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Abstract. By applying the differential subordination theorem, we further investigate the subclass
HZ’Y[a, B1 of functions which are analytic in the unit disk. Several subordination results on a con-
vex function and a incomplete beta function are obtained. Moreover, the function that belongs to the
Hg’y[a, B1 with a Cauchy-Euler differential equation is also discussed on similar subject. Our results
extend some earlier works.
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1. Introduction and Definition

o0
Let .«7 denote the class of all functions of the form f(z) =2+ Y, a,z*, which are analytic
k=2
in the open unit disk U = {z € C, |z| < 1} and let S be the subclass of &7 consisting of
univalent functions. .#" denotes the usual class of convex functions.
Suppose that the functions f and g are analytic in U. We say that f is subordinate to g

in U if there exists a functions ¢ analytic in U such that ¢(0) =0, [¢(z)| < 1(]z| < 1) and
f(2) =g(¢(2))(|2] < 1), written f < g.

Let be given two functions f(z) = z + Z a;z" and g(z) = z + Z b2k analytic in the
k= k=2
open unit disc U = {z € C : |z| < 1}, then the Hadamard product(or convolution) f * g of two

functions f, g is defined by f * g(z) =2z + Z a; b2k

k=2
Let (x); be the pochhammer symbol defined by
1, k=0,x € C/{0},
x(x+1D)(x+2)...(x+k—-1), keN={1,2,3,...},xeC.
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In [7], Ruscheweyh defined the incomplete beta function

(@k-1
(k-1

where a is any real number and ¢ # {0,—1,-2,...}.
Now we recall the linear multiplier fractional differential operator D;’Y introduced and
studied by Al-Oboudi and Al-Amoudi [1] as follows:

Dg’of(z) = f(2),
D} f (@) = 2=(f (=)) + (1~ ) f (=) = D f @),
D2 f(z)=D(D}" f(2)),
D} f () = D303 f (),

forn e N,A > 0and 0 < y < 1, where Q"f(2) = I'(2 — v)2"D! f(2) is an extension of the
fractional derivative and fractional integral defined by Owa and Srivastava [6].

o0
h(a,c;2) =z+Z 25 |zl <1, 1
k=2

o0
Suppose f(z) =z + ). a;z, in the light of the above definitions, it is easy to conclude
k=2
that

o0
D%Y =z + Zw’k(}’, A'):lnakzk3 ne NO =NU {O}’
k=2

where
_ k+1Dr@2-y)

> A‘ -
Yr(y,4) r(k+1—7)
Let T denote the subclass of S whose elements can be expressed in the form

[1+A(k—=1)] (k=2,3,...). 2)

o0
() =z+2akzk a; < 0.
k=2

Using the differential operator D", Marouf [5] introduced and studied the class H} " [a, ].
As a function f(z) € T is in the H;’Y [a, ] if and only if it satisfies

5 { D7) Dy (@)

Ty~ TAMY oo
DIF @) DIF @)

In particular, the class H?’o[a,[o’] = H[a,f] was studied by Lashin [3] and the classes

H?’O [0,8] =T*(B) and H?’o[l,ﬁ] = C(3) were studied by Silverman [8].
To prove our results we shall need the following Definition and Lemma:

+(1-a) }>ﬁ (@>0;0< B <0).

Definition 1. [See 9] An infinite sequence {b,}>"; of complex numbers will be called a subordi-
nating factor sequence if whenever f € JZ, we have the subordination given by

o0

Zanbnz” <f(z) (z€U,a, =1).

n=1
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Lemma 1. [See 9] The sequence {b,} >, is subordinating factor sequence if and only if

m{1+2i bz"} >0 (zel).

n=1

Lemma 2. [See 7[]Let 0 <a <c. Ifc = 2 or a+c = 3, then the function

(@k-1 k
O, z° (z€0)

o
h(a,c;z) =z+2
k=2

belongs to the class JZ of convex functions.

In [5], Marouf proved the sufficient and necessary condition on a function

o0
f@) =2+ a;z* €T tobe H;’Y[a, f1, which is equivalent to the following Lemma:
k=2

Lemma 3. [See 5] A function f(z) € T is in the H;’Y[a, B1 if and only if

Z[(awk(% A)+DWr(r; ) =D+ 1= B[y, D] ax < 1= 3)

k=2
which (v, A) is defined as (2).

