EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 6, No. 2, 2013, 119-125 ISSN 1307-5543 – www.ejpam.com

Some Remarks on Finitely Quasi-injective Modules

Zhu Zhanmin

Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R.China

Abstract. Let *R* be a ring. A right *R*-module *M* is called finitely quasi-injective if each *R*-homomorphism from a finitely generated submodule of *M* to *M* can be extended to an endomorphism of *M*. Some conditions under which finitely generated finitely quasi-injective modules are of finite Goldie Dimensions are given, and finitely generated finitely quasi-injective Kasch modules are studied.

2010 Mathematics Subject Classifications: 16D50, 16L30

Key Words and Phrases: finitely quasi-injective modules, Kasch modules, endomorphism rings, semiperfect rings, semilocal rings

1. Introduction

Throughout the paper, R is an associative ring with identity and all modules are unitary. If M_R is a right R-module with $S = End(M_R)$, and $A \subseteq S, X \subseteq M, B \subseteq R$, then we denote the Jacobson radical of S by J(S), and we write $l_S(X) = \{s \in S \mid sx = 0, \forall x \in X\}$, $r_M(A) = \{m \in M \mid am = 0, \forall a \in A\}$, $l_M(B) = \{m \in M \mid mb = 0, \forall b \in B\}$. Following [5], we write $W(S) = \{s \in S \mid Ker(s) \subseteq {}^{ess} M\}$.

At first let we recall some concepts. A module M_R is called finitely quasi-injective (or FQ-injective for short) [7] if each R-homomorphism from a finitely generated submodule of M to M can be extended to an endomorphism of M; a ring R is said to be right F-injective if R_R is finitely quasi-injective. F-injective rings have been studied by many authors such as [2, 3, 8]. A module M_R is called a C_1 module if every submodule of M is essential in a direct summand of M, C_1 modules are also called CS modules. A module M_R is called a C_2 module if every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M. A module M_R is called a C_3 module if, whenever N and K are submodules of M with $N \subseteq^{\oplus} M$, $K \subseteq^{\oplus} M$, and $N \cap K = 0$, then $N \oplus K \subseteq^{\oplus} M$. A module M_R is called continuous if it is both C_1 and C_2 . A module M_R is called quasi-continuous modules are quasi-continuous.

Email address: zhanmin_zhu@hotmail.com

A module M_R is said to be Kasch [1] provided that every simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated right R-modules. In this note we shall mainly study finitely generated finitely quasi-injective modules with finite Goldie Dimensions, and finitely generated finitely quasi-injective Kasch modules, respectively.

2. Main Results

We begin with some Lemmas.

Lemma 1 ([10, Theorem 1.2]). For a module M_R with $S = End(M_R)$, the following statements are equivalent:

- (1) M_R is FQ-injective;
- (2) (a) $l_S(A \cap B) = l_S(A) + l_S(B)$ for any finitely generated submodules A, B of M, and
 - (b) $l_M r_R(m) = Sm$ for any $m \in M$. where $l_M r_R(m)$ consists of all elements $z \in M$ such that mx = 0 implies zx = 0 for any $x \in R$.

Lemma 2 ([10, Theorem 2.1, Theorem 2.2]). Let M_R be a finitely generated FQ-injective module with $S = End(M_R)$. Then

- (1) $l_S(Ker\alpha) = S\alpha$ for any $\alpha \in S$.
- (2) W(S) = J(S).

Lemma 3 ([10, Theorem 2.3]). Let M_R be a finitely generated finite dimensional FQ-injective module with $S = End(M_R)$. Then S is semilocal.

Lemma 4. Let M_R be a finitely generated FQ-injective module. Then it is a C_2 module.

Proof. Write $S = End(M_R)$. Let N be a submodule of M and $N \cong eM$ for some $e^2 = e \in S$. Then there exists some $s \in S$ such that N = seM and Ker(se) = Ker(e). By Lemma 2(1), we have Sse = Se, and hence e = tse for some $t \in S$ with t = et. Thus $(set)^2 = set$ and N = (se)M = (set)M. Therefore N is a direct summand of M. \square

Lemma 5. Let M_R be a quasi-continuous module with $S = End(M_R)$. Then idempotents of S/W(S) can be lifted.

