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Abstract. Let R be an associative ring with identity 1 6= 0, and σ an endomorphism of R. We recall
σ(∗) property on R (i.e. aσ(a) ∈ P(R) implies a ∈ P(R) for a ∈ R, where P(R) is the prime radical of
R). Also recall that a ring R is said to be 2-primal if and only if P(R) and the set of nilpotent elements
of R coincide, if and only if the prime radical is a completely semiprime ideal. It can be seen that a
σ(∗)-ring is a 2-primal ring.
Let R be a ring andσ an automorphism of R. Then we know thatσ can be extended to an automorphism
(say σ) of the skew-Laurent ring R[x , x−1;σ]. In this paper we show that if R is a Noetherian ring and
σ is an automorphism of R such that R is a σ(∗)-ring, then R[x , x−1;σ] is a σ(∗)-ring. We also prove
a similar result for the general Ore extension R[x;σ,δ], where σ is an automorphism of R and δ a
σ-derivation of R.
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1. Introduction

A ring R always means an associative ring with identity 1 6= 0. The set of prime ideals of
R is denoted by Spec(R). The sets of minimal prime ideals of R is denoted by Min.Spec(R).
Prime radical and the set of nilpotent elements of R are denoted by P(R) and N(R) respectively.
Let R be a ring and σ an automorphism of R. Let I be an ideal of R such that σm(I) = I for
some m ∈ N (where N is the set of positive integers). We denote ∩m

i=1σ
i(I) by I0. The field

of rational numbers is denoted by Q and the field of real numbers is denoted by R unless
otherwise stated.

This article concerns the study of skew-Laurent rings over σ(∗)-rings, where σ is an auto-
morphism of R.
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σ(∗)-rings

Recall that in Krempa [8], a ring R is called σ-rigid if there exists an endomorphism σ of
R with the property that aσ(a) = 0 implies a = 0 for a ∈ R. In [9], Kwak defines a σ(∗)-ring
R to be a ring in which aσ(a) ∈ P(R) implies a ∈ P(R) for a ∈ R.

Example 1. Let R =

�

F F
0 F

�

, where F is a field. Then P(R) =

�

0 F
0 0

�

. Let σ : R→ R be

defined by σ

�

�

a b
0 c

�

�

=

�

a 0
0 c

�

. Then it can be seen that σ is an endomorphism of R

and R is a σ(∗)-ring.

2-primal Rings

We do not want to talk about 2-primal rings, but because of a close relation between a
σ(∗)-ring and a 2-primal ring, we have the following:

Recall that a ring R is 2-primal if and only if N(R) = P(R), i.e. if the prime radical is a
completely semiprime ideal. An ideal I of a ring R is called completely semiprime if a2 ∈ I
implies a ∈ I for a ∈ R. We note that a commutative ring is 2-primal and so is a reduced ring.

2-primal rings have been studied in recent years and the 2-primal property is being studied
for various types of rings. In [10], Greg Marks discusses the 2-primal property of R[x;σ,δ],
where R is a local ring, σ is an automorphism of R and δ is a σ-derivation of R. He has proved
that when R is a local ring with a nilpotent maximal ideal, the Ore extension R[x;σ,δ] will or
will not be 2-primal depending on the δ-stability of the maximal ideal of R.

In [9], Kwak establishes a relation between a 2-primal ring and a σ(∗)-ring. It has been
proved that if R is a ring and σ an endomorphism of R such that σ(P(R)) ⊆ P(R), then R is a
σ(∗)-ring implies that R is 2-primal. Therefore, we see that if R is a Noetherian ring and σ an
automorphism of R, then R is a σ(∗)-ring implies that R is 2-primal.

The following example shows that if R is a Noetherian ring, then even R[x] need not be
2-primal.

Example 2. Let R = M2(Q), the set of 2 × 2 matrices over Q. Then R[x] is a prime ring with
non-zero nilpotent elements and, so can not be 2-primal.

Skew Polynomial Rings

Let R be a ring, σ be an endomorphism of R and δ a σ-derivation of R. Recall that δ is an
additive map δ : R→ R such that δ(ab) = δ(a)σ(b) + aδ(b), for all a, b ∈ R.

Example 3. Let σ be an automorphism of a ring R and δ : R→ R any map. Let φ : R→ M2(R)

defined by φ(r) =

�

σ(r) 0
δ(r) r

�

, for all r ∈ R be a homomorphism. Then δ is a σ-derivation of

R.
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Recall that the skew polynomial ring (Ore extension) R[x;σ,δ] is the usual ring of polyno-
mials with coefficients in R, in which multiplication is subject to the relation ax = xσ(a)+δ(a)
for all a ∈ R. We take any f (x) ∈ R[x;σ,δ] to be of the form f (x) =

∑n
i=0 x iai . We denote

R[x;σ,δ] by O(R). If I is an ideal of R such that σ(I) = I and δ(I) ⊆ I , then O(I) denotes
I[x;σ,δ], which is an ideal of O(R).

