EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 3, 2012, 380-389 ISSN 1307-5543 – www.ejpam.com

Some Results for Certain Subclasses of Functions with Differential Equation and Subordination

Liangpeng Xiong*, Xiaoli Liu

The College of Engineering and Technical, ChengDu University of Technology University, Leshan, Sichuan, 614000, P.R. China

Abstract. By applying the differential subordination theorem, we further investigate the subclass $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ of functions which are analytic in the unit disk. Several subordination results on a convex function and a incomplete beta function are obtained. Moreover, the function that belongs to the $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ with a Cauchy-Euler differential equation is also discussed on similar subject. Our results extend some earlier works.

2010 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Analytic functions, Convex function, Subordination, Differential equation

1. Introduction and Definition

Let \mathscr{A} denote the class of all functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C}, |z| < 1\}$ and let S be the subclass of \mathscr{A} consisting of univalent functions. \mathscr{K} denotes the usual class of convex functions.

Suppose that the functions f and g are analytic in \mathbb{U} . We say that f is subordinate to g in \mathbb{U} if there exists a functions ϕ analytic in \mathbb{U} such that $\phi(0) = 0$, $|\phi(z)| < 1(|z| < 1)$ and $f(z) = g(\phi(z))(|z| < 1)$, written $f \prec g$.

Let be given two functions $f(z)=z+\sum\limits_{k=2}^{\infty}a_kz^k$ and $g(z)=z+\sum\limits_{k=2}^{\infty}b_kz^k$ analytic in the open unit disc $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$, then the Hadamard product(or convolution) f*g of two functions f, g is defined by $f*g(z)=z+\sum\limits_{k=2}^{\infty}a_kb_kz^k$. Let $(x)_k$ be the pochhammer symbol defined by

$$\begin{cases} 1, & k = 0, x \in \mathbb{C}/\{0\}, \\ x(x+1)(x+2)\dots(x+k-1), & k \in \mathbb{N} = \{1, 2, 3, \dots\}, x \in \mathbb{C}. \end{cases}$$

Email addresses: xlpwxf@163.com (L. Xiong), travel-lxl@163.com (X. Liu)

^{*}Corresponding author.

In [7], Ruscheweyh defined the incomplete beta function

$$h(a,c;z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \quad |z| < 1,$$
(1)

where *a* is any real number and $c \neq \{0, -1, -2, ...\}$.

Now we recall the linear multiplier fractional differential operator $D_{\lambda}^{n,\gamma}$ introduced and studied by Al-Oboudi and Al-Amoudi [1] as follows:

$$D_{\lambda}^{0,0}f(z) = f(z),$$

$$D_{\lambda}^{1,\gamma}f(z) = \lambda z(\Omega^{\gamma}f(z))' + (1-\gamma)\Omega^{\gamma}f(z) = D_{\lambda}^{\gamma}f(z),$$

$$D_{\lambda}^{2,\gamma}f(z) = D_{\lambda}^{\gamma}(D_{\lambda}^{1,\gamma}f(z)),$$

$$\dots$$

$$D_{\lambda}^{n,\gamma}f(z) = D_{\lambda}^{\gamma}(D_{\lambda}^{n-1,\gamma}f(z)),$$

for $n \in \mathbb{N}$, $\lambda \ge 0$ and $0 \le \gamma < 1$, where $\Omega^{\gamma} f(z) = \Gamma(2 - \gamma) z^{\gamma} D_z^{\gamma} f(z)$ is an extension of the fractional derivative and fractional integral defined by Owa and Srivastava [6].

Suppose $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, in the light of the above definitions, it is easy to conclude that

$$D_{\lambda}^{n,\gamma} = z + \sum_{k=2}^{\infty} [\psi_k(\gamma, \lambda)]^n a_k z^k, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\},$$

where

$$\psi_k(\gamma,\lambda) = \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} [1+\lambda(k-1)] \quad (k=2,3,\ldots).$$
 (2)

Let *T* denote the subclass of *S* whose elements can be expressed in the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad a_k \le 0.$$