Proof. Let $s^2 - s \in W(S)$, then $Ker(s^2 - s) \triangleleft M$. If $x \in Ker(s^2 - s)$, then $(1 - s)x \in Ker(s)$, $sx \in Ker(1 - s)$, and hence $x = (1 - s)x + sx \in Ker(s) \oplus Ker(1 - s)$. It shows that $Ker(s^2 - s) \subseteq Ker(s) \oplus Ker(1 - s)$, and thus $Ker(s) \oplus Ker(1 - s) \triangleleft M$. Now let N_1 and N_2 be maximal essential extensions of Ker(s) and $Ker(s) \oplus Ker(1 - s)$ in M, respectively. Then it is clear that $N_1 \cap N_2 = 0$ and $N_1 \oplus N_2 \triangleleft M$. Since M is a C_1 module and N_1 and N_2 are closed submodules of M, N_1 and N_2 are direct summand of M. But M is a C_3 module, $N_1 \oplus N_2$ is a direct summand of M, so that $N_1 \oplus N_2 = M$. This implies that there exists an $e^2 = e \in S$ such that $N_1 = (1 - e)M$ and $N_2 = eM$. Let $y \in Ker(s)$, $z \in Ker(1 - s)$, then noting that $y \in (1 - e)M$ and $z \in eM$, we have (e - s)(y + z) = z - sz = (1 - s)z = 0, so that $Ker(s) \oplus Ker(1 - s) \subseteq Ker(e - s)$. And hence $e - s \in W(S)$, that is, idempotents modulo W(S) lift. □

Corollary 1. Let M_R be a finitely generated FQ-injective C_1 module with $S = End(M_R)$. Then S is semiperfect if and only if S is semilocal.

Proof. Since M_R is a finitely generated FQ-injective module, by Lemma 4, it is a C_2 module and hence a C_3 module. Thus M_R is quasi-continuous by the condition that M_R is a C_1 module. And so the result follows from Lemma 5 and Lemma 2(2). \square

Recall that a ring R is called right MP-injective [11] if every monomorphism from a principal right ideal of R to R extends to an endomorphism of R; a ring R is called right MGP-injective [11] if, for any $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$ and any R-monomorphism from a^nR to R extends to an endomorphism of R; a ring R is said to be right AP-injective [6] if, for any $a \in R$, there exists a left ideal X_a such that $lr(a) = Ra \oplus X_a$; a ring R is called right AGP-injective if, for any $0 \neq a \in R$, there exists a positive integer n and a left ideal X_{a^n} such that $a^n \neq 0$ and $lr(a^n) = Ra^n \oplus X_{a^n}$. Clearly, right MP-injective rings are right MGP-injective, and right AP-injective rings are right AGP-injective. If R is a right MP-injective rings, then R is right C_2 by [11, Theorem 2.7] and $J(R) = Z(R_R)$ by [11, Theorem 3.4]. If R is a right AP-injective rings, then R is right C_2 by [9, Corollary 3.4] and C_2 by [6, Corollary 2.3]. So by Lemma 5, we have immediately the following corollary.

Corollary 2. Let R be a right CS ring. If R is right MP-injective or right AP-injective, then R is semiperfect if and only if R is semilocal.

Let M be a right R-module. A finite set A_1, \ldots, A_n of proper submodules of M is said to be coindependent if for each $i, 1 \le i \le n, A_i + \cap_{j \ne i} A_j = M$, and a family of submodules of M is said to be coindependent if each of its finite subfamily is coindependent. The module M is said to have finite dual Goldie dimension if every coindependent family of submodules of M is finite. Refer to [4] for details concerning the dual Goldie dimension.

Lemma 6 ([4, Propositions 2.43]). A ring R is semilocal if and only if R_R has finite dual Goldie dimension, if and only if R_R has finite dual Goldie dimension.

Theorem 1. Let M_R be a finitely generated FQ-injective module with $S = End(M_R)$. Then the following conditions are equivalent:

- (1) S is semilocal.
- (2) M_R is finite dimensional.

