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1. Introduction

Many problems of practical interest in optimization, economics and engineering involve
equilibrium in their description; this fact has motivated researchers to establish general re-
sults on the existence of solutions for equilibrium problems, see e.g. [2, 3]. Indeed there
is a vast literature on equilibrium problems and their treatment in optimization, variational
and quasivariational inequalities, and complementarity problems. Many authors investigated
different equilibrium models, extending scalar equilibrium problems to the vector-valued and
set-valued cases, see e.g. [4, 11-13].

In the case of a set-valued bifunction, the general equilibrium problem can be formulated
in several (non equivalent) ways. Our results will cover the following cases. Given topological
vector spaces X, Y, a nonempty, closed and convex set K C X, a set-valued mapping
V : K — II(Y) that maps each x € K to a nonempty set V(x) € Y (II(Y) denotes the power
set of Y) and a set-valued bifunction ® : K x K — II(Y ), we consider two main formulations
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of the generalized vector equilibrium problem, namely the problems of finding X € K such
that

(GVEP1) &(x,y)ZV(x), Vy€eKk;
(GVEP2) &(x,y)NnV(x)=0, VyeK.

In particular, given a set-valued mapping C : K — II(Y) that maps each x € K to a
pointed (and solid, if necessary) cone C(x) C Y, we can recover the main formulations of the
generalized vector equilibrium problem that have been considered in the literature [1, 6, 9-
13], namely,

(GVEPla) &(x,y) € —int C(X), Vy €K;
(GVEP1b) @(x,y) € —C(x)\{0}, Vy€K;
(GVEP2a) &(x,y)N—intC(X)=0, Vy€eK;
(GVEP2b) &(%,y)N(—C(X\{0}) =0, VyeK.

For i = 1,2, or, more specifically, i = 1a,1b,2a,2b, we will denote by S;( the set of
solutions to problem (GVEPi).

Remark 1. For convenience, we will also denote by S}I the set of solutions to problem (GVEPI),
with K replaced by a nonempty, closed and convex set H € K and with ® and C being replaced
by their restrictions to H x H and H, respectively.

Note that, if C(x) has nonempty interior for all x € K, then the following inclusions hold

S}Z{b C SIl<b
IN IN
S[Z{a C S[l{a
Anyway, in infinite dimensional spaces the condition int C(x) # @ can be a restrictive as-
sumption (for instance, in the Lebesgue space L2, the cone of functions that are nonnegative
almost everywhere is closed and convex, but with empty interior). This justifies our interest
in problems (GVEP1b) and (GVEP2b), as they may have a solution even in this case.

In most of the papers on the existence of solutions of GVEPs, either boundedness of the
feasible set or a certain coercivity condition is assumed. The purpose of the present paper is
to provide some existence theorems concerning solutions of generalized vector equilibrium
problems on an unbounded set with set-valued maps defined on reflexive Banach spaces,
exploiting a new coercivity condition, which was introduced in [7] for scalar bifunctions and
in [8] for vector-valued functions.

In [7], in particular, it is shown how several coercivity conditions proposed in the literature
are stronger than this new condition, in the sense that, if the former hold, then the latter holds
as well. Thus, employing this weak coercivity condition can yield more general results in the
field of equilibrium problems.
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2. Preliminaries

In this paper we will consider partial orderings on vector spaces induced by cones. We
agree that any cone contains the origin, according to the following definition.

Definition 1. Let X be a vector space and C C X be nonempty. C is a cone if, for all k € C and
A>0, Ak eC.

If —C N C = {0}, then the cone C is pointed, while it is solid if int C # 0.

In the next section we will need existence results for generalized vector equilibrium prob-
lems defined on compact sets. These results can be based on the following lemma, which is
an easy adaptation of [5, Lemma 4], a consequence of the well-known Ky Fan’s lemma [5,
Lemma 1]. In the following, given a set S, we denote by I1(S) the power set of S.

