Delta_{v}, l_{1}\right)=D \cup E$.
(ii) $\sigma_{p}\left(\Delta_{v}, l_{1}\right)=E$.
(iii) $\sigma_{p}\left(\Delta_{v}^{*}, l_{1}^{*}\right)=D \cup E$.
(iv) $\sigma_{r}\left(\Delta_{v}, l_{1}\right)=D$.
(v) $\sigma_{c}\left(\Delta_{v}, l_{1}\right)=\phi$.

6. Conclusion

In this paper, the fine spectrum of the generalized difference operator Δ_{v} on the sequence spaces c_{0} and l_{1} is commented on, and some new results are obtained. Illustrative examples are given as well. These examples are used not only to apply new results but also to disprove some recent results. Finally, two modifications of the operator Δ_{v} are introduced. The new results of this paper generalize and improve some recent results that appeared in the literature.

References

[1] A Akhmedov and F Başar, On the fine spectra of the difference operator Δ over the sequence space $l_{p},(1 \leq p<\infty)$, Demonstratio Math. 39 (3). 585-595. 2006.
[2] A Akhmedov and F Başar, The fine spectra of the difference operator Δ over the sequence space $b v_{p},(1 \leq p<\infty)$, Acta Math. Sin. (Engl. Ser.) 23 (10). 1757-1768. 2007.
[3] A Akhmedov and S El-Shabrawy, On the fine spectrum of the operator $\Delta_{a, b}$ over the sequence space c, Comput. Math. Appl. 61. 2994-3002. 2011.
[4] A Akhmedov and S El-Shabrawy, On the fine spectrum of the operator Δ_{v} over the sequence spaces c and $l_{p},(1<p<\infty)$, Appl. Math. Inf. Sci. 5 (3). 635-654. 2011.
[5] A Akhmedov and S El-Shabrawy, On the spectrum of the generalized difference operator $\Delta_{a, b}$ over the sequence space c_{0}, Baku Univ. News J., Phys. Math. Sci. Ser. 4. 12-21. 2010.
[6] A Akhmedov and S El-Shabrawy, The spectrum of the generalized lower triangle doubleband matrix Δ_{a} over the sequence space c, Al-Azhar Univ. Eng. J., JAUES (special issue), 5 (9), 54-63. 2010.
[7] A Akhmedov and S El-Shabrawy, Comments on "On the fine spectrum of the generalized difference operator Δ_{v} over the sequence space c_{0} ", submitted for publication.
[8] A Akhmedov and S El-Shabrawy, Notes on the spectrum of lower triangular double-band matrices, submitted for publication.
[9] B Altay and F Başar, On the fine spectrum of the difference operator Δ on c_{0} and c, Inform. Sci. 168. 217-224. 2004.
[10] B Altay and F Başar, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Math. Sci. 18. 3005-3013. 2005.
[11] B Altay and M Karakuş, On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math. 3(2). 153-162. 2005.
[12] F Başar and B Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (1). 136-147. 2003.
[13] H Bilgiç and H Furkan, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces l_{p} and $b v_{p},(1<p<\infty)$, Nonlinear Anal. 68. 499-506. 2008.
[14] B Choudhary and S Nanda, Functional Analysis with Applications, John Wiley \& Sons Inc., New York. 1989.
[15] S El-Shabrawy, On the spectrum of the operator Δ_{v} over the space l_{p}, $(1<p<\infty)$, Baku Univ. News J., Phys. Math. Sci. Ser., to appear.
[16] H Furkan, H Bilgiç and B Altay, On the fine spectrum of the operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl. 53. 989-998. 2007.
[17] H Furkan, H Bilgiç and F Başar, On the fine spectrum of the operator $B(r, s, t)$ over the sequence spaces l_{p} and $b v_{p},(1<p<\infty)$, Comput. Math. Appl. 60. 2141-2152. 2010.
[18] H Furkan, H Bilgiç and K Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces l_{1} and $b v$, Hokkaido Math. J. 35. 893-904. 2006.
[19] S Goldberg, Unbounded Linear Operators: Theory and Applications, McGraw-Hill, Inc., New York, 1966.
[20] V Karakaya and M Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math. 234. 1387-1394. 2010.
[21] E Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons Inc., New York. 1978.
[22] B de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31. 283-299. 2002.
[23] B Panigrahi and P Srivastava, Spectrum and fine spectrum of generalized second order difference operator $\Delta_{u v}^{2}$ on sequence space c_{0}, Thai J. Math. 9 (1). 57-74. 2011.
[24] P Srivastava and S Kumar, On the fine spectrum of the generalized difference operator Δ_{v} over the sequence space c_{0}, Commun. Math. Anal. 6 (1). 8-21. 2009.
[25] P Srivastava and S Kumar, Fine spectrum of the generalized difference operator Δ_{v} on sequence space l_{1}, Thai J. Math. 8 (2). 221-233. 2010.
[26] A Wilansky, Summability Through Functional Analysis, in: North-Holland Mathematics Studies, vol. 85, North-Holland, Amsterdam, 1984.

[^0]: *Corresponding author.

 Email addresses: akhmedovali@rambler.ru (A. Akhmedov), srshabrawy@yahoo.com (S. El-Shabrawy)
 http://www.ejpam.com 59 (c) 2012 EJPAM All rights reserved.

