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Some Remarks on Finitely Quasi-injective Modules
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Abstract. Let R be aring. A right R-module M is called finitely quasi-injective if each R-homomorphism
from a finitely generated submodule of M to M can be extended to an endomorphism of M. Some con-
ditions under which finitely generated finitely quasi-injective modules are of finite Goldie Dimensions
are given, and finitely generated finitely quasi-injective Kasch modules are studied.
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1. Introduction

Throughout the paper, R is an associative ring with identity and all modules are unitary.
If My is a right R-module with S = End(Mg), and A € S,X € M,B C R, then we denote the
Jacobson radical of S by J(S), and we write [;(X) ={s €S |sx =0,Vx € X},
ryAd)={me M |am=0,VaeA}, [,,(B)={me M | mb=0,Yb € B}. Following [5], we
write W(S) = {s € S | Ker(s) C*° M}.

At first let we recall some concepts. A module My is called finitely quasi-injective (or
FQ-injective for short) [7] if each R-homomorphism from a finitely generated submodule of
M to M can be extended to an endomorphism of M; a ring R is said to be right F-injective
if Ry is finitely quasi-injective. F-injective rings have been studied by many authors such as
[2, 3, 8]. A module My is called a C; module if every submodule of M is essential in a
direct summand of M, C; modules are also called CS modules. A module My, is called a C,
module if every submodule of M that is isomorphic to a direct summand of M is itself a direct
summand of M. A module My, is called a C; module if, whenever N and K are submodules
of M with N €® M,K €® M, and NNK = 0, then N ® K €® M. A module M is called
continuous if it is both C; and C,. A module My is called quasi-continuous if it is both C;
and Cs. It is well-known that C, modules are C; modules, and so continuous modules are
quasi-continuous.
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A module My, is said to be Kasch [1] provided that every simple module in o[M] embeds
in M, where o[M] is the category consisting of all M-subgenerated right R-modules. In this
note we shall mainly study finitely generated finitely quasi-injective modules with finite Goldie
Dimensions, and finitely generated finitely quasi-injective Kasch modules, respectively.

2. Main Results

We begin with some Lemmas.

Lemma 1 ([10, Theorem 1.2]). For a module My with S = End(My), the following statements
are equivalent:

(1) My is FQ-injective;

(2) (0 I5(A[)B) = I5(A) + I5(B) for any finitely generated submodules A, B of M, and

(b) lyrr(m) = Sm for any m € M. where l,;rg(m) consists of all elements z € M such
that mx = 0 implies zx = 0 for any x € R.

Lemma 2 ([10, Theorem 2.1, Theorem 2.2]). Let My be a finitely generated FQ-injective mod-
ule with S = End(Mg). Then

(1) ls(Kera)=Sa for any a €8S.
2) W(S)=J(S).

Lemma 3 ([10, Theorem 2.3]). Let My be a finitely generated finite dimensional FQ-injective
module with S = End(Mpg). Then S is semilocal.

Lemma 4. Let My be a finitely generated FQ-injective module. Then it is a C, module.

Proof Write S = End(Mp). Let N be a submodule of M and N = eM for some e2 =e €.
Then there exists some s € S such that N = seM and Ker(se) = Ker(e). By Lemma 2(1),
we have Sse = Se, and hence e = tse for some t € S with t = et. Thus (set)? = set and
N = (se)M = (set)M. Therefore N is a direct summand of M. [J

Lemma 5. Let My be a quasi-continuous module with S = End(Mpg). Then idempotents of
S/W(S) can be lifted.

Proof Let s> —s € W(S), then Ker(s?> —s) < M. If x € Ker(s?> —s), then (1 —s)x € Ker(s),
sx € Ker(1—s), and hence x = (1 —s)x +sx € Ker(s) ® Ker(1 —s). It shows that
Ker(s® —s) C Ker(s) ® Ker(1 —s), and thus Ker(s) ® Ker(1 —s) < M. Now let N; and N, be
maximal essential extensions of Ker(s) and Ker(1 —s) in M, respectively. Then it is clear that
N;NN, =0and N; ®N, < M . Since M is a C; module and N; and N, are closed submodules
of M, N; and N, are direct summand of M. But M is a C; module, N; ®N, is a direct summand
of M, so that N; ®N, = M. This implies that there exists an e? = e € S such that N; = (1—e)M
and N, = eM. Let y € Ker(s),z € Ker(1 —s), then noting that y € (1 —e)M and z € eM, we
have (e —s)(y +2) =2 —sz = (1 —s)z = 0, so that Ker(s) ® Ker(1 —s) C Ker(e —s). And
hence e —s € W(S), that is, idempotents modulo W(S) lift. O
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Corollary 1. Let My be a finitely generated FQ-injective C; module with S = End(Mg). Then S
is semiperfect if and only if S is semilocal.