Using the differential operator $D_{\lambda}^{n,\gamma}$, Marouf [5] introduced and studied the class $H_{\lambda}^{n,\gamma}[\alpha,\beta]$. As a function $f(z) \in T$ is in the $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ if and only if it satisfies

$$\Re\left\{\alpha \frac{D_{\lambda}^{n+2,\gamma}f(z)}{D_{\lambda}^{n,\gamma}f(z)} + (1-\alpha)\frac{D_{\lambda}^{n+1,\gamma}f(z)}{D_{\lambda}^{n,\gamma}f(z)}\right\} > \beta \quad (\alpha \geqslant 0; 0 \leqslant \beta < 0).$$

In particular, the class $H_1^{0,0}[\alpha,\beta] \equiv \bar{H}[\alpha,\beta]$ was studied by Lashin [3] and the classes $H_1^{0,0}[0,\beta] \equiv T^*(\beta)$ and $H_1^{0,0}[1,\beta] \equiv C(\beta)$ were studied by Silverman [8]. To prove our results we shall need the following Definition and Lemma:

Definition 1. [See 9] An infinite sequence $\{b_n\}_{n=1}^{\infty}$ of complex numbers will be called a subordinating factor sequence if whenever $f \in \mathcal{K}$, we have the subordination given by

$$\sum_{n=1}^{\infty} a_n b_n z^n \prec f(z) \quad (z \in \mathbb{U}, a_1 = 1).$$

Lemma 1. [See 9] The sequence $\{b_n\}_{n=1}^{\infty}$ is subordinating factor sequence if and only if

$$\Re\left\{1+2\sum_{n=1}^{\infty}b_{n}z^{n}\right\}>0\quad(z\in\mathbb{U}).$$

Lemma 2. [See 7] Let $0 < a \le c$. If $c \ge 2$ or $a + c \ge 3$, then the function

$$h(a,c;z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \quad (z \in \mathbb{U})$$

belongs to the class \mathcal{K} of convex functions.

In [5], Marouf proved the sufficient and necessary condition on a function $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in T$ to be $H_{\lambda}^{n,\gamma}[\alpha,\beta]$, which is equivalent to the following Lemma:

Lemma 3. [See 5] A function $f(z) \in T$ is in the $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ if and only if

$$\sum_{k=2}^{\infty} [(\alpha \psi_k(\gamma, \lambda) + 1)(\psi_k(\gamma, \lambda) - 1) + 1 - \beta] [\psi_k(\gamma, \lambda)]^n |a_k| \le 1 - \beta$$
(3)

which $\psi_k(\gamma, \lambda)$ is defined as (2).

Lemma 4. [See 4] If the functions f(z) and g(z) are analytic in \mathbb{U} with $g(z) \prec f(z)$, then for s > 0 and $z = re^{i\theta}$ (0 < r < 1), we have

$$\int_0^{2\pi} |f(re^{i\theta})|^s \leqslant \int_0^{2\pi} |g(re^{i\theta})|^s.$$

2. Some Results on the Class $H_{\lambda}^{n,\gamma}[\alpha,\beta]$

We begin with the following theorem:

Theorem 1. If $f \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$ in \mathbb{U} and s > 0, 0 < |z| = r < 1, then for function $g \in \mathcal{H}$

$$\frac{\Phi(2)}{\Phi(2) + 1 - \beta} f * g(z) \prec 2g(z) \tag{4}$$

and

$$\frac{\Phi(2)}{\Phi(2) + 1 - \beta} \int_0^{2\pi} |f * g(re^{i\theta})|^s d\theta \le 2 \int_0^{2\pi} |g(re^{i\theta})|^s d\theta$$
 (5)

where $\Phi(2) = [(\alpha\psi_2(\gamma,\lambda)+1)(\psi_2(\gamma,\lambda)-1)+1-\beta][\psi_2(\gamma,\lambda)]^n$.

