

On the Number of Pairs of Points in a Quadratic Equation with Rational Distance

Juan Sebastian Beleño Diaz

Escuela de Ingeniería de Sistemas e Informática, Facultad de Ingenierías Físico-Mecánicas, Industrial University of Santander, Bucaramanga, Colombia

Abstract. In this paper is shown a solution to the number of pair of points in a quadratic equation with rational distance, this result have an important impact to solve the open problem "Points on a parabola" [3] proposed in The Center for Discrete Mathematics and Theoretical Computer Science (**DIMACS**), because it's an approach to set down basis in the problem.

2010 Mathematics Subject Classifications: 97F40,11D09,41A20

Key Words and Phrases: rational numbers, quadratic equations, Approximation by rational functions

1. Introduction

Define $f : \mathfrak{N} \to \mathfrak{N}$ by the function $f(x) = ax^2 + bx + c$; where x > 0 and $a, b, c \in \mathfrak{N}$ with $a \neq 0$, then the question is: how many pairs of points, so that the distance between them is a rational number?, although exist some references about quadratic equations and distances [1–3, 6, 7, 9, 10], there is no information about this specifically question and the solution of this problem allows to start to solve the still open problem "Points on a parabola" [3], that it's about to find the maximum number of points that satisfies the condition to have a rational distance between any of them.

2. Main Result

Theorem 1. Let $f : \mathfrak{A} \to \mathfrak{A}$ by $f(x) = ax^2 + bx + c$; where $x \in Z^+$ and $a, b, c \in \mathfrak{A}$ with $a \neq 0 \Rightarrow$ exist infinite pairs of points within the polynomial, where the distance between them is a rational number.

By reductio ad absurdum, we suppose that the quadratic equation with form $f(x) = ax^2 + bx + c$ have finite pairs of points that satisfies the condition that its distance is a rational number.

http://www.ejpam.com

(c) 2013 EJPAM All rights reserved.

Email address: juan.beleno@correo.uis.edu.co

J. Diaz / Eur. J. Pure Appl. Math, 6 (2013), 400-404

Select two points in the polynomial: $(r, ar^2 + br + c)$ and $(s, as^2 + bs + c)$; where $r, s \in Z^+$ Define the distance function for this case [5]

$$d = \sqrt{(s-r)^2 + (as^2 + bs + c - ar^2 - br - c)^2}$$

Cancel the constants: c - c = 0

$$d = \sqrt{(s-r)^2 + (as^2 + bs - ar^2 - br)^2}$$

Factorize by common factor:

$$d = \sqrt{(s-r)^2 + (a(s^2 - r^2) + b(s-r))^2}$$

Factorize by difference of squares:

$$d = \sqrt{(s-r)^2 + (a(s-r)(s+r) + b(s-r))^2}$$

Again, factorize by common factor:

$$d = \sqrt{(s-r)^2 + ((s-r)(a(s+r)+b))^2}$$
(1)

Now define $d = \frac{p}{q}$; where $p, q \in Z$ and $q \neq 0$, to find all points where the distance between them is a rational number. Replace *d* in the equation by (1).

$$\frac{p}{q} = \sqrt{(s-r)^2 + ((s-r)(a(s+r)+b))^2}$$

Squaring both sides:

$$\frac{p^2}{q^2} = (s-r)^2 + ((s-r)(a(s+r)+b))^2$$

Reorganizing the equation:

$$\left(\frac{p}{q}\right)^2 = (s-r)^2 + ((s-r)(a(s+r)+b))^2$$
(2)

Without loss of generality, we will use the equation [5]

$$(5n)^2 = (-3n)^2 + (4n)^2$$
(3)

Where $n \in Q$, to represent that this family of pairs of points is infinite even if it's a subset of all points that satisfies the condition to have a rational distance between them inside the quadratic equation.

Matching the equations (2) and (3)

$$\frac{p}{q} = 5n \tag{4}$$

J. Diaz / Eur. J. Pure Appl. Math, 6 (2013), 400-404

$$s - r = -3n \tag{5}$$

$$(s-r)(a(s+r)+b) = 4n$$
 (6)

Replace (5) in (6):

$$-3n(a(s+r)+b) = 4n$$

Divide by 3n in both sides:

$$a(s+r)+b=-\frac{4}{3}$$

Deduct *b* in both sides:

$$a(s+r) = -\frac{4}{3} - b$$

Divide by *a* in both sides:

$$s+r = -\frac{\frac{4}{3}+b}{a}$$

Reorganizing the equation:

$$s + r = -\frac{\frac{4}{3} + \frac{3b}{3}}{a} = -\frac{\frac{4-3b}{3}}{a} = -\frac{4-3b}{3a}$$
(7)