Proof. Since My, is a finitely generated FQ-injective module , by Lemma 4, it is a C, module
and hence a C3 module. Thus My, is quasi-continuous by the condition that My is a C; module.
And so the result follows from Lemma 5 and Lemma 2(2). O

Recall that a ring R is called right MP-injective [11] if every monomorphism from a prin-
cipal right ideal of R to R extends to an endomorphism of R; a ring R is called right MGP-
injective [11] if, for any O # a € R, there exists a positive integer n such that a™ # 0 and any
R-monomorphism from a”R to R extends to an endomorphism of R; a ring R is said to be right
AP-injective [6] if, for any a € R, there exists a left ideal X, such that [r(a) = Ra ® X; a ring
R is called right AGP-injective if, for any 0 # a € R, there exists a positive integer n and a left
ideal X n such that a” # 0 and [r(a™) = Ra"™ @ X . Clearly, right MP-injective rings are right
MGP-injective, and right AP-injective rings are right AGP-injective. If R is a right MP-injective
rings, then R is right C, by [11, Theorem 2.7] and J(R) = Z(Rg) by [11, Theorem 3.4]. If R
is a right AP-injective rings, then R is right C, by [9, Corollary 3.4] and J(R) = Z(Rg) by [6,
Corollary 2.3]. So by Lemma 5, we have immediately the following corollary.

Corollary 2. Let R be a right CS ring. If R is right MP-injective or right AP-injective, then R is
semiperfect if and only if R is semilocal.

Let M be a right R-module. A finite set A;,...,A, of proper submodules of M is said to
be coindependent if for each i,1 <i < n,A; + Nj»A; = M, and a family of submodules of M
is said to be coindependent if each of its finite subfamily is coindependent. The module M is
said to have finite dual Goldie dimension if every coindependent family of submodules of M
is finite. Refer to [4] for details concerning the dual Goldie dimension.

Lemma 6 ([4, Propositions 2.43]). A ring R is semilocal if and only if R has finite dual Goldie
dimension, if and only if zR has finite dual Goldie dimension.

Theorem 1. Let My be a finitely generated FQ-injective module with S = End(Mg). Then the
following conditions are equivalent:

(1) S is semilocal.
(2) My is finite dimensional.

Furthermore, if M is a C; module, then these conditions are equivalent to:
(3) S is semiperfect.

Proof. (1) = (2). If My is not finite dimensional, then there exists 0 # x; € M,i =
1,2,3,---, such that 221 X;R is a direct sum. Since My is FQ-injective, by Lemma 1, for any
positive integer m and any finite subset

ICN\m,S =15(0) = ls(xnR N Y JxiR) = Ls(oep) 1Y JxiR) = Is(em) + Nierls ().

i€l i€l
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Thus l5(x;),i = 1,2,3,--- is an infinite coindependent family of submodules of ¢S. By
Lemma 6, S is not semilocal, a contradiction.

(2) = (1). By Lemma 3.

Furthermore, if M is a C; module, then since it is a C, module by Lemma 4 and W(S) =
J(S) by Lemma 2(2), we have (1) < (3) by Lemma 5. [

The equivalence of (1) and (2) in the next Corollary 3 appeared in [8, Corollary 4.5].
Corollary 3. Let R be a right F-injective ring. Then the following conditions are equivalent:
(1) R is semilocal.
(2) R is right finite dimensional.
Furthermore, if R is a right CS ring, then these conditions are equivalent to:
(3) R is semiperfect.
Theorem 2. Let My be a FQ-injective Kasch module with S = End(Mpg), then
(1) ryls(K) =K for every finitely generarated submodule K of M.
(2) Sm is simple if and only if mR is simple. In particular, Soc(Mg) = Soc(sM).
3 y(JR)) <s M.
Moreover, if My is finitely generated, then
(4) 5(T) is a minimal left ideal of S for any maximal submodule T of M.
(5) lg(Rad(M)) <g S.

Proof. (1). Always K C rylg(K). If m € rylg(K) — K, let K € T €™ (mR+K). By
the Kasch hypothesis, let o : (mR+ K)/T — M be monic, and define y : mR+ K — M by
v(x) = o(x+T). Since My is FQ-injective, y = s- for some s € S, so sK = y(K) = 0. This gives
sm=0as m e rylg(K). Butsm =oc(m+ T) # 0 because m ¢ T, a contradiction. Therefore,
ruls(K) =K.

(2). If mR is simple. Then if 0 # sm € Sm, define y : mR — smR by y(x) =sx. Then y is a

right R-isomorphism, and hence y~! extends to an endomorphism of M. Thus,
m =y~ !(sm) = a(sm) for some a € S, and so Sm is simple. Conversely, If Sm is simple. By (1),
ryls(m) = mR for each m € M, which implies that for any m € M, every S-homomorphism
from Sm to M is right multiplication by an element of R. Now for any 0 # ma € mR, the right
multiplication -a : Sm — Sma is a left S-isomorphism. So let 6 : Sma — Sm be its inverse,
then 6 is a right multiplication by an element b of R. Thus, m = 8(ma) = mab € (ma)R.
Hence mR is simple.