Furthermore, if M is a C_1 module, then these conditions are equivalent to:

(3) S is semiperfect.

Proof. (1) \Rightarrow (2). If M_R is not finite dimensional, then there exists $0 \neq x_i \in M, i = 1, 2, 3, \cdots$, such that $\sum_{i=1}^{\infty} x_i R$ is a direct sum. Since M_R is FQ-injective, by Lemma 1, for any positive integer m and any finite subset

$$I \subset \mathbb{N} \setminus m, S = l_S(0) = l_S(x_m R \cap \sum_{i \in I} x_i R) = l_S(x_m) + l_S(\sum_{i \in I} x_i R) = l_S(x_m) + \bigcap_{i \in I} l_S(x_i).$$

Thus $l_S(x_i)$, $i = 1, 2, 3, \cdots$ is an infinite coindependent family of submodules of S. By Lemma 6, S is not semilocal, a contradiction.

 $(2) \Rightarrow (1)$. By Lemma 3.

Furthermore, if M is a C_1 module, then since it is a C_2 module by Lemma 4 and W(S) = J(S) by Lemma 2(2), we have (1) \Leftrightarrow (3) by Lemma 5. \square

The equivalence of (1) and (2) in the next Corollary 3 appeared in [8, Corollary 4.5].

Corollary 3. *Let R be a right F-injective ring. Then the following conditions are equivalent:*

- (1) R is semilocal.
- (2) R is right finite dimensional.

Furthermore, if R is a right CS ring, then these conditions are equivalent to:

(3) R is semiperfect.

Theorem 2. Let M_R be a FQ-injective Kasch module with $S = End(M_R)$, then

- (1) $r_M l_S(K) = K$ for every finitely generarated submodule K_R of M_R .
- (2) Sm is simple if and only if mR is simple. In particular, $Soc(M_R) = Soc(_SM)$.
- (3) $l_M(J(R)) \triangleleft_S M$.

Moreover, if M_R is finitely generated, then

- (4) $l_S(T)$ is a minimal left ideal of S for any maximal submodule T of M.
- (5) $l_S(Rad(M)) \triangleleft_S S$.
- *Proof.* (1). Always $K \subseteq r_M l_S(K)$. If $m \in r_M l_S(K) K$, let $K \subseteq T \subseteq^{max} (mR + K)$. By the Kasch hypothesis, let $\sigma : (mR + K)/T \to M$ be monic, and define $\gamma : mR + K \to M$ by $\gamma(x) = \sigma(x+T)$. Since M_R is FQ-injective, $\gamma = s \cdot$ for some $s \in S$, so $sK = \gamma(K) = 0$. This gives sm = 0 as $m \in r_M l_S(K)$. But $sm = \sigma(m+T) \neq 0$ because $m \notin T$, a contradiction. Therefore, $r_M l_S(K) = K$.
- (2). If mR is simple. Then if $0 \neq sm \in Sm$, define $\gamma : mR \to smR$ by $\gamma(x) = sx$. Then γ is a right R-isomorphism, and hence γ^{-1} extends to an endomorphism of M. Thus, $m = \gamma^{-1}(sm) = \alpha(sm)$ for some $\alpha \in S$, and so Sm is simple. Conversely, If Sm is simple. By (1), $r_M l_S(m) = mR$ for each $m \in M$, which implies that for any $m \in M$, every S-homomorphism from Sm to M is right multiplication by an element of R. Now for any $0 \neq ma \in mR$, the right multiplication $a : Sm \to Sma$ is a left S-isomorphism. So let $\theta : Sma \to Sm$ be its inverse, then θ is a right multiplication by an element b of R. Thus, $m = \theta(ma) = mab \in (ma)R$. Hence mR is simple.
- (3). Let $0 \neq m \in M$. Suppose that T is a maximal submodule of mR. By the Kasch hypothesis, let $\sigma: mR/T \to M$ be monic, and define $f: mR \to M$ by $f(x) = \sigma(x+T)$. Since M_R is FQ-injective, f = s for some $s \in S$, and then $sm = f(m) = \sigma(m+T) \neq 0$. But

 $smJ(R) = f(m)J(R) = \sigma(m+T)J(R) = 0$, so $0 \neq sm \in Sm \cap l_M(J(R))$. Therefore, $l_M(J(R)) \triangleleft SM$.