Lemma 1. Let K be a nonempty compact convex set in a topological vector space and let
A: K — II(K x K) be such that:

(@) (x,x)¢A(x) forall x €K;
(i) for any fixed x € K, the set {y € K : (x,y) € A(x)} is convex;
(iii) for any fixed y € K, the set {x € K : (x,y) ¢ A(x)} is closed.
Then there exists a point X € K such that (x,y) ¢ A(x) for all y € K.

Proof. By (iii), for any fixed y € K the set F(y) = {x € K : (x,y) ¢ A(x)} is closed in K,
hence compact. Moreover, F is a KKM-map, i.e. such that the convex hull of any finite subset
{¥1,-++,¥,} of K is contained in U?:l F(y;). Indeed, suppose by contradiction that there exist
(A,++,A,) €[0,1]" such that A; +---+ A, =1 and

n n
Zk]yjiyl €A le-y] B Vi:].,"',n,
j=1 j=1

ie. y;e{yekK: (Z?Zl Aiyiy) € A(Z?:1 A;yi)}. Then, by (iD), 2?21 A;y; belongs to the

same set, so that
n n n
2 2 Ay | €A 2y |
j=1 j=1 j=1

a contradiction to (7).
Therefore, it follows from [5, Lemma 1] that

(F) #0,

Y€K

i.e., there exists X € K such that (x,y) ¢ A(x) for all y €K. O
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As an immediate consequence of the preceding lemma, one obtains the following existence
results for generalized vector equilibrium problems (GVEP1) and (GVEP2) on a compact set
K. The proofs are based on Lemma 1, with A(x) = ®*(V(x)) and A(x) = &~ (V(x)) for all
x € K, respectively, where the upper and lower inverse mappings of ® are defined as

dT(Z)={(x,y) €K xK: &(x,y) C Z},
& (Z)={(x,y)eK XK : ®(x,y)NZ # 0},
forallZ CY.

Theorem 1. Let X be a reflexive Banach space, Y be a Banach space, K be a nonempty, closed,
convex and bounded subset of X and let V : K — II(Y) map any x € K to a nonempty set
V(x) CY such that 0 ¢ V(x). Moreover, let  : K X K — II(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;
(i) for any fixed x € K, the set {y € K : ®(x,y) € V(x)} is convex;

(iii) for any fixed y € K, the set {x € K : ®(x,y) € V(x)} is closed with respect to the topology
induced on K by the weak topology of X.

Then, Sll< #0.

Proof Let A: K — TI(K x K) be defined as A(x) = ®*(V(x)) for all x € K. By (i),
®(x,x) € V(x), i.e. (x,x) ¢ A(x). By (ii), the set {y € K : (x,y) € A(x)} is convex for all
x € K, while, by (iii), {x €K : (x,y) ¢ A(x)} is closed for all y € K. Then, by Lemma 1, there
exists x € K such that ®(x,y) € V(x) for all y K. O

Theorem 2. Let X be a reflexive Banach space, Y be a Banach space, K be a nonempty, closed,
convex and bounded subset of X and let V : K — I1(Y) map any x € K to a set V(x) € Y such
that 0 ¢ V(x). Moreover, let ® : K x K — II(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;
(i) for any fixed x € K, the set {y € K : ®(x,y) NV (x) # 0} is convex;

(iii) for any fixed y € K, the set {x € K : ®(x,y)NV(x) = 0} is closed with respect to the
topology induced on K by the weak topology of X.

Then, 512< # 0.

Proof. Let A: K — II(K x K) be defined as A(x) = &~ (V(x)) for all x € K. By (i),
®(x,x)NV(x)=0,ie. (x,x)¢A(x). By (ii), the set {y € K : (x,y) € A(x)} is convex for all
x € K, while, by (iii), {x € K : (x,y) ¢ A(x)} is closed for all y € K. Then, by Lemma 1, there
exists X € K such that ®(x,y)NV(x) =0 for all y €K. O
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Remark 2. Ky Fan’s lemma [5, Lemma 1] is the standard tool to derive existence results for
equilibrium problems on bounded sets (see e.g. [9] and [10]). While in [9] existence of solutions
is obtained based on a duality approach and generalized monotonicity properties, adapting [5,
Lemma 4] enables us to follow a more direct reasoning, that avoids both duality and monotonic-
ity. Our approach in formulating the preceding theorems is more in the spirit of [10]. Anyway,
[10] directly extends existence results for generalized vector equilibrium problems to the case in
which the set K is unbounded, while we will pursue this task separately in the following sections
by means of an apt coercivity condition.

