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Abstract. The object of the present paper is to study nearly quasi-Einstein manifold. Also we have
studied decomposable Riemannian manifold and it is shown that a decomposable Riemannian mani-
fold is nearly quasi-Einstein if and only if both the decompositions are Einstein.
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1. Introduction

It is well known that a Riemannian manifold (M™, g)(n > 2) is Einstein if its Ricci tensor
S of type (0,2) is of the form S = ag, where «a is a constant, which reducesto S = %g, r being
the scalar curvature (constant) of the manifold.

The notion of quasi-Einstein manifolds arose during the study of exact solutions of the
Einstein field equations as well as during considerations of quasi-umbilical hypersurfaces. For
instance, the Robertson-Walker spacetimes are quasi-Einstein manifolds. A non-flat Rieman-
nian manifold (M", g)(n > 2) is said to be quasi-Einstein manifold [1, 3, 5, 6, 7, 8, 9, 10, 11,
12, 15, 16] if its Ricci tensor S of type (0,2) is not identically zero and satisfies the following:

SX,Y) = ag(X,Y)+ BAXIA(Y), (1)

where a, 8 are scalars of which B # 0 and A is a nowhere vanishing 1-form defined by
g(X,p) = A(X) for all X; p being a unit vector field, called the generator of the manifold.
Such an n-dimensional quasi-Einstein manifold is denoted by (QE),. The scalars a, [ are
known as the associated scalars of the manifold. Also the 1-form A is called the associated
1-form of the manifold. From the above definition it follows that every Einstein manifold
is quasi-Einstein. In particular, every Ricci-flat (e.g. Schwarzschild spacetime) manifold is
quasi-Einstein.

Recently the notion of quasi-Einstein manifold have been weakened by De and Gaji [2, 14]
and they introduced the notion of nearly quasi-Einstein manifold with the existence of such
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notion. A Riemannian manifold (M", g)(n > 2) is called nearly quasi-Einstein if its Ricci tensor
S is not identically zero and satisfies the condition

SX,Y)=ag(X,Y)+BDX,Y), (2)

where a, f are non-zero scalars and D is a symmetric non-zero (0, 2) tensor. The scalars a,
B are known as associated scalars and D is called the associated tensor of the manifold. Such
an n-dimensional manifold is denoted by N(QE),,.

The present paper deals with a study of N(QE),(n > 2). The paper is organized as fol-
lows. Section 2 is concerned with Ricci-pseudosymmetric N(QE), and we obtain a N(QE),
is Ricci-pseudosymmetric if and only if it is D-pseudosymmetric. Section 4 deals with de-
composable Riemannian manifold. It is proved that a decomposable Riemannian manifold
is nearly quasi-Einstein if and only if both the decompositions are Einstein. Section 5 deals
with some global properties of N(QE), and it is proved that under certain condition such a
manifold does not admit non-zero Killing vector field, non-zero projective Killing vector field
and non-zero conformal Killing vector field. Finally the last section deals with an interesting
example of nearly quasi-Einstein manifold with non-vanishing scalar curvature which is not
quasi-Einstein.

2. Ricci-pseudosymmetry N(QE),

An n-dimensional Riemannian manifold (M", g) is called Ricci-pseudosymmetric [4] if the
tensor R - S and Q(g, S) are linearly dependent, where

(RX,Y)-8)(Z,U)=-S(R(X,Y)Z,U)—-S(Z,R(X,Y)U), 3)
Q(g,S)(Z,U;X,Y)=—=S((X N Y)Z,U) = S(Z,(X Ag Y)U). @

Thus the condition of Ricci-pseudosymmetry is
(R(X,Y)-8)(Z,U) = LsQ(g,S)(Z,U;X,Y) (5)

holding on the set Us = {x e M : S # %g at x}, where Lg is some function on Ug. If
R-S = 0 then M is called Ricci-semisymmetric. Every Ricci-semisymmetric manifold is
Ricci-pseudosymmetric but the converse is not true [4]. In [2] De and Gaji studied Ricci-
semisymmetric N(QE),,.

Now we prove the following:

Theorem 1. A nearly quasi-Einstein manifold is Ricci-pseudosymmetric if and only if it is D-
pseudosymmetric.