Proof. Suppose we take $f(z)=z+\sum\limits_{k=2}^{\infty}a_kz^k\in H^{n,\gamma}_{\lambda}[\alpha,\beta]$ and $g(z)=z+\sum\limits_{k=2}^{\infty}b_kz^k\in\mathcal{K}$, then

$$\frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} f * g(z) = \frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} z + \sum_{k=2}^{\infty} \frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} a_k b_k z^k.$$

If we can know

$$\Re\left\{1 + 2\sum_{k=2}^{\infty} \frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} a_k z^k\right\} > 0$$

From Lemma 1, it implies that the sequence

$$\left\{\frac{\Phi(2)}{2\Phi(2)+2(1-\beta)}a_k\right\}_1^{\infty}$$

is a subordination factor sequence, with $a_1 = 1$. Now

$$\Re \left\{ 1 + 2 \sum_{k=2}^{\infty} \frac{\Phi(2)}{2\Phi(2) + 2(1 - \beta)} a_k z^k \right\} = \Re \left\{ 1 + \sum_{k=2}^{\infty} \frac{\Phi(2)}{\Phi(2) + 1 - \beta} a_k z^k \right\}
= \Re \left\{ 1 + \frac{\Phi(2)}{\Phi(2) + 1 - \beta} z + \frac{1}{\Phi(2) + 1 - \beta} \sum_{k=2}^{\infty} \Phi(2) a_k z^k \right\}
\geqslant 1 - \frac{\Phi(2)}{\Phi(2) + 1 - \beta} r - \frac{1}{\Phi(2) + 1 - \beta} \sum_{k=2}^{\infty} \Phi(2) |a_k| r^k.$$
(6)

since

$$\Phi(k) = [(\alpha \psi_k(\gamma, \lambda) + 1)(\psi_k(\gamma, \lambda) - 1) + 1 - \beta][\psi_k(\gamma, \lambda)]^n \quad (k = 2, 3, ...)$$

and

$$\psi_k(\gamma,\lambda) = \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} [1+\lambda(k-1)] \quad (k=2,3,\ldots)$$

is a increasing function of k, so $0 < \Phi(2) \le \Phi(k)$ (k = 2, 3, ...).

Following (6), we can write

$$\geqslant 1 - \frac{\Phi(2)}{\Phi(2) + 1 - \beta} r - \frac{1}{\Phi(2) + 1 - \beta} \sum_{k=2}^{\infty} \Phi(k) |a_k| r^k.$$

As 0 < r < 1, it can make sure

$$\geqslant 1 - \frac{\Phi(2)}{\Phi(2) + 1 - \beta} r - \frac{r}{\Phi(2) + 1 - \beta} \sum_{k=2}^{\infty} \Phi(k) |a_k|. \tag{7}$$

Using Lemma 3 in (3) and following (7), we obtain

$$\Re\left\{1+2\sum_{k=2}^{\infty}\frac{\Phi(2)}{2\Phi(2)+2(1-\beta)}a_kz^k\right\} \geqslant 1-\frac{\Phi(2)}{\Phi(2)+1-\beta}r-\frac{1-\beta}{\Phi(2)+1-\beta}r=1-r>0,$$

In the light of Definition 1, we have

$$\frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} f * g(z) = \sum_{k=1}^{\infty} \frac{\Phi(2)}{2\Phi(2) + 2(1-\beta)} b_k c_k z^k \prec g(z),$$

Furthermore, it is easy to deduce the result in (5) by using (4) and Lemma 4.

Corollary 1. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$ and $F(z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} a_k z^k$, then

$$\frac{\Phi(2)}{\Phi(2) + 1 - \beta} F(z) \prec 2h(a, c; z) \tag{8}$$

and

$$\Re f(z) > \frac{\beta - 1 - \Phi(2)}{\Phi(2)},\tag{9}$$

where $\Phi(2) = [(\alpha \psi_2(\gamma, \lambda) + 1)(\psi_2(\gamma, \lambda) - 1) + 1 - \beta][\psi_2(\gamma, \lambda)]^n$, and h(a, c; z) is the incomplete beta function defined in (1) with $0 < a \le c$, $c \ge 2$ or $a + c \ge 3$.

Proof. Since $0 < a \le c$, $c \ge 2$ or $a + c \ge 3$, using Lemma 2, we can know that

$$h(a,c;z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \in \mathcal{K}.$$

Taking g(z) = h(a, c; z) and $g(z) = \frac{z}{1-z}$ in Theorem 1, respectively, the results (8) and (9) are obtained.