(3). Let 0 # m € M. Suppose that T is a maximal submodule of mR. By the Kasch
hypothesis, let o : mR/T — M be monic, and define f : mR — M by f(x) = o(x + T). Since
My, is FQ-injective, f =s- for some s € S, and then sm = f(m) =o(m+ T) # 0. But
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smJ(R) = f(m)J(R)=oc(m+T)J(R) =0, so 0#smeSmnl,(J(R)). Therefore, l;;(J(R)) <
SM.

(4). Let T be any maximal submodule of M. Since My, is Kasch, there exists a monomor-
phism ¢ : M/T — M. Definea: M — M by x — ¢p(x+T). Then0# a € S,aT = ¢(0)=0,
and so [g(T) # 0. For any 0 # s € [g(T), we have T C Ker(s) # M, and so Ker(s) = T by the
maximality of T. It follows that [g(T) = [5(ker(s)) = Ss by Lemma 2(1). Therefore, [;(T) is a
minimal left ideal of S.

(5). If 0 # a € S, choose a maximal submodule T of the right R-module aM. Since M is
Kasch, there exists a monomorphism f : aM /T — M. Define g : aM — M by g(x) = f(x+T).
Since M is FQ-injective and finitely generated, g = s- for some s € S. Take y € M such that
ay ¢ T, then say = g(ay) = f(ay + T) # 0, and hence sa # 0. If a(Rad(M)) & T, then
a(Rad(M))+ T = aM. But a(Rad(M)) << aM because M is finitely generated, so T = aM,
a contradiction. Thus a(Rad(M)) € T, and then (sa)(Rad(M)) = g(a(Rad(M))) = f(0) =0,
whence 0 # sa € SaNlg(Rad(M)). This shows that [g(Rad(M)) <g S. O

Lemma 7. Let My be a finitely generated Kasch module with S = end(Mpg). If S is left finite
dimensional, then M /RadM is semisimple.

Proof. Let T be any maximal submodule of M. Since My, is Kasch, there exists a monomor-
phism ¢ : M/T — M. Definea: M - M by x — p(x+T). Then0# a <€ S,aT = ¢(0)=0,
and so I[g(T) # 0. Let 2 = {K | 0 # K = [3(X) for some X € M}, then [g(T) is minimal in
Q for any maximal submodule T of M. In fact, if [g(T) 2 [5(X) # 0, where X € M, then
T Cryls(X)# M. So T = ryls(X), and hence I4(T) = I5(X). Since S is left finite dimen-
sional, there exist some minimal members I3, 15, -, I, in  such that I = ®]_, I; is a maximal
direct sum of minimal members in Q. Now we establish the following claims:

Claim 1. ry(I;) is a maximal submodule of M for each i.

Since M is finitely generated and Kasch, ry(I;) € T; = ryls(T;) for some maximal
submodule T;. Thus I; 2 Igryls(T;) = lg(T;) # 0, and so I; = I5(T;) by the minimality
of I; in Q. Now we choose 0 # a; € [5(T;). Then T; = ry;(a;), and hence
ru(ly) = ryls(Ty) = rylsry(a;) = ry(a;) = T;.

Claim 2. RadM = N_, ry(I;).

Clearly, RadM < NI_,ry(I;). If T is a maximal submodule of M, then [g(T) NI # 0.
Taking some 0 # b € [g(T) NI, we have T = ry,(b) 2 NI,y (I;). This gives that
Ni_,rv(I;) € RadM, and the claim follows.

Finally, observing that each M /ry,;(I;) is simple by Claim 1, and the mapping
f :M/RadM — &;_ M /[ry(I;);m+RadM — (m+ry(I;), - ,m+ry(1,))

is a monomorphism by Claim 2, we have that M /RadM is semisimple. [

Theorem 3. Let My be a finitely generated and FQ-injective Kasch module with S = End(Mpg).
Then the following conditions are equivalent:



REFERENCES 124
(1) M/Rad(M) is semisimple.
(2) S is left finitely cogenerated.
(3) S is left finite dimensional.

In this case, Soc(gS) = lg(Rad(M)), and G(sS) = c(sSoc(sS)) = c(M /Rad(M)).

Proof. (1) = (2). It is trival in case M = 0. If M # 0, then M /RadM # 0 because M is
finitely generated. As M /RadM is semisimple, there exist maximal submodules T}, Ts, -, T,
such that M/RadM = @_, M /T;. Hence, by Theorem 2(4),

Is(RadM) = sHomp(M /RadM, sMp) = sHomp(®;_M/T;, sMg) = &;_,15(T;)

is an n-generated semisimple left ideal of S. This implies that [g(RadM) = Soc(sS) <s S by
Theorem 2(5), and therefore S is left finitely cogenerated, and G(3S) = n = c(sSoc(sS)).

(2) = (3). Obvious.

(3)=(1). See Lemma 7. O

Corollary 4. Let R be a right F-injective right Kasch ring. Then the following conditions are
equivalent:

(1) R is semilocal.
(2) R is left finitely cogenerated.
(3) R is left finite dimensional.
In this case, Soc(zR) = Izg(J(R)), and G(gxR) = c(zgSoc(zxR)) = c(R/J(R)).
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