Lemma 4. [See 4] If the functions f(z) and g(2) are analytic in U with g(z) < f(2), then for
s>0andz =re'? (0<r <1), we have

27 . 271 '
f If(re'®)f < f g(re')P.
0

0

2. Some Results on the Class H, " [a, f]

We begin with the following theorem:

Theorem 1. If f € H;’Y[a,[a’] inUands >0, 0<|zg| =r <1, then for function g € &

2(2) 2 4
mf*ﬂ@* 8(2) )
and
&JAZTE |f*g(rei9)|5d9 S2f2ﬂ|g(rei9)|sd9 (5)
¢(2)+1_ﬁ 0 0

where (2) = [(a5(y,2) + 1)(Y2(y, A) = 1) +1 = B1[(y, A)]™
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o0 o0
Proof Suppose we take f(z) =z+ Y, qzz* € Hy"[a, ] and g(z) =z + Y, biz* € .7,
k=2 k=2
then

®(2) ®(2) i ®(2)

= k
282 +20-p) 88) = e 20— B’ 26(2) + 2(1 = §) k0= -

k=2

If we can know

s 8(2) )
m{Hz;z@(zwzu /a’)a"z} ~ 0

From Lemma 1, it implies that the sequence

®(2) o0
{2<I>(z)+z(1—/a’)a’<}1

is a subordination factor sequence, with a; = 1. Now

X ®(2) ®(2) k
m{Hz;m(sz(l—ﬁ)akz} {1+Z<I>(2)+1 /a’a"z}

®(2)
m{1+<1>(2)+1—[52 <I>(2)+1 Zq)(z)akz }
S, ) Z@(zﬂaur ©)

®2)+1-p <I>(2)—|—1
since

o(k) = [(ayi(r, M)+ D(i(r, A) = D+ 1= BllYi(y, V]* (k=2,3,...)

and
rk+1)r@E-ry)
LA) = 1+Ak—1 k=2,3,...
D R LR CER )
is a increasing function of k, so 0 < ®(2) < (k) (k=2,3,...).

Following (6), we can write

(2)
@15 <I>(2)+1 Zq)(kﬂaklr

As 0 < r <1, it can make sure

®(2)
Te@+1-p TR Zq)(k)'ak' 7
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Using Lemma 3 in (3) and following (7), we obtain

= () ) a(2) 1-p
m{1+2;2¢(2)+2(1—p’)ak2 }21_<1>(2)+1—/3r_<1>(2)+1—/5r_1_r>0’

In the light of Definition 1, we have

®(2) B 0 ®(2) )
26(2)+ 2(1 _ﬁ)f *g(z) = ; 20(2)+ 2(1 — ﬁ)bkaZ =< g(z),

Furthermore, it is easy to deduce the result in (5) by using (4) and Lemma 4.

o0 o0
Corollary 1. If f(z) =z + Y. a;z* € H;’Y[a,[a’] and F(z) =z + ). %akzk, then
k=2 "k

k=2
__%@) by <ona,cn) ®)
®2)+1-p
and -1 a(2)
Rf(z) > e C)

where ®(2) = [(a,(y, A)+1)(P,(y, A)—1)+1—-B1[Y5(y, A)]", and h(a, c; 2) is the incomplete
beta function defined in (1) withO <a <c,c=2ora+c=3.

Proof. Since 0 <a <c,c = 2ora+c = 3, using Lemma 2, we can know that

(@k-1

ke .
(k-1

o0
h(a,c;2) =z+Z
k=2

Taking g(z) = h(a,c;2) and g(z) = ﬁ in Theorem 1, respectively, the results (8) and (9) are
obtained.