Skew-Laurent Rings

Recall that R[x , x−1;σ] is the usual ring of Laurent polynomials with coefficients in R,
in which multiplication is subject to the relation ax = xσ(a) for all a ∈ R. We take any
f (x) ∈ R[x , x−1;σ] to be of the form f (x) =

∑n
i=−m x iai . We denote R[x , x−1;σ] by L(R). If

an ideal I of a ring R is σ-stable (i.e. σ(I) = I), then we denote as usual I[x , x−1;σ] by L(I).
We also note that ifσ is an automorphism of R, then it can be extended to an automorphism

(say σ) of R[x , x−1;σ] such that σ(x) = x; i.e. σ(Σn
i=−m x iai) = Σn

i=−m x iσ(ai). The study
of skew polynomial rings and skew-Laurent rings has been of interest to many authors. For
example [1, 6, 7, 9].

In this paper we prove the following results:

Theorem 2: Let R be a Noetherian ring and σ an automorphism of R. Then R is a σ(∗)-ring
if and only if R[x , x−1;σ] is a σ(∗)-ring.

Theorem 3: Let R be a Noetherian ring which is also an algebra over Q. Let σ be an automor-
phism of R such that R is a σ(∗)-ring and δ a σ-derivation of R such that
σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then R[x;σ,δ] is a σ(∗)-ring.

2. Preliminaries

We begin this section with the following Proposition:

Proposition 1. Let R be a ring and σ an automorphism of R. Then R is a σ(∗)-ring implies R is
2-primal.

Proof. Let a ∈ R be such that a2 ∈ P(R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(P(R)) = P(R).

Therefore aσ(a) ∈ P(R) and hence a ∈ P(R).

The following example shows that there exists an endomorphism σ of a ring R such that
the converse of the above Proposition does not hold.

Example 4. Let R= F[x], F a field. Then R is a commutative domain, and therefore is 2-primal
with P(R) = 0. Let σ : R→ R be defined by σ( f (x)) = f (0). Let f (x) = xa, 0 6= a ∈ F. Then
f (x)σ( f (x)) ∈ P(R), but f (x) /∈ P(R). Therefore R is not a σ(∗)-ring.
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Before we give a characterization of a Noetherian σ(∗)-ring, we require the following:
Recall that an ideal P of a ring R is completely prime if R/P is a domain, i.e. ab ∈ P implies

a ∈ P or b ∈ P for a, b ∈ R (McCoy [11]).
Note that a completely prime ideal is a prime ideal, but the converse need not be true.

For example, let R=

�

Z Z
Z Z

�

= M2(Z). If p is a prime number, then the ideal

P = M2(pZ) is a prime ideal of R, but is not strongly prime, since for a =

�

1 0
0 0

�

and

b =

�

0 0
0 1

�

we have ab ∈ P, even though a /∈ P and b /∈ P.

Proposition 2 (Proposition 2.1 of Bhat [6]). Let R be a Noetherian ring, andσ an automorphism
of R. Then R is a σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and U is a
completely prime ideal of R.

Proof. To make the article self contained, we give a proof (a modified one):
Let R be a Noetherian ring such that for each minimal prime U of R, σ(U) = U and U is

completely prime ideal of R. Let a ∈ R be such that aσ(a) ∈ P(R) = ∩n
i=1Ui , where Ui are the

minimal primes of R. Now for each i, a ∈ Ui or σ(a) ∈ Ui as Ui are completely prime. Now
σ(a) ∈ Ui = σ(Ui) implies that a ∈ Ui . Therefore a ∈ P(R). Hence R is a σ(∗)-ring.

Conversely, suppose that R is aσ(∗)-ring and let U = U1 be a minimal prime ideal of R. Now
by Proposition 1, P(R) is completely semiprime. Now Min.Spec(R) is finite by Theorem (2.4)
of Goodearl and Warfield [7]. Let U2, U3, . . . , Un be the other minimal primes of R. Suppose
that σ(U) 6= U . Then σ(U) is also a minimal prime ideal of R. Renumber so that σ(U) = Un.
Let a ∈ ∩n−1

i=1 Ui . Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n
i=1Ui = P(R). Therefore a ∈ P(R), and

thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some i 6= n, which is impossible. Hence

σ(U) = U .
Now since a σ(∗)-ring is 2-primal, minimal prime ideals are completely prime. Hence U

is completely prime.

Note that in above Theorem the condition of completely primeness of minimal prime ideals
can not be deleted. Towards this we have the following:

Remark 1. Let R be a Noetherian ring and σ an automorphism of R such that σ(U) = U for
each minimal prime ideal U of R. Then R need not be a σ(∗)-ring (Example 4).