3. Existence Results for (GVEP1a) and (GVEP1b)

The main goal of this section is to prove an existence result for the generalized vector
equilibrium problem (GVEPla) on unbounded sets, conditional on available results for the
existence of solutions to the same problem on closed, convex and bounded sets. This task is
pursued in Theorem 3 below, which generalizes similar results of [7, 8] to set-valued bifunc-
tions, while Corollary 1 combines this theorem with Theorem 1.

The main tool in our proof will be a new coercivity condition introduced in [7, 8] for
scalar and vector equilibrium problems, which is weaker than standard coercivity conditions
in the literature. Given a metric space X, K € X and a function y : X — R, we will use the
following notation for lower level sets of u restricted to K. For any r € R,

W.:={xeK: wx)<rtand U, :={x €K : u(x)<r}.

Definition 2. Let X be a set and K € X be nonempty. A function u : X — R is weakly coercive
with respect to the set K if there exists r € R such that W,. is nonempty and bounded.

Remark 3. If a function u is lower semicontinuous and strongly convex, or it is coercive in the
usual sense (i.e., u(x) — +o0 as ||x|| — +o0), then u is weakly coercive with respect to any
nonempty set. Moreover, if u is convex and weakly coercive, then W, is bounded for each p € R
[14, Chapter 3, Theorem 3.14].

In Theorem 3, we will assume the following coercivity condition, which extends that of
[7, 8] to the case of set-valued bifunctions.

(Gla) There exist a convex and lower semicontinuous function y : X — R, which is weakly
coercive with respect to the set K, and a number r such that for any point x € K\W, with

®(x,y) £ -intC(x), Vyew,, (1)
there is a point z € K, u(z) < u(x), such that ® (x,z) € —C(x).

Remark 4. Notice that, when X is a reflexive Banach space, W, in (Gla) must be nonempty.
Indeed, otherwise we can take X € K = K\ W, such that, by Weierstrass’ theorem (u is convex and
lower semicontinuous, hence lower semicontinuous with respect to the weak topology; moreover;
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since it is weakly coercive, there exists ¥ € R such that W; is nonempty and bounded, hence
compact in the weak topology),

u(x)=min u(x)=r">r,
XEW;

but then there exists z € K, u(z) < u(x) = r’, a contradiction.

Remark 5. In what follows, we will assume that X and Y are Banach spaces and that X is
reflexive (in order to easily fulfill the assumptions of compactness), though Lemma 2 and Theorem
3 could also be stated in a more general setting. Similarly, the assumptions on C could be
weakened. A similar remark holds for the results presented in the following sections.

In order to prove the main result of this section, we state the following lemma first.

Lemma 2. Let X be a reflexive Banach space, Y be a Banach space, K € X be nonempty, closed
and convex, C : K — II(Y) be a set-valued mapping that maps any x € K to a convex, solid and
pointed cone of Y and ® : K x K — I1(Y') be such that

C1) forall x,y’,y" €K, if ®(x,y’) € —C(x) and ®(x,y") € —int C(x), then
®(x,ay’+ (1 —a)y”) € —int C(x) for all a €]0,1[.

If there exist p € R, x2 € K such that
® (x°,y) € —int C(x®), VYyew, (2
and z € U, such that ®(x?,z) S —C(x®), then x¢ € S}f.
Proof. Suppose by contradiction that there exists y’ € K \W, such that
® (x2,y") € —int C(x?).

Since K is a convex set, u is a convex function and z € U,,, it is easy to prove that there exists
a€]0,1[ such that y(a):=az+(1—a)y’ € W,,. Therefore, by hypothesis, we obtain

& (x2,y(@)) € —int C(x?),

a contradiction to (2). O

As we anticipated, the following theorem provides a general scheme to obtain existence
results for the generalized vector equilibrium problem (GVEP1a) on an unbounded set, given
coercivity condition (Gla) and any arbitrary existence result for problem (GVEPla) on a
closed, convex and bounded set.