Proof. We now consider a Ricci-pseudosymmetric N(QE),. Then from (3)-(5), we can
write
S(R(X,Y)Z,U) +S(Z,R(X,Y)U) = Lg{S(X,U)g(Y, Z) (6)
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Using (2) in (6), we get

D(R(X,Y)Z,U)+D(Z,R(X,Y)U)=Lg{D(X,U)g(Y,Z) 2

which implies that the manifold is D-pseudosymmetric.
Conversely, if the manifold is D-pseudosymmetric, then (7) holds. By virue of (2), it fol-
lows from (7), we get the relation(6) and consequently, the manifold is Ricci-pseudosymmetric.

Corollary 1. A nearly quasi-Einstein manifold is Ricci-semisymmetric if and only if it is D-
semisymmetric [2].

3. Decomposable Riemannian manifold

A non-flat Riemannian manifold (M", g) is said to be decomposable [19] if it can be
expressed as Mf X Mg “P for 2 < p <n— 2, that is, in some coordinate neighbourhood of the
Riemannian manifold (M", g), the metric can be expressed as

ds? = giidxidx) = gpdx®dxt+ €op dxdxP, ®)

2

*
where g, are functions of x!,x2,--- xP(p < n) denoted by ¥ and § «p are functions of

xP*1 xP*2 ... x™ denoted by ;; a,b,c,--- run from 1 to p and a, 3,7, run from p + 1 to
n. The two parts of (8) are the metrics of Mf (p = 2) and Mzn “P(n — p > 2) which are called
the decomposition of the manifold M" =M} x M, *(2<p <n-2).

Let (M", g) be a Riemannian manifold such that Mf X Mg “Pfor 2 < p <n-—2. Here
throughout this section each object denoted by a “tilde” is assumed to be from M; and each
object denoted by a “star” is assumed to be from M,.

et X,Y, Z, U, V € y(M;) and )?, 1;, 5, 5, \;e x(M,), then we have the following
relations:

X
N e e e o e e x ok ok Kk x ok k%
R( ’Y.’Z’ U)ZR(X’Y.’Z’ U);R(X.’Y’Z.’ U) :R( .’Y’Z.’ U).’
* %
Y),

S(X,7)=5(X, V) 5(X,¥) =5 (X,
(V£8)(7,2) = (VxS)(V, 2): (V. S)(Y¥,2) = (V,, S)V, 2),
and r =7+ ;f,

where r, 7, and r are the scalar curvature of M , My, M, respectively.
In [19] Yano and Kon find a necessary and sufficient condition that both the decomposi-
tions of a decomposable Riemannian manifold are Einstein and they obtained that
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Theorem 2. In a decomposable Riemannian manifold M" = Mf X Mzn_p(Z <p<n-—-2),a
necessary and sufficient condition that the two decompositions are both Einstein is that the Ricci
tensor of the manifold has the form

S(X,Y)=ag(X,Y)+ bF(X,Y), 9
a and b being necessarily constant and F is a (0, 2) type metric tensor such that
- * k%
FX,Y)=gX,Y)+ 8 (X,Y). (10)
By virtue of Theorem 2, we can state the following:

Theorem 3. A decomposable Riemannian manifold M = Mf X Mg P(2<p<n-2)isnearly
quasi-Einstein if and only if both the decompositions are Einstein.

4. Some global properties of N(QE),

This section is concerned with a compact, orientable N(QE),(n > 2) without boundary
with a, 8 as associated scalars and D as the structure tensor. Then we prove the following:

Theorem 4. Ifin a compact, orientable N(QE),(n > 2) without boundary, the associated scalars
and the structure tensor are such that a < 0 and BD(X,X) < O, then there exists no non-zero
Killing vector field in this manifold.

Proof. Tt is known that [17] for a vector field X in a Riemannian manifold M, the following
relation holds

f [S(X,X) VX2 — (divX)z] dv <0, (11)
M

where “dv” denotes the volume element of M. If X is a Killing vector field, then divX =0
[18]. Hence (11) takes the following form

J [S(X,X) _ |VX|2] dv =0. (12)
M
Let us consider a < 0 and SD(X,X) < 0. Hence by virtue of (2) we have

J [a|X|2 +BD(X,X) — |VX|2] dv

M=N(QE),

> f (500,30 = |vx ] v,

M

which yields by virtue of (12) that

f [alez +BD(X,X) — |VX|2] dv > 0.
M
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If a < 0and fD(X,X) < 0, then the last relation reduces to
f [aleZ +BD(X,X) — |VX|2] dv =0.
M

Hence X = 0. This proves the theorem.