Corollary 2. If $f \in \overline{H}[\alpha, \beta]$ in \mathbb{U} and s > 0, 0 < |z| = r < 1, then for function $g \in \mathcal{K}$

$$\frac{2(\alpha+1)-\beta}{2(\alpha-\beta)+3}f*g(z) \prec 2g(z)$$

and

$$\frac{\left[2(\alpha+1)-\beta\right]}{2(\alpha-\beta)+3}\int_0^{2\pi}|f*g(re^{i\theta})|^sd\theta\leqslant 2\int_0^{2\pi}|g(re^{i\theta})|^sd\theta.$$

Proof. By taking n = 0, $\gamma = 0$ and $\lambda = 1$ in Theorem 1, Corollary 2 is given.

Corollary 3. If $f \in T^*(\beta)$ in \mathbb{U} and s > 0, 0 < |z| = r < 1, then for function $g \in \mathcal{K}$

$$\frac{2-\beta}{3-2\beta}f * g(z) \prec 2g(z)$$

and

$$\frac{2-\beta}{3-2\beta}\int_0^{2\pi}|f*g(re^{i\theta})|^sd\theta \leq 2\int_0^{2\pi}|g(re^{i\theta})|^sd\theta.$$

Proof. By taking $\alpha = 0$ in Corollary 2, Corollary 3 is given.

Corollary 4. If $f \in C(\beta)$ in \mathbb{U} and s > 0, 0 < |z| = r < 1, then for function $g \in \mathcal{K}$

$$\frac{4-\beta}{5-2\beta}f*g(z) \prec 2g(z)$$

and

$$\frac{4-\beta}{5-2\beta}\int_0^{2\pi}|f*g(re^{i\theta})|^sd\theta \leq 2\int_0^{2\pi}|g(re^{i\theta})|^sd\theta.$$

Proof. By taking $\alpha = 1$ in Corollary 2, Corollary 4 is given.

3. Some Results on the Class $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ with Fixed Equation

In this section, we shall obtain several interesting results on the functions which are defined by the class $H_{\lambda}^{n,\gamma}[\alpha,\beta]$ with the following nonhomogeneous Cauchy-Euler differential equation:

$$z^{2} \frac{d^{2}L}{dz^{2}} + 2(\mu + 1)z \frac{dL}{dz} + \mu(\mu + 1)L = (1 + \mu)(2 + \mu)f(z)$$
(10)

where $L(z) \in T$, $f(z) \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$, $\mu + 1 > 0$, $\mu \in R$.

The cauchy-Euler differential equation was introduced earlier to study the distortion inequalities and neighborhoods problems of the other class of functions by O. Altintaş et al. [2].

Theorem 2. If the function $L(z) = z + \sum_{k=2}^{\infty} c_k z^k \in T$ satisfy the equation (10) with

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$$
, then for function $g(z) \in \mathcal{K}$,

$$\frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2)+(\mu+1)(1-\beta)}L*g(z) \prec 2g(z)$$
(11)

and

$$\frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2)+(\mu+1)(1-\beta)} \int_0^{2\pi} |L*g(re^{i\theta})|^s d\theta \le 2 \int_0^{2\pi} |g(re^{i\theta})|^s d\theta, \tag{12}$$

where $\Phi(2) = [(\alpha \psi_2(\gamma, \lambda) + 1)(\psi_2(\gamma, \lambda) - 1) + 1 - \beta][\psi_2(\gamma, \lambda)]^n$, 0 < |z| = r < 1, s > 0.

Proof. Suppose
$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in \mathcal{K}$$
, then

$$\frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}L*g(z) = \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}z + \sum_{k=2}^{\infty} \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}b_kc_kz^k.$$

If we show that

$$\Re\{1+2\sum_{k=2}^{\infty}\frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}c_kz^k\}>0$$

Then from Lemma 1, we say that the sequence

$$\left\{ \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)} c_k \right\}_1^{\infty}$$

is a subordination factor sequence, with $c_1 = 1$. Now

$$\Re \left\{ 1 + 2 \sum_{k=2}^{\infty} \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2) + 2(\mu+1)(1-\beta)} c_k z^k \right\} \\
= \Re \left\{ 1 + \sum_{k=2}^{\infty} \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} c_k z^k \right\} \\
= \Re \left\{ 1 + \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} z + \frac{(\mu+3)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(2) c_k z^k \right\} \\
\geqslant 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} r - \frac{(\mu+3)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(2) |c_k| r^k \quad (13)$$