Theorem 3. Let X be a reflexive Banach space, Y be a Banach space, K C X be nonempty, closed
and convex, C : K — TI(Y') be a set-valued mapping that maps any x € K to a convex, solid and
pointed cone of Y and  : K x K — II(Y') be such that:

(1) ®(x,x)=1{0}, forall x €K;
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(ii) forall x,y’,y" €K, if ®(x,y’) € —C(x) and ®(x,y”) € —int C(x), then
®(x,ay’+ (1 —a)y”) € —int C(x), for all a €10, 1[.

Suppose that Slga # 0 whenever H is a nonempty, closed, convex and bounded subset of K. If
(Gla) holds, then S}f # 0.

Proof. Let r € R be as in (G1a) and take ¢ > r. By remarks 4 and 3, W, is nonempty and
bounded; furthermore, it is closed and convex, since K is closed and convex and u is lower
semicontinuous and convex. Therefore, by hypothesis, there exists x¢ € Sl}é ,l.e. x8 €W,
satisfying (2). If x¢ € W,\W,, then by (G1a) there exists z € K such that u(z) < u(x?), i.e.
z €U,, and ®(x?,z) € —C(x?). On the other hand, if x® € W,, setting z := x©, one obtains
®(x2,2) = {0} € —C(x?). In both cases, the result follows from Lemma 2. O

The existence of solutions to problem (GVEP1a) on nonempty, bounded, closed and con-
vex subsets of K is guaranteed, for instance, by Theorem 1.

Corollary 1. Let X be a reflexive Banach space, Y be a Banach space, K be a nonempty, closed
and convex subset of X and let C : K — II(Y) map any x € K to a convex, solid and pointed cone
C(x) C Y. Moreover, let ® : K x K — II(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;

(ii) forall x,y’,y" €K, if ®(x,y’) € —C(x) and ®(x,y”) € —int C(x), then
®(x,ay’+ (1 —a)y”) C —int C(x), for all a €]0,1[;

(iii) for any fixed y € K, the set {x € K : ®(x,y) € —int C(x)} is closed with respect to the
topology induced on K by the weak topology of X.

If (G1a) holds, then S}f # 0.

Proof. Observe that assumption (ii) implies that for any fixed x € K, the set
{y €e K: &(x,y) € —int C(x)} is convex. Hence, for any nonempty, closed, convex and
bounded set H C K, assumptions (i)-(iii) of Theorem 1 hold (with K replaced by H and
V(x) = —int C(x)) for & restricted to H x H. Then, by Theorem 1, S}I" # (. Hence, the
conclusion follows from Theorem 3. O

Finally, reasoning on the same lines, one can prove analogous results for problem (GVEP1b).
To this end, it basically suffices to substitute C(x)\{0} for int C(x) (in this case, C does not
need to be solid).

For instance, Corollary 1 reads as in the following, where the coercivity assumption (G1la)
is replaced by

(G1b) There exist a convex lower semicontinuous function u : X — R, which is weakly coercive
with respect to the set K, and a number r such that for any point x € K\W, with

there is a point z € K, u(z) < u(x), such that ® (x,z) € —C(x).
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Corollary 2. Let X be a reflexive Banach space, Y be a Banach space, K be a nonempty, closed
and convex subset of X and let C : K — II(Y) map any x € K to a convex and pointed cone
C(x) C Y. Moreover, let ® : K x K — II(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;

(i) forallx,y’,y" €K, if ®(x,y’) € —C(x) and &(x,y"”) € —C(x)\{0}, then
®(x,ay’+(1-a)y”) € —C()\{0}, forall a €]0,1[;

(iii) for any fixed y € K, the set {x € K : ®(x,y) € —C(x)\{0}} is closed with respect to the
topology induced on K by the weak topology of X.

If (G1b) holds, then SLb # 0.

