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Abstract. In this paper is shown a solution to the number of pair of points in a quadratic equation
with rational distance, this result have an important impact to solve the open problem “Points on a
parabola” [3] proposed in The Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS), because it’s an approach to set down basis in the problem.
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1. Introduction

Define f : ℜ −→ ℜ by the function f (x) = ax2 + bx + c; where x > 0 and a, b, c ∈ ℜ
with a 6= 0, then the question is: how many pairs of points, so that the distance between
them is a rational number?, although exist some references about quadratic equations and
distances[1–3, 6, 7, 9, 10] , there is no information about this specifically question and the
solution of this problem allows to start to solve the still open problem “Points on a parabola”
[3], that it’s about to find the maximum number of points that satisfies the condition to have
a rational distance between any of them.

2. Main Result

Theorem 1. Let f : ℜ −→ ℜ by f (x) = ax2 + bx + c; where x ∈ Z+ and a, b, c ∈ ℜ with
a 6= 0 ⇒exist infinite pairs of points within the polynomial, where the distance between them is
a rational number.

By reductio ad absurdum, we suppose that the quadratic equation with form
f (x) = ax2 + bx + c have finite pairs of points that satisfies the condition that its distance is
a rational number.
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Select two points in the polynomial: (r, ar2+ br+ c) and (s, as2+ bs+ c); where r, s ∈ Z+

Define the distance function for this case [5]

d =
p

(s− r)2+ (as2+ bs+ c− ar2− br − c)2

Cancel the constants: c− c = 0

d =
p

(s− r)2+ (as2+ bs− ar2− br)2

Factorize by common factor:

d =
p

(s− r)2+ (a(s2− r2) + b(s− r))2

Factorize by difference of squares:

d =
p

(s− r)2+ (a(s− r)(s+ r) + b(s− r))2

Again, factorize by common factor:

d =
p

(s− r)2+ ((s− r)(a(s+ r) + b))2 (1)

Now define d = p
q
; where p, q ∈ Z and q 6= 0, to find all points where the distance between

them is a rational number. Replace d in the equation by (1).

p

q
=
p

(s− r)2+ ((s− r)(a(s+ r) + b))2

Squaring both sides:
p2

q2 = (s− r)2+ ((s− r)(a(s+ r) + b))2

Reorganizing the equation:

�

p

q

�2

= (s− r)2+ ((s− r)(a(s+ r) + b))2 (2)

Without loss of generality, we will use the equation [5]

(5n)2 = (−3n)2+ (4n)2 (3)

Where n ∈ Q, to represent that this family of pairs of points is infinite even if it’s a subset
of all points that satisfies the condition to have a rational distance between them inside the
quadratic equation.

Matching the equations (2) and (3)

p

q
= 5n (4)
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s− r =−3n (5)

(s− r)(a(s+ r) + b) = 4n (6)

Replace (5) in (6):
−3n(a(s+ r) + b) = 4n

Divide by 3n in both sides:

a(s+ r) + b =−
4

3
Deduct b in both sides:

a(s+ r) =−
4

3
− b

Divide by a in both sides:

s+ r =−
4
3
+ b

a
Reorganizing the equation:

s+ r =−
4
3
+ 3b

3

a

=−
4−3b

3

a

=−
4− 3b

3a
(7)

Define j =−4−3b
3a

; where j ∈ ℜ and replace in the equation (7).

s+ r = j (8)

Do (5)+(8)
2s = j− 3n

Divide by 2 in both sides:

s =
j− 3n

2
(9)

Now, do (8)-(5)
2r = j+ 3n

Divide by 2 in both sides:

r =
j+ 3n

2
(10)

The equations (9) and (10) present some restriction:

j > 0 (11)

r > 0 (12)
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s > 0 (13)

Replace (10) in (12)
j+ 3n

2
> 0

Multiply 2 in both sides:
j+ 3n> 0

Deduct j in both sides:
3n>− j

Divide by 3 in both sides

n>
− j

3
(14)

Now, replace (9) in (13)
j− 3n

2
> 0

Multiply 2 in both sides:
j− 3n> 0

Add 3n in both sides:
j > 3n

Divide by 3 in both sides:
j

3
> n (15)

From (14) and (15)
− j

3
< n<

j

3
(16)

Lemma 1. The set Q ∩
�

− j
3

, j
3

�

is countably infinite.

Proof. Let s ∈ Q ∩
�

− j
3

, j
3

�

, then each s will be written in the (unique) form p
q
, where

p, q ∈ Z+ and have no common divisor other than 1 [8, 11]. Now, define

f : Q ∩
�

− j
3

, j
3

�

→ Z+ × Z+ by f
�

p
q

�

= (p, q), and let K = range f . For p
q
, u

v
∈ Q ∩

�

− j
3

, j
3

�

,

we find that f
�

p
q

�

= f
�

u
v

�

⇒ (p, q) = (u, v) ⇒ p = u and q = v ⇒
�

p
q

�

=
�

u
v

�

, so f is a

one-to-one function. Therefore |Q∩
�

− j
3

, j
3

�

|= |K |, a subset of the countable set Z+× Z+ (by

Theorem A3.5 in [4] we know that Z+ × Z+ is countable). From [4, Theorem A3.5] it now
follows that the set Q ∩

�

− j
3

, j
3

�

is countable.

Define g : Z+→ Q ∩
�

− j
3

, j
3

�

by g(x) = − j(x−1)
3(x+1) ; where x ∈ Z+1 and let L = range g. For

c, d ∈ Z+, we find that if g(c) = g(d)⇒ c = d, so g is a one-to-one function. Consequently

|Z+| = |L|, then we can notice that L is countably infinite, but L ∈ Q ∩
�

− j
3

, j
3

�

, therefore

Q ∩
�

− j
3

, j
3

�

is also infinite.



REFERENCES 404

Now, it’s known that n ∈ Q ∩
�

− j
3

, j
3

�

, then r, s could take infinities values, where the
distance between them is a rational number, because they depend of n.
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