Because L(z) satisfies the differential equation with the $f(z) \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$, so

$$c_k = \frac{(\mu+1)(\mu+2)}{(k+\mu)(k+\mu+1)} a_k$$

Following (13), we have

$$\geq 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}r - \frac{(\mu+3)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(2) \frac{(\mu+1)(\mu+2)}{(k+\mu)(k+\mu+1)} |a_{k}|r^{k}$$

$$\geq 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}r - \frac{(\mu+3)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(2) \frac{(\mu+1)(\mu+2)}{(2+\mu)(\mu+3)} |a_{k}|r^{k}$$

$$\geq 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}r - \frac{(\mu+1)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(2)|a_{k}|r^{k}$$

$$(14)$$

Since

$$\Phi(k) = [(\alpha \psi_k(\gamma, \lambda) + 1)(\psi_k(\gamma, \lambda) - 1) + 1 - \beta] [\psi_k(\gamma, \lambda)]^n \quad (k = 2, 3, ...)$$

and

$$\psi_k(\gamma,\lambda) = \frac{\Gamma(k+1)\Gamma(2-\gamma)}{\Gamma(k+1-\gamma)} [1 + \lambda(k-1)] \quad (k=2,3,\ldots)$$

is a increasing function of k, so $0 < \Phi(2) \le \Phi(k)$ (k = 2, 3, ...). Following (14), we can write

$$\geqslant 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}r - \frac{(\mu+1)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}\sum_{k=2}^{\infty}\Phi(k)|a_k|r^k.$$

As 0 < r < 1, it can make sure

$$\geqslant 1 - \frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}r - \frac{(\mu+1)r}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)} \sum_{k=2}^{\infty} \Phi(k)|a_k|.$$
 (15)

Since $f(z) = z + \sum_{k=2}^{\infty} \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$, using Lemma 3 and following (15), we obtain

$$\Re\{1+2\sum_{k=2}^{\infty} \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)} c_k z^k\}$$

$$\geqslant 1-\frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2)+(\mu+1)(1-\beta)} r-\frac{(1-\beta)(\mu+1)}{(\mu+3)\Phi(2)+(\mu+1)(1-\beta)} r=1-r>0.$$

In the light of Definition 1, we have

$$\frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}L*g(z) = \sum_{k=1}^{\infty} \frac{(\mu+3)\Phi(2)}{2(\mu+3)\Phi(2)+2(\mu+1)(1-\beta)}b_kc_kz^k \prec g(z).$$

Furthermore, it is easy to deduce the result in (12) by using (11) and Lemma 4.

Corollary 5. If the function $L(z) = z + \sum_{k=2}^{\infty} c_k z^k \in T$ satisfy the equation (10) with

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in H_{\lambda}^{n,\gamma}[\alpha,\beta] \text{ and } F(z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} c_k z^k, \text{ then } f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in H_{\lambda}^{n,\gamma}[\alpha,\beta]$$

$$\frac{(\mu+3)\Phi(2)}{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}F(z) \prec 2h(a,c;z)$$
 (16)

and

$$\Re L(z) > -\frac{(\mu+3)\Phi(2) + (\mu+1)(1-\beta)}{(\mu+3)\Phi(2)},\tag{17}$$

where $\Phi(2) = [(\alpha \psi_2(\gamma, \lambda) + 1)(\psi_2(\gamma, \lambda) - 1) + 1 - \beta][\psi_2(\gamma, \lambda)]^n$, and h(a, c; z) is the incomplete beta function with $0 < a \le c$, $c \ge 2$ or $a + c \ge 3$ and 0 < |z| = r < 1, s > 0.

Proof. Since $0 < a \le c$, $c \ge 2$ or $a + c \ge 3$, using Lemma 2, we can know that

$$h(a,c;z) = z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k \in \mathcal{K}.$$

Taking g(z) = h(a, c; z) and $g(z) = \frac{z}{1-z}$ in Theorem 2, respectively, the results (16) and (17) are obtained.