4. Existence Results for (GVEP2a) and (GVEP2b)

The goal of this section is to briefly explain how to obtain existence results for problems
(GVEP2a) and (GVEP2b) on unbounded sets, analogous to corollaries 1 and 2.

The proofs are on the same lines and we will explicitly propose only those related to
problem (GVEP2a). In this case, the coercivity assumption is modified in the following natural
way.

(G2a) There exist a convex lower semicontinuous function u : X — R, which is weakly coercive
with respect to the set K, and a number r such that for any point x € K\W, with

$(x,y)N—intC(x)=0, VyeWw, 4)
there is a point z € K, u(z) < u(x), such that ® (x,z) N —C(x) # 0.
Again, as in (G1la) the set W, in (G2a) is nonempty and bounded (see remarks 4 and 3).

Lemma 3. Let X be a reflexive Banach space, Y be a Banach space, K C X be nonempty, closed
and convex, C : K — TI(Y') be a set-valued mapping that maps any x € K to a convex, solid and
pointed cone of Y and ® : K x K — II(Y) be such that

C2) forall x,y’,y" € Kif (x,y’)N—C(x)# 0 and ®(x,y”) N —int C(x) # 0, then
&(x,ay’+(1 —a)y”)n—int C(x) #0 for all a €]0,1[.

If there exist p € R, x¢ € K such that
®(x%,y)N—int C(x?) =0, VyeWw, (5)
2
and z € U, such that ® (x®,z) N —C(x?) # 0, then x° € S;°.
Proof. Suppose by contradiction that there exists y’ € K \W, such that

® (x2,y") n—int C(x2) #0.
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Since K is a convex set, u is a convex function and z € U,,, there exists @ € 10,1[ such that
y(@):=az+(1—a)y’ €W,. Therefore, by hypothesis, we obtain

® (x2,y(a)) N—int C(x?) #0,

a contradiction to (5). O

The following theorem provides a general scheme to obtain existence results for the gen-
eralized vector equilibrium problem (GVEP2a) on an unbounded set, given coercivity condi-
tion (G2a) and any arbitrary existence result for problem (GVEP2a) on a closed, convex and
bounded set.

Theorem 4. Let X be a reflexive Banach space, Y be a Banach space, K € X be nonempty, closed
and convex, C : K — TI(Y') be a set-valued mapping that maps any x € K to a convex, solid and
pointed cone of Y and ® : K X K — II(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;

(ii) for all x,y’,y” € K, if ®(x,y" )N —C(x) # 0 and ®(x,y”) N —int C(x) # 0, then
&(x,ay’+ (1 —a)y”)n—int C(x) #0, for all a €]0,1][.

Suppose that Slzia # 0 whenever H is a nonempty, closed, convex and bounded subset of K. If
(G2a) holds, then SI%‘I # 0.

Proof. Let r € R be as in (G2a) and take o > r. W, is nonempty, bounded, closed

and convex. Thus, by hypothesis, there exists x¢ € Sﬁf , .e. x@ € W, satisfying (5). If
e

x€ € W,\W,, then by (G2a) there exists z € K such that u(z) < u(x?), i.e. z € Uy, and

®(x2,2)N—C(x€) # 0. On the other hand, if x¢ € W,., setting z := x€, one obtains

®(x2,2)N—-C(x2)= {0} N —=C(x?) # 0. In both cases, the result follows from Lemma 3. [J

The existence of solutions to problem (GVEP2a) on nonempty, bounded, closed and con-
vex subsets of X is guaranteed, for instance, by Theorem 2.

Corollary 3. Let X be a reflexive Banach space, Y be a Banach space, K be a nonempty, closed
and convex subset of X and let C : K — II(Y) map any x € K to a convex, solid and pointed cone
C(x) €Y. Moreover, let  : K x K — I1(Y) be such that:

(1) ®(x,x)=1{0}, forall x €K;

(ii) for all x,y’,y” € K, if ®(x,y" )N —C(x) # 0 and ®(x,y”) N —int C(x) # 0, then
®(x,ay’+ (1 —a)y”)n—int C(x) #0, forall a €]0,1[;

(iii) for any fixed y € K, the set {x € K : ®(x,y)N —int C(x) = 0} is closed with respect to the
topology induced on K by the weak topology of X.