- (4). Let T be any maximal submodule of M. Since M_R is Kasch, there exists a monomorphism $\varphi: M/T \to M$. Define $\alpha: M \to M$ by $x \mapsto \varphi(x+T)$. Then $0 \neq \alpha \in S$, $\alpha T = \varphi(0) = 0$, and so $l_S(T) \neq 0$. For any $0 \neq s \in l_S(T)$, we have $T \subseteq Ker(s) \neq M$, and so Ker(s) = T by the maximality of T. It follows that $l_S(T) = l_S(ker(s)) = Ss$ by Lemma 2(1). Therefore, $l_S(T)$ is a minimal left ideal of S.
- (5). If $0 \neq a \in S$, choose a maximal submodule T of the right R-module aM. Since M is Kasch, there exists a monomorphism $f: aM/T \to M$. Define $g: aM \to M$ by g(x) = f(x+T). Since M is FQ-injective and finitely generated, $g = s \cdot$ for some $s \in S$. Take $y \in M$ such that $ay \notin T$, then $say = g(ay) = f(ay + T) \neq 0$, and hence $sa \neq 0$. If $a(Rad(M)) \nsubseteq T$, then a(Rad(M)) + T = aM. But a(Rad(M)) << aM because M is finitely generated, so T = aM, a contradiction. Thus $a(Rad(M)) \subseteq T$, and then (sa)(Rad(M)) = g(a(Rad(M))) = f(0) = 0, whence $0 \neq sa \in Sa \cap l_S(Rad(M))$. This shows that $l_S(Rad(M)) \triangleleft_S S$. \square

Lemma 7. Let M_R be a finitely generated Kasch module with $S = end(M_R)$. If S is left finite dimensional, then M/RadM is semisimple.

Proof. Let T be any maximal submodule of M. Since M_R is Kasch, there exists a monomorphism $\varphi: M/T \to M$. Define $\alpha: M \to M$ by $x \mapsto \varphi(x+T)$. Then $0 \neq \alpha \in S$, $\alpha T = \varphi(0) = 0$, and so $l_S(T) \neq 0$. Let $\Omega = \{K \mid 0 \neq K = l_S(X) \text{ for some } X \subseteq M\}$, then $l_S(T)$ is minimal in Ω for any maximal submodule T of M. In fact, if $l_S(T) \supseteq l_S(X) \neq 0$, where $X \subseteq M$, then $T \subseteq r_M l_S(X) \neq M$. So $T = r_M l_S(X)$, and hence $l_S(T) = l_S(X)$. Since S is left finite dimensional, there exist some minimal members I_1, I_2, \cdots, I_n in Ω such that $I = \bigoplus_{i=1}^n I_i$ is a maximal direct sum of minimal members in Ω . Now we establish the following claims:

Claim 1. $r_M(I_i)$ is a maximal submodule of M for each i.

Since M is finitely generated and Kasch, $r_M(I_i) \subseteq T_i = r_M l_S(T_i)$ for some maximal submodule T_i . Thus $I_i \supseteq l_S r_M l_S(T_i) = l_S(T_i) \ne 0$, and so $I_i = l_S(T_i)$ by the minimality of I_i in Ω . Now we choose $0 \ne a_i \in l_S(T_i)$. Then $T_i = r_M(a_i)$, and hence $r_M(I_i) = r_M l_S(T_i) = r_M l_S r_M(a_i) = r_M(a_i) = T_i$.

Claim 2. $RadM = \bigcap_{i=1}^{n} r_M(I_i)$.

Clearly, $RadM \subseteq \bigcap_{i=1}^n r_M(I_i)$. If T is a maximal submodule of M, then $l_S(T) \cap I \neq 0$. Taking some $0 \neq b \in l_S(T) \cap I$, we have $T = r_M(b) \supseteq \bigcap_{i=1}^n r_M(I_i)$. This gives that $\bigcap_{i=1}^n r_M(I_i) \subseteq RadM$, and the claim follows.

