On the Number of Pairs of Points in a Quadratic Equation with Rational Distance

Juan Sebastian Beleño Diaz
Escuela de Ingeniería de Sistemas e Informática, Facultad de Ingenierías Físico-Mecánicas, Industrial University of Santander, Bucaramanga, Colombia

Abstract

In this paper is shown a solution to the number of pair of points in a quadratic equation with rational distance, this result have an important impact to solve the open problem "Points on a parabola" [3] proposed in The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), because it's an approach to set down basis in the problem.

2010 Mathematics Subject Classifications: 97F40,11D09,41A20
Key Words and Phrases: rational numbers, quadratic equations, Approximation by rational functions

1. Introduction

Define $f: \Re \rightarrow \Re$ by the function $f(x)=a x^{2}+b x+c$; where $x>0$ and $a, b, c \in \Re$ with $a \neq 0$, then the question is: how many pairs of points, so that the distance between them is a rational number?, although exist some references about quadratic equations and distances $[1-3,6,7,9,10]$, there is no information about this specifically question and the solution of this problem allows to start to solve the still open problem "Points on a parabola" [3], that it's about to find the maximum number of points that satisfies the condition to have a rational distance between any of them.

2. Main Result

Theorem 1. Let $f: \Re \rightarrow \Re$ by $f(x)=a x^{2}+b x+c$; where $x \in Z^{+}$and $a, b, c \in \Re$ with $a \neq 0 \Rightarrow$ exist infinite pairs of points within the polynomial, where the distance between them is a rational number.

By reductio ad absurdum, we suppose that the quadratic equation with form $f(x)=a x^{2}+b x+c$ have finite pairs of points that satisfies the condition that its distance is a rational number.

Select two points in the polynomial: $\left(r, a r^{2}+b r+c\right)$ and $\left(s, a s^{2}+b s+c\right)$; where $r, s \in Z^{+}$ Define the distance function for this case [5]

$$
d=\sqrt{(s-r)^{2}+\left(a s^{2}+b s+c-a r^{2}-b r-c\right)^{2}}
$$

Cancel the constants: $c-c=0$

$$
d=\sqrt{(s-r)^{2}+\left(a s^{2}+b s-a r^{2}-b r\right)^{2}}
$$

Factorize by common factor:

$$
d=\sqrt{(s-r)^{2}+\left(a\left(s^{2}-r^{2}\right)+b(s-r)\right)^{2}}
$$

Factorize by difference of squares:

$$
d=\sqrt{(s-r)^{2}+(a(s-r)(s+r)+b(s-r))^{2}}
$$

Again, factorize by common factor:

$$
\begin{equation*}
d=\sqrt{(s-r)^{2}+((s-r)(a(s+r)+b))^{2}} \tag{1}
\end{equation*}
$$

Now define $d=\frac{p}{q}$; where $p, q \in Z$ and $q \neq 0$, to find all points where the distance between them is a rational number. Replace d in the equation by (1).

$$
\frac{p}{q}=\sqrt{(s-r)^{2}+((s-r)(a(s+r)+b))^{2}}
$$

Squaring both sides:

$$
\frac{p^{2}}{q^{2}}=(s-r)^{2}+((s-r)(a(s+r)+b))^{2}
$$

Reorganizing the equation:

$$
\begin{equation*}
\left(\frac{p}{q}\right)^{2}=(s-r)^{2}+((s-r)(a(s+r)+b))^{2} \tag{2}
\end{equation*}
$$

Without loss of generality, we will use the equation [5]

$$
\begin{equation*}
(5 n)^{2}=(-3 n)^{2}+(4 n)^{2} \tag{3}
\end{equation*}
$$

Where $n \in Q$, to represent that this family of pairs of points is infinite even if it's a subset of all points that satisfies the condition to have a rational distance between them inside the quadratic equation.

Matching the equations (2) and (3)

$$
\begin{equation*}
\frac{p}{q}=5 n \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
s-r=-3 n \tag{5}\\
(s-r)(a(s+r)+b)=4 n \tag{6}
\end{gather*}
$$

Replace (5) in (6):

$$
-3 n(a(s+r)+b)=4 n
$$

Divide by $3 n$ in both sides:

$$
a(s+r)+b=-\frac{4}{3}
$$

Deduct b in both sides:

$$
a(s+r)=-\frac{4}{3}-b
$$

Divide by a in both sides:

$$
s+r=-\frac{\frac{4}{3}+b}{a}
$$

Reorganizing the equation:

$$
\begin{align*}
s+r & =-\frac{\frac{4}{3}+\frac{3 b}{3}}{a} \\
& =-\frac{\frac{4-3 b}{3}}{a} \\
& =-\frac{4-3 b}{3 a} \tag{7}
\end{align*}
$$