If (G2a) holds, then SI%" Z0.
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Proof. Assumption (ii) implies that for any fixed x € K, the set
{y € K: ®&(x,y) N —int C(x) # 0} is convex. Hence, for any nonempty, closed, convex and
bounded set H C K, assumptions (i)-(iii) of Theorem 2 hold (with K replaced by H and
V(x) = —int C(x)) for & restricted to H x H. Then, by Theorem 2, Sfla # (. Hence, the
conclusion follows from Theorem 4. O

Remark 6. With a reasoning analogous to that employed in this section, one can prove an
existence result for problem (GVEP2b) as well. To this end, it suffices to replace condition C2 in
Lemma 3 (and, consequently, condition (ii) of Theorem 4 and Corollary 3) by

C3) forall x,y’,y" €K, if ®(x,y )N —C(x) # 0 and ®(x,y”)N(—C(x)\{0}) # 0, then
o(x,ay’+(1—a)y”)n(—=C(x)\{0}) #0 for all a €]0, 1],

and to modify the coercivity condition (G2a) replacing (4) by
®(x,y)N—-C(X)\{0} =0, Vyew,. (6)

5. Applications and Examples

As an application of the theoretical results obtained in the preceding section, one can
consider the case in which the order structure in Y is lexicographic. In this case, Y is a finite
dimensional vector space, which we will identify with R", for simplicity, and the lexicographic
order is defined by considering the cone

Ciex ={0}U{x€eR": Jiel, x;>0,Vj<ix; =0} (7)

where I,, = {1,...,n}. Note that Cj,, is convex, pointed and solid, but it is neither closed, nor
open. Moreover, the order is total, since —Cj,, U Cj,,, = R".

Though G, is solid, in this setting it is worthwhile considering formulation (GVEP2b) of
the generalized vector equilibrium problem, since, as lexicographic order is total, it coincides
with the strong formulation of the problem, i.e., find

X € K such that &(x,y) € Cy,,, Yy eK. 8

Corollary 2, with Y = R" and C(x) replaced by C;,, for all x € X, then yields an existence
result for the generalized vector equilibrium problem (GVEP2b) on unbounded sets.

Finally, we provide a simple numerical example instantiating the results presented in the
previous sections.

Example 1. Let X = R, K = [0,40o0[, Y be a Banach space, C C Y be a convex, solid and
pointed cone, and C : K — II(Y) be the constant set-valued mapping defined as C(x) = C for all
x € K. Then, the set-valued mapping ® : K x K — I1(Y') defined as

—intC, ifx>y
@(x,y) =4 {0}, fx=y
intC, ifx<y,
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fordll (x,y) € K XK, satisfies the assumptions of corollaries 1 and 3. We prove it for Corollary 1
only, given that the proof for Corollary 3 is similar. First of all, by definition of ®, ®(x,x) = {0}
for all x € [0,4+00[. Next, given a fixed y € [0,4o00[, the set {x € [0,4+oc0[: ®(x,y) € —int C}
is the interval [0, y], which is closed. Finally, given arbitrary x,y’,y” € [0,+oo[ such that
®(x,y’) S —C and ®(x,y”) € —int C, one has y’ € [0,x] and y” € [0, x[. Then, for any
a€]0,1[, ay’+ (1 — a)y” belongs to [0, x[ and, as a consequence,
®(x,ay’+(1—a)y”) C —int C.

An analogous example, with C a non solid cone and int C replaced by C\{0}, can be provided
for Corollary 2.

As a particular case, when Y =R and K = C = [0, +00[, we obtain the set-valued mapping
® : K X K — TI(R) defined as

]—00,0[, ifx>y
®(x,y) =1 {0}, fx=y
10,+o00[, ifx<y,

forall (x,y) € K x K, which satisfies the assumptions of corollaries 1, 2 and 3.
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