Definition 1. [18] A vector field X in a Riemannian manifold (M™",g) (n > 2) is said to be
projective Killing vector field if it satisfies

($x8)(Y,Z) = w(Y)Z + w(Z2)Y
for any vector fields Y and Z, w being a certain 1-form and $ is the operator of Lie differentiation.

Theorem 5. If in a compact, orientable N(QE),(n > 2) without boundary, the associated scalars
and the structure tensor are such that a < 0 and fD(X,X) < O, then a projective Killing vector
field has vanishing covariant derivative, and if @ < 0 and BD(X,X) < 0, then there exists no
non-zero projective Killing vector field in this manifold.

Proof. We know that [17] for a vector field X in a Riemannian manifold M, the following
relation holds

[s0x,5) - Lazp- n—_l(divX)Z] dv=0 (13)
Iy ’ 4 2(n+1) ’

where & is an 1-form corresponding to the vector field X. We now assume a < 0 and
BD(X,X) < 0. Therefore (13) yields S(X,X) < 0 and hence from (13) we obtain d§ = 0
and divX = 0. This implies that X is harmonic as well as a Killing vector field. Consequently
its covariant derivative vanishes. This proves the theorem.

Definition 2. [18] A vector field X in a Riemannian manifold (M™,g) (n > 2) is said to be
conformal Killing vector field if it satisfies

$xg=2pg

for any vector field X, where p is given by p = —%(divX) and $ is the operator of Lie differenti-
ation.

Theorem 6. If in a compact, orientable N(QE),(n > 2) without boundary, the associated scalars
and the structure tensor are such that a < 0 and BD(X,X) < O, then there exists no non-zero
conformal Killing vector field in this manifold.

Proof. It is known from [17] that for a vector field X in a Riemannian manifold M, the
following relation holds

f [S(X,X) VX[ n—;z(divX)Z] dv =0, (14)
M

where dv denotes the volume element of M. Now we assume that the associated scalars and
the structure tensor are such that @ < 0 and SD(X,X) < 0. Then proceeding similarly as
before we obtain

VX =0, divX=0.

This proves the theorem.
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5. Example of N(QE),

We define a Riemannian metric g on the n-dimensional real number space R" by the
formula

ds? = ekx' [(dx1)? +sin? x3(dx?)? + (dx3)?] + f(xM)(dxH? + Z(dxl)z, (15)

[=5

where x!

is non-zero finite, 0 < x3 < %, k is a non-zero finite real number excepting +2 and
is a positive smooth function of x* only. Then the only non-vanishing components of the
p Y. y g p

Christoffel symbols, the curvature tensor, the Ricci tensors are given by

k k
1 _ % 2 3 1 1 .23
r11—E—rlz—rlg__rsgirzz—_gsm )
1f'(x)
3 i3 3 2 _ 314 _
['yy = —sinx”cosx”, 'y = cotx”,T’,, = Em,
k? k? k?
R2332 = (Z - 1)ekXI Sin2X3,522 = (Z - 1) Sin2 x3,533 == (Z - 1)

Here the scalar curvature of the manifold is r = 2(%2 — 1)e_kx1 # 0. Therefore R™ with the
considered metric is a Rimennian manifold (M", g) of non-vanishing scalar curvature. We
shall now show that this M" is a nearly quasi-Einstein manifold, i.e., it satisfies (2).

Let us now consider the associated scalars and the components of the structure tensor of
D as follows:

1k? 1 1 k2
a=5(7—1)e kx’ﬁzi(?_l)’ (16)
and
sin?x®  for i,j=2,2,
Dij(x)=41 for i,j=3,3, a7
0 otherwise

at any point x € M.
Then it can be easily shown that the manifold under consideration is nearly quasi-Einstein
manifold. Hence we can state the following:

Theorem 7. Let (M", g) be a Riemannian manifold endowed with the metric given in (15).
Then (M", g) is a nearly quasi-Einstein manifold with non-vanishing scalar curvature, which is
not quasi-Einstein.
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