Finally, observing that each $M/r_M(I_i)$ is simple by Claim 1, and the mapping

$$f: M/RadM \rightarrow \bigoplus_{i=1}^{n} M/r_M(I_i); m+RadM \mapsto (m+r_M(I_1), \cdots, m+r_M(I_n))$$

is a monomorphism by Claim 2, we have that M/RadM is semisimple. \Box

Theorem 3. Let M_R be a finitely generated and FQ-injective Kasch module with $S = End(M_R)$. Then the following conditions are equivalent:

REFERENCES 124

- (1) M/Rad(M) is semisimple.
- (2) S is left finitely cogenerated.
- (3) S is left finite dimensional.

In this case, $Soc({}_{S}S) = l_{S}(Rad(M))$, and $G({}_{S}S) = c({}_{S}Soc({}_{S}S)) = c(M/Rad(M))$.

Proof. (1) \Rightarrow (2). It is trival in case M=0. If $M\neq 0$, then $M/RadM\neq 0$ because M is finitely generated. As M/RadM is semisimple, there exist maximal submodules T_1, T_2, \cdots, T_n such that $M/RadM \cong \bigoplus_{i=1}^n M/T_i$. Hence, by Theorem 2(4),

$$l_S(RadM) \cong {}_SHom_R(M/RadM, {}_SM_R) \cong {}_SHom_R(\bigoplus_{i=1}^n M/T_i, {}_SM_R) \cong \bigoplus_{i=1}^n l_S(T_i)$$

is an *n*-generated semisimple left ideal of *S*. This implies that $l_S(RadM) = Soc(_SS) \triangleleft_S S$ by Theorem 2(5), and therefore *S* is left finitely cogenerated, and $G(_SS) = n = c(_SSoc(_SS))$.

- $(2) \Rightarrow (3)$. Obvious.
- $(3) \Rightarrow (1)$. See Lemma 7. \square

Corollary 4. Let R be a right F-injective right Kasch ring. Then the following conditions are equivalent:

- (1) R is semilocal.
- (2) R is left finitely cogenerated.
- (3) R is left finite dimensional.

In this case, $Soc(_RR) = l_R(J(R))$, and $G(_RR) = c(_RSoc(_RR)) = c(R/J(R))$.

References

- [1] T. Albu and R. Wisbauer. Kasch modules. In S. K. Jain and S. T. Rizvi, editors, *Advances in Ring Theory*, pages 1–16, 1997.
- [2] J. L. Chen, N. Q. Ding, Y. L. Li, and Y. Q. Zhou. On (m, n)-injectivity of modules. *Communications in Algebra*, 29:5589–5603, 2001.
- [3] J. L. Chen, N. Q. Ding, and M. F. Yousif. On generalizations of PF-rings. *Communications in Algebra*, 32:521–533, 2004.
- [4] A. Facchini. Module Theory, Endomorphism rings and direct sum decompositions in some classes of modules. Birkhäuser Verlag, Basel, 1998.
- [5] W. K. Nicholson, J. K. Park, and M. F. Yousif. Principally quasi-injective modules. *Communications in Algebra*, 27:1683–1693, 1999.
- [6] S. Page and Y. Q. Zhou. Generalization of principally injective rings. *Journal of Algebra*, 206:706–721, 1998.

REFERENCES 125

[7] V. S. Ramamurthi and K. M. Rangaswamy. On finitely injective modules. *Journal of the Australian Mathematical Society*, 16:239–248, 1973.

- [8] L. Shen and J. L. Chen. On strong goldie dimension. *Communications in Algebra*, 35:3018–3025, 2007.
- [9] G. S. Xiao, X. B. Yin, and W. T. Tong. A note on AP-injective rings. *Journal of Mathematical Research & Exposition*, 35:211–216, 2003.
- [10] Z. M. Zhu. Finitely quasi-injective modules. *Journal of Shandong University (Nat. Sci.*), 45:20–23, 2010.
- [11] Z. M. Zhu. MP-injective rings and MGP-injective rings. *Indian Journal of Pure & Applied Mathematics*, 41:627–645, 2010.