Define $j=-\frac{4-3 b}{3 a}$; where $j \in \Re$ and replace in the equation (7).

$$
\begin{equation*}
s+r=j \tag{8}
\end{equation*}
$$

Do (5) $+(8)$

$$
2 s=j-3 n
$$

Divide by 2 in both sides:

$$
\begin{equation*}
s=\frac{j-3 n}{2} \tag{9}
\end{equation*}
$$

Now, do (8)-(5)

$$
2 r=j+3 n
$$

Divide by 2 in both sides:

$$
\begin{equation*}
r=\frac{j+3 n}{2} \tag{10}
\end{equation*}
$$

The equations (9) and (10) present some restriction:

$$
\begin{align*}
& j>0 \tag{11}\\
& r>0 \tag{12}
\end{align*}
$$

$$
\begin{equation*}
s>0 \tag{13}
\end{equation*}
$$

Replace (10) in (12)

$$
\frac{j+3 n}{2}>0
$$

Multiply 2 in both sides:

$$
j+3 n>0
$$

Deduct j in both sides:

$$
3 n>-j
$$

Divide by 3 in both sides

$$
\begin{equation*}
n>\frac{-j}{3} \tag{14}
\end{equation*}
$$

Now, replace (9) in (13)

$$
\frac{j-3 n}{2}>0
$$

Multiply 2 in both sides:

$$
j-3 n>0
$$

Add $3 n$ in both sides:

$$
j>3 n
$$

Divide by 3 in both sides:

$$
\begin{equation*}
\frac{j}{3}>n \tag{15}
\end{equation*}
$$

From (14) and (15)

$$
\begin{equation*}
\frac{-j}{3}<n<\frac{j}{3} \tag{16}
\end{equation*}
$$

Lemma 1. The set $Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$ is countably infinite.
Proof. Let $s \in Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$, then each s will be written in the (unique) form $\frac{p}{q}$, where $p, q \in Z^{+}$and have no common divisor other than $1[8,11]$. Now, define $f: Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right) \rightarrow Z^{+} \times Z^{+}$by $f\left(\frac{p}{q}\right)=(p, q)$, and let $K=$ range f. For $\frac{p}{q}, \frac{u}{v} \in Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$, we find that $f\left(\frac{p}{q}\right)=f\left(\frac{u}{v}\right) \Rightarrow(p, q)=(u, v) \Rightarrow p=u$ and $q=v \Rightarrow\left(\frac{p}{q}\right)=\left(\frac{u}{v}\right)$, so f is a one-to-one function. Therefore $\left|Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)\right|=|K|$, a subset of the countable set $Z^{+} \times Z^{+}$(by Theorem A3.5 in [4] we know that $Z^{+} \times Z^{+}$is countable). From [4, Theorem A3.5] it now follows that the set $Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$ is countable.

Define $g: Z^{+} \rightarrow Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$ by $g(x)=\frac{-j(x-1)}{3(x+1)}$; where $x \in Z^{+1}$ and let $L=$ range g. For $c, d \in Z^{+}$, we find that if $g(c)=g(d) \Rightarrow c=d$, so g is a one-to-one function. Consequently $\left|Z^{+}\right|=|L|$, then we can notice that L is countably infinite, but $L \in Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$, therefore $Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$ is also infinite.

Now, it's known that $n \in Q \cap\left(\frac{-j}{3}, \frac{j}{3}\right)$, then r, s could take infinities values, where the distance between them is a rational number, because they depend of n.

References

[1] P Binder. Theories of almost everything. Nature, 455:884-885, 2008.
[2] E Deza and M Deza. Dictionary of Distances. Elsevier, 2006.
[3] DIMACS. Geometry/number theory open problems., 1996. [Online], (Accessed: 10 January 2013), http://dimacs.rutgers.edu/~hochberg/undopen/geomnum/ geomnum.html.
[4] R Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction. AddisonWesley, United States of America, 2003.
[5] Hardy and Wright. An Introduction to the Theory of Numbers. Oxford Science Publications, 1980.
[6] M Hazewinkel. Encyclopedia of Mathematics. Springer, 2001.
[7] H Heaton. A method of solving quadratic equations. The American Mathematical Monthly, 3:236-237, 1896.
[8] D Knuth. Seminumerical Algorithms. The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts, 1975.
[9] A Lenstra, H Lenstra, and L Lovàsz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515-534, 1982.
[10] E Lockwood. A Book of Curves. Cambridge University Press, 1961.
[11] J Mayberry. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2000.