Define $j = -\frac{4-3b}{3a}$; where $j \in \Re$ and replace in the equation (7).

$$s + r = j \tag{8}$$

Do (5)+(8)

Divide by 2 in both sides:

$$s = \frac{j - 3n}{2} \tag{9}$$

Now, do (8)-(5)

2r = j + 3n

2s = j - 3n

Divide by 2 in both sides:

$$r = \frac{j+3n}{2} \tag{10}$$

The equations (9) and (10) present some restriction:

$$j > 0 \tag{11}$$

$$r > 0 \tag{12}$$

402

J. Diaz / Eur. J. Pure Appl. Math, 6 (2013), 400-404

Replace (10) in (12)	
----------------------	--

• • • • • •	$\frac{j+3n}{2} > 0$	
Multiply 2 in both sides:	_	
	j + 3n > 0	
Deduct j in both sides:		
	3n > -j	
Divide by 3 in both sides	÷	
	$n > \frac{-j}{3}$	(14)
Now, replace (9) in (13)		
	$\frac{j-3n}{2} > 0$	
Multiply 2 in both sides:		
	j - 3n > 0	
Add $3n$ in both sides:		
	j > 3n	
Divide by 3 in both sides:		
	$\frac{j}{3} > n$	(15)
From (14) and (15)		
	$\frac{-j}{3} < n < \frac{j}{3}$	(16)

S

Lemma 1. The set $Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$ is countably infinite.

Proof. Let $s \in Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$, then each *s* will be written in the (unique) form $\frac{p}{q}$, where $p, q \in Z^+$ and have no common divisor other than 1 [8, 11]. Now, define $f: Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right) \to Z^+ \times Z^+$ by $f\left(\frac{p}{q}\right) = (p,q)$, and let K = range f. For $\frac{p}{q}, \frac{u}{v} \in Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$, we find that $f\left(\frac{p}{q}\right) = f\left(\frac{u}{v}\right) \Rightarrow (p,q) = (u,v) \Rightarrow p = u$ and $q = v \Rightarrow \left(\frac{p}{q}\right) = \left(\frac{u}{v}\right)$, so *f* is a one-to-one function. Therefore $|Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)| = |K|$, a subset of the countable set $Z^+ \times Z^+$ (by Theorem A3.5 in [4] we know that $Z^+ \times Z^+$ is countable). From [4, Theorem A3.5] it now follows that the set $Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$ is countable.

Define $g: Z^+ \to Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$ by $g(x) = \frac{-j(x-1)}{3(x+1)}$; where $x \in Z^{+1}$ and let L = range g. For $c, d \in Z^+$, we find that if $g(c) = g(d) \Rightarrow c = d$, so g is a one-to-one function. Consequently $|Z^+| = |L|$, then we can notice that L is countably infinite, but $L \in Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$, therefore $Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$ is also infinite.

403

REFERENCES

Now, it's known that $n \in Q \cap \left(\frac{-j}{3}, \frac{j}{3}\right)$, then *r*,*s* could take infinities values, where the distance between them is a rational number, because they depend of *n*.

References

- [1] P Binder. Theories of almost everything. *Nature*, 455:884–885, 2008.
- [2] E Deza and M Deza. Dictionary of Distances. Elsevier, 2006.
- [3] DIMACS. Geometry/number theory open problems., 1996. [Online], (Accessed: 10 January 2013), http://dimacs.rutgers.edu/~hochberg/undopen/geomnum/ geomnum.html.
- [4] R Grimaldi. *Discrete and Combinatorial Mathematics: An Applied Introduction*. Addison-Wesley, United States of America, 2003.
- [5] Hardy and Wright. *An Introduction to the Theory of Numbers*. Oxford Science Publications, 1980.
- [6] M Hazewinkel. Encyclopedia of Mathematics. Springer, 2001.
- [7] H Heaton. A method of solving quadratic equations. *The American Mathematical Monthly*, 3:236–237, 1896.
- [8] D Knuth. *Seminumerical Algorithms. The Art of Computer Programming*. Addison-Wesley, Reading, Massachusetts, 1975.
- [9] A Lenstra, H Lenstra, and L Lovàsz. Factoring polynomials with rational coefficients. *Mathematische Annalen*, 261:515–534, 1982.
- [10] E Lockwood. A Book of Curves. Cambridge University Press, 1961.
- [11] J Mayberry. *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, 2000.