Corollary 6. If the function $L(z) = z + \sum_{k=2}^{\infty} c_k z^k \in T$ satisfy the equation (10) with

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in \bar{H}[\alpha, \beta]$$
, then for function $g(z) \in \mathcal{K}$,

$$\frac{(\mu+3)[2(\alpha+1)-\beta]}{(\mu+3)[2(\alpha+1)-\beta]+(\mu+1)(1-\beta)}L*g(z) \prec 2g(z)$$

and

$$\frac{(\mu+3)[2(\alpha+1)-\beta]}{(\mu+3)[2(\alpha+1)-\beta]+(\mu+1)(1-\beta)} \int_0^{2\pi} |L*g(re^{i\theta})|^s d\theta \leq 2 \int_0^{2\pi} |g(re^{i\theta})|^s d\theta.$$

Proof. By taking n = 0, $\gamma = 0$ and $\lambda = 1$ in Theorem 2, Corollary 6 is given.

Corollary 7. If the function $L(z) = z + \sum_{k=2}^{\infty} c_k z^k \in T$ satisfy the equation (10) with

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in T^*(\beta)$$
, then for function $g(z) \in \mathcal{K}$,

$$\frac{(\mu+3)(2-\beta)}{(\mu+3)(2-\beta)+(\mu+1)(1-\beta)}L*g(z) \prec 2g(z)$$

and

$$\frac{(\mu+3)(2-\beta)}{(\mu+3)(2-\beta)+(\mu+1)(1-\beta)}\int_0^{2\pi}|L*g(re^{i\theta})|^sd\theta \leq 2\int_0^{2\pi}|g(re^{i\theta})|^sd\theta.$$

Proof. By taking $\alpha = 0$ in Corollary 6, Corollary 7 is given.

Corollary 8. If the function $L(z) = z + \sum_{k=2}^{\infty} c_k z^k \in T$ satisfy the equation (10) with

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in C(\beta)$$
, then for function $g(z) \in \mathcal{K}$,

$$\frac{(\mu+3)(4-\beta)}{(\mu+3)(4-\beta)+(\mu+1)(1-\beta)}L*g(z) \prec 2g(z)$$

and

$$\frac{(\mu+3)(4-\beta)}{(\mu+3)(4-\beta)+(\mu+1)(1-\beta)}\int_0^{2\pi}|L*g(re^{i\theta})|^sd\theta \leq 2\int_0^{2\pi}|g(re^{i\theta})|^sd\theta.$$

Proof. By taking $\alpha = 1$ in Corollary 6, Corollary 8 is given.

REFERENCES 389

References

- [1] F.M. Al-Oboudi and K.A. Al-Amoudi. Subordination results for classes of analytic functions related to conic domains defined by a fractional operator. *J. Math. Anal. Appl*, 35(4):412-420, 2009.
- [2] O. Altintaş, Ö. Özkan, and H.M. Srivastava. Neighborhoods of a certain family of multivalent functions with negative coefficients. *Computers Math. Applic*, 47:1667-1672, 2004.
- [3] A.Y. Lashin. On a certain subclass of starlike functions with negative coefficients. *J. Ineq. Pure Appl. Math.*, 10(2):article 40, 2009.
- [4] J.E. Littlewood. On inequalities in the theory of functions. *Proc. London Math. Soc*, 23:481-519, 1925.
- [5] M. Marouf. On a subclass of analytic functions with negative coefficients defined by a fractional differential operator. *Int.J.Open problems.Complex analysis*, 2(2):140-153, 2010.
- [6] S. Owa and H.M. Srivastava. Univalent and starlike generalized hypergeometric functions. *Canad. J. Math*, 39(5):1057-1077, 1987.
- [7] S. Ruscheweyh. Convolutions in geometric function theory. Les Presses de IqőUniv.de Montreal, 1982.
- [8] H. Silverman. Univalent functions with negative coefficients. *Proc. Amer. Math. Soc*, 51:109-116, 1975.
- [9] H.S. Wilf. Subordinating factor sequences for convex maps of the unit circle. *Proc. Am. Math. Soc*, 12:689-693,1961.