3. Skew-Laurent Rings Over σ(∗)-rings

Goodearl and Warfield proved in (2ZA) of [7] that if R is a commutative Noetherian ring,
and if σ is an automorphism of R, then an ideal I of R is of the form P ∩ R for some prime
ideal P of R[x , x−1;σ] if and only if there is a prime ideal S of R and a positive integer m with
σm(S) = S, such that I = ∩σi(S), i = 1, 2, . . . , m.

We note that if R is a Noetherian ring, then as mentioned above, Min.Spec(R) is finite.
Now if σ is an automorphism of R, then σ j(U) ∈ Min.Spec(R) for any U ∈ Min.Spec(R) for
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all j ∈ N. Therefore, there exists some m ∈ N such that σm(U) = U for all U ∈ Min.Spec(R).
We denote ∩m

i=1σ
i(U) by U0.

We now have the following:

Theorem 1. Let R be a Noetherian ring andσ an automorphism of R. Then P ∈ Min.Spec(L(R))
if and only if there exists U ∈ Min.Spec(R) such that L(P ∩ R) = (P ∩ R)[x , x−1;σ] = P and
P ∩ R= U0.

Proof. See Theorem (2.4) of Bhat [1].

As mentioned in the introduction, we note that if σ is an automorphism of R, then it can
be extended to an automorphism (say σ) of R[x , x−1;σ] such that σ(x) = x; i.e.
σ(Σn

i=−m x iai) = Σn
i=−m x iσ(ai).

With this we are now in a position to prove the following Theorem:

Theorem 2. Let R be a Noetherian ring and σ an automorphism of R. Then R is a σ(∗)-ring if
and only if L(R) = R[x , x−1;σ] is a Noetherian σ(∗)-ring.

Proof. Let R be a Noetherian ring, σ an automorphism of R such that R is a σ(∗)-ring and
δ a σ-derivation of R. We shall prove that O(R) = R[x;σ,δ] is a Noetherian σ(∗)-ring. For
this we will show that any minimal P ∈ Min.Spec(O(R)) is completely prime and σ(P) = P.

Let P ∈ Min.Spec(O(R)). Then by Theorem 1, there exists U ∈ Min.Spec(R) such that
P = U0[x , x−1;σ]. Now R is aσ(∗)-ring implies thatσ(U) = U by Proposition 2, and therefore
U0 = U . So P = U[x , x−1;σ] and thus σ(P) = P.

We now show that P = U[x , x−1;σ] is completely prime. Now σ can be extended to an
automorphism of R/U in a natural way. We note that O(R)/P ∼= (R/U)[x , x−1;σ], and since
U is completely prime, R/U is a domain and so (R/U)[x , x−1;σ] is also a domain. Hence
P = U[x , x−1;σ] is completely prime.

Thus σ(P) = P and P is completely prime for all P ∈ Min.Spec(L(R)). Moreover
L(R) = R[x , x−1;σ] is Noetherian by Theorem (1.17) of Goodearl and Warfield [7]. Hence by
Proposition 2 R[x , x−1;σ] is a σ(∗)-ring.

Conversely let L(R) = R[x , x−1;σ] be a σ(∗)-ring. Let U ∈ Min.Spec(R). Then Theorem 1
implies that L(U0) ∈ Min.Spec(L(R)). Now L(R) be a σ(∗)-ring implies that
σ(L(U0)) = L(U0) and L(U0) is completely prime ideal of L(R). Now there is an embedding
R/(L(U0) ∩ R)→ L(R)/L(U0). Since L(R)/L(U0) is an integral domain, so is R/(L(U0) ∩ R).
Therefore, U0 = L(U0) ∩ R) is a completely prime ideal of R. Now U0 ⊆ U implies that
U0 = U . So σ(U) = U and U is a completely prime ideal of R. Hence by Proposition 2 R is a
σ(∗)-ring.

Remark 2.

i) Let R be a Noetherian ring and σ an automorphism of R such that R is a σ(∗)-ring. Then
R[x , x−1;σ] is a σ(∗)-ring. Therefore, Proposition 1 implies that R[x , x−1;σ] is 2-primal.
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ii) If R is 2-primal Noetherian ring, then R[x , x−1;σ] need not be 2-primal. For example
consider Z2 and let R= Z2⊕Z2. Then R is a commutative reduced ring with P(R) = 0, and
therefore R is 2-primal. Define σ : R→ R by σ(a, b) = (b, a). Then it can be seen that

P(R[x , x−1;σ]) = 0, but P(R[x , x−1;σ])

is not completely semiprime as

((1, 0)x)2 = 0= P(R[x , x−1;σ]), but (1,0)x /∈ P(R[x , x−1;σ]).

Thus R[x , x−1;σ] is not 2-primal.