Corollary 2. If f € H[a,B]inUands >0, 0 < |z| =r < 1, then for function g € #

2(a+1)—p

mf *g(z) < 2g(2)

and
27

If * g(re'®)*d6 < zf |g(re!®)Fde6.
0

[2(a+1)-B] [
2(a—=pB)+3 J,

Proof. By takingn =0, y =0 and A =1 in Theorem 1, Corollary 2 is given.
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Corollary 3. If f e T*(f)inUands > 0, 0 < |zg| =r < 1, then for function g € #

2—-8 9
ot 8 < 26)
and
2-6 [ g f9)|3d9<2f2ﬂ|( 0546
re I re .
3-26 ), g .8

Proof. By taking a = 0 in Corollary 2, Corollary 3 is given.

Corollary 4. If f e C(f)inUands > 0, 0 < |z| =r < 1, then for function g € &
4-p
5-28

frg(z) <2g(2)

and
27

|f *g(re®)lFd6 < ZJ |g(re®)ld6.
0

4— ﬁ 2n
5-28 ),
Proof. By taking a = 1 in Corollary 2, Corollary 4 is given.

3. Some Results on the Class H, " [a, 8] with Fixed Equation

In this section, we shall obtain several interesting results on the functions which are de-
fined by the class H;’Y[a, p1 with the following nonhomogeneous Cauchy-Euler differential
equation:

d?L dL

22F+2(u+1)z—+u(u+ DL =1+w)(2+uf(z) (10)
Z dz

where L(z) €T, f(2) EHZ’Y[a,[J’], u+1>0,ucRr.
The cauchy-Euler differential equation was introduced earlier to study the distortion in-
equalities and neighborhoods problems of the other class of functions by O. Altintas et al.

[2].

o0
Theorem 2. If the function L(z) =z + Y. ¢;z* € T satisfy the equation (10) with
k=2

f@=z+ >, a,zk € HZ’Y[a,ﬁ], then for function g(z) € X,

k=2
(u+3)2(2)
(M+3)¢(2)+(M+1)(1—[3’)L*g(z)_<2g(z) (11D
and 2 2
(u+3)2(2) n . - o
(u+3)2(2)+ (u+1)(1 _ﬁ)fo |L*g(re')|Pdo < 2L lg(re!®)Fdo, 12)

where ®(2) = [(ap2(y, A) + D(2(r,A) =D+ 1= ]2y, A)]", 0 <|z[=r <1, s >0.
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Proof. Suppose g(z) =z + io: byzk € ¢, then
k=2
(u+3)(2) L+ g(z)= (u+3)%(2) .
2(u+3)e@) 2w+ DA-) ° 2(u+3)2(2)+2(p+1)(1 - B)
i (u+3)%(2)
2 2(u+3)2(2)+2(u+1)(1 - )

kaZk.

If we show that

(U +3)8(2) )
g‘““Z2(u+3)<1>(z)+z(u+1)(1 ;o> 0

Then from Lemma 1, we say that the sequence

{ (u+3)2(2) ) }00
20p+3)e(2)+2u+1D(1-p)

is a subordination factor sequence, with ¢; = 1. Now

o (1 +3)2(2) k
m{HZkZZZ 2(u+3)e@)+ 2+ DA-H }

_ (u+3)0(2) )

_m{”é(wm(zmw1)(1—/5)”‘7’ }

~ (u+3)0(2) (u+3) = )

- m{” 302 ++DA-F) | (u+3)8@) + @+ 1( —ﬁ)éq’(z)ckz }
(u+3)0(2) (u+3)

Because L(z) satisfies the differential equation with the f(z) € H;’Y[a, B1, so

o = (u+1D(u+2) o
(k+w(k+u+1)
Following (13), we have
B (u+3)9(2) o (u+3) iq)( ) (u~+1)(u+2) |t
(u+3)2(2)+w+1A-B) (Ww+3)2@)+Ww+D(A-p) & (k+w(k+u+1)
3 (u+3)2(2) . (u+3) Z 2 )(u+ )(u+2)| Ik
(u+3)2(2)+w+1A-B) (Ww+3)2@)+Ww+D(A-p) & (2+w)(u+3)
(u+3)2(2) (u+1)

- - k
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Since
(k) = [(ar(y, A) + D@y, A) — 1) + 1= Bl[Yily, V]" (k=2,3,...)
and I'(k+1)1r(2 )
_ T _ _
Yy, A) = Tkt 1=7) [1+Ak—-1)] (k=2,3,...)

is a increasing function of k, so 0 < ®(2) < ®(k) (k=2,3,...).
Following (14), we can write

_ (u+3)%(2) B (u+1) o0 )
T @ e na-p) (M+3)¢(2)+(u+1)(1_ﬁ)k222¢(k)|aklr .