4. Skew Polynomial Rings Over σ(∗)-rings

Let σ be an endomorphism of a ring R and δ a σ-derivation of R such that
σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then σ can be extended to an endomorphism (say σ) of
R[x;σ,δ] by σ(

∑m
i=0 x iai) =

∑m
i=0 x iσ(ai). Also δ can be extended to a σ-derivation (say δ)

of R[x;σ,δ] by δ(
∑m

i=0 x iai) =
∑m

i=0 x iδ(ai).

Example 5 (Example 2.13 of Bhat [5]). Let R= R×R, σ : R→ R defined by σ((a, b)) = (b, a)
for a, b ∈ R. Then σ is an automorphism of R. Let now r ∈ R. Define δr : R→ R by
δr((a, b)) = (a, b)r − rσ((a, b)) for a, b ∈ R. Then δ is a σ-derivation. Now for any (u, v) ∈ R,

σ(δr((u, v))) =σ((u, v)r − rσ((u, v)))

=σ((u, v)r − r(v, u))

=σ((ur, vr)−σ(vr, ur))

=(vr, ur)− (ur, vr)).

Also

δr(σ((u, v))) =δr(v, u)

=(v, u)r − rσ((v, u))

=(v, u)r − r(u, v)

=(vr, ur)− (ur, vr)).

Therefore σ(δ((u, v))) = δ(σ((u, v))) for all (u, v) ∈ R.

Remark 3. We note that if σ(δ(a)) 6= δ(σ(a)) for all a ∈ R, then the above does not hold. For
example let f (x) = x l and g(x) = x p, a, b ∈ R. Then

δ( f (x)g(x)) = x2{δ(σ(l))σ(p) +σ(l)δ(p)}+ x{δ2(l)σ(p) +δ(l)σ(p)},

but

δ( f (x))σ(g(x)) + f (x)δ(g(x)) = x2{σ(δ(l))σ(p) +σ(l)δ(p)}+ x{δ2(l)σ(p) +δ(l)σ(p)}.

So, δ( f (x)g(x)) 6= δ( f (x))σ(g(x)) + f (x)δ(g(x)), i.e. δ is not a δ-derivation.
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With this we now prove the following:

Theorem 3. Let R be a Noetherian ring which is also an algebra over Q. Let σ be an automor-
phism of R and δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Further let
P ∈ Min.Spec(O(R)) implies that P ∩ R ∈ Min.Spec(R). Then R is a σ(∗)-ring implies that
O(R) = R[x;σ,δ] is a Noetherian σ(∗)-ring.

Proof. Let R be a Noetherian ring and σ an automorphism of R such that R is a σ(∗)-ring.
We shall prove that O(R) = R[x;σ,δ] is a Noetherian σ(∗)-ring. For this we will show that
any minimal P ∈ Min.Spec(O(R)) is completely prime and σ(P) = P.

Let P ∈ Min.Spec(O(R)). Now P ∩ R ∈ Min.Spec(R) and R is a σ(∗)-ring implies that
σ(P ∩ R) = P ∩ R and P ∩ R is a completely prime ideal of R. Now Proposition (2.1) of Bhat
[2] implies that δ(P ∩ R) ⊆ P ∩ R. Now Theorem (2.4) of Bhat [4] implies that O(P ∩ R) is a
completely prime ideal of O(R). Now O(P ∩R) ⊆ P implies that O(P ∩R) = P as P is minimal.
Now σ(P ∩ R) = P ∩ R implies that σ(P) = P.

Thus σ(P) = P and P is completely prime for all P ∈ Min.Spec(O(R)). Moreover
O(R) = R[x;σ,δ] is Noetherian by Theorem (1.12) of Goodearl and Warfield [7]. Hence by
Proposition 2 R[x;σ,δ] is a σ(∗)-ring.

We note that the condition that P ∈ Min.Spec(O(R)) implies that P ∩ R ∈ Min.Spec(R)
can not be ignored as follows:

Let R = Q×Q. Let σ : R→ R be defined by σ((a, b)) = (b, a) and δ = 0. Then P = 0 is a
prime ideal of O(R), but P ∩ R is not a prime ideal of R.

We have not been able to prove the converse part of the above result. The main reason
being that a generalization of Theorem 1 in terms of O(R) is not known. The known towards
this is:

Let R be a Noetherian ring which is also an algebra overQ. Let σ be an automorphism of R
and δ a σ-derivation of R. Then U ∈ Min.Spec(R) such that σ(U) = U implies that δ(U) ⊆ U
(Lemma 2.6 of Bhat [3]).

Question Let R be a Noetherian ring which is also an algebra over Q. Let σ be an
automorphism of R and δ a σ-derivation of R. If O(R) = R[x;σ,δ] is a Noetherian σ(∗)-
ring. Is R is a σ(∗)-ring?
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