As 0 < r <1, it can make sure

(,LL+3)CI>(2) (,LL+ 1)7‘ 00
717 (W+3)e@)+@+DA-p) (M+3)¢(2)+(u+1)(1_ﬁ);¢(k)lakl. (15)

o0
Since f(z) =2+ Y, € H}"[a, 8], using Lemma 3 and following (15), we obtain
k=2

< (4 +3)8(2) ,
MIT2) T ae@ 2 AP
(4 +3)8(2) (1= F)u+1)

T390+t D=  wr3e@+urna-p 770

In the light of Definition 1, we have

(u+3)2(2) Lig(z) = i (u+3)2(2)
2(u+3)2(2) + 2+ DA-B) ° 2(p+3)2(2) +2(u+1)(1 - )

bkckzk < g(2).
k=1

Furthermore, it is easy to deduce the result in (12) by using (11) and Lemma 4.

o0
Corollary 5. If the function L(z) =z + Y. cx2* € T satisfy the equation (10) with

k=2
o o0
fx)=z+ >, azk e H;’Y[a,[o’] and F(z)=z+ ). ((Z))%ckzk, then
k=2 k=2 "kt
(u+3)2(2)

(u+3)2(2)+(u+1)(1 - [D,)F(Z) < 2h(a,c;2) (16)

and
_(w43)2(2) +(u+1)(A - )

(u+3)2(2) ’
where ®(2) = [(a,(y, A)+1)(Po(y, A)—1)+1—-B1[Y5(y, A)]", and h(a, c; 2) is the incomplete
beta function with0 <a <c¢,c=22ora+c=3and0<|z|=r<1,s>0.

RL(z) > a7
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Proof. Since 0 <a <c¢,c = 2ora+c = 3, using Lemma 2, we can know that

o (@)k-1 k
h(a,c;2) =2+ E ——z eX.
=2 (k-1

Taking g(z) = h(a,c;2) and g(z) = 1 in Theorem 2, respectively, the results (16) and (17)
are obtained.

o0
Corollary 6. If the function L(z) =z + Y, cxzk € T satisfy the equation (10) with
k=2

fl@)=2+ § a,z* € H[a, B, then for function g(z) € ¥,
k=2

(u+3)[2(a+1)—-f]
(w+3)[2(a+1) =Bl +@+1)(A-p)

L+g(z) <2g(2)

and
21

27
i+ 3)Hat 1) Al f IL* g(re®)Pdo szf |g(re®)Pde.
[5) 0 0

(w+3)[2(a+1) =Bl +(p+1)1A -
Proof. By takingn =0, y =0 and A =1 in Theorem 2, Corollary 6 is given.

o0
Corollary 7. If the function L(z) =z + Y, 2k € T satisfy the equation (10) with
k=2

f@)=2z+ io: a,z* € T*(B), then for function g(z) € %,
k=2

(u+3)2-6)
(w+3)2=p)+ W+ -p)

L+g(z) <2g(2)

and
(u+3)2-p8) 2n s 21 .
(u+3)(2—/5)+(u+1)(1—/5)f0 I g(re™)l d9<2f0 |g(re®)Fde.

Proof. By taking a = 0 in Corollary 6, Corollary 7 is given.

o0
Corollary 8. If the function L(z) =z + Y. c,2* € T satisfy the equation (10) with

k=2
fl@)=2+ Ozo: a2k € C(B), then for function g(z) € A,
k=2
(u+3)(4-p)

T 3—P+ s Da—p)- 8@ <2

and
27

27
w+3)@-p) f IL % g(rei®)[°d6 szf g(rei®)Pdo.
ﬁ) 0 0

(w+3)4-F)+u+1)(1-
Proof. By taking a = 1 in Corollary 6, Corollary 8 is given.
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