Unitary Addition Cayley Signed Graphs

Deepa Sinha ${ }^{1}$, Ayushi Dhama ${ }^{2, *}$, B.D. Acharya ${ }^{3}$
${ }^{1}$ South Asian University, Akbar Bhawan, Chankyapuri, New Delhi-110 021, India
${ }^{2}$ Centre for Mathematical Sciences, Banasthali University, Banasthali-304 022 Rajasthan, India
${ }^{3}$ Centre For Excellence in Interdisciplinary Mathematics, M.E.R.I.T., A/9, USO Road, Shaheed Jit Singh Marg, Qutab Institutional Area, New Delhi - 100 067, India.

Abstract. A signed graph (or sigraph in short) is an ordered pair $S=\left(S^{u}, \sigma\right)$, where S^{u} is a graph $G=(V, E)$ and $\sigma: E \rightarrow\{+,-\}$ is a function from the edge set E of S^{u} into the set $\{+,-\}$. For a positive integer n, the unitary addition Cayley graph G_{n} is the graph whose vertex set is Z_{n}, the ring of integers modulo n and if U_{n} denotes set of all units of the ring, then two vertices a and b are adjacent if and only if $a+b \in U_{n}$. For a positive integer n, the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is defined as the sigraph, where Σ_{n}^{u} is the unitary addition Cayley graph and for an edge $a b$ of Σ_{n},

$$
\sigma(a b)= \begin{cases}+ & \text { if } a \in U_{n} \text { or } b \in U_{n} \\ - & \text { otherwise }\end{cases}
$$

In this paper, we have obtained a characterization of balanced and clusterable unitary addition Cayley sigraphs. Further, we have established a characterization of canonically consistent unitary addition Cayley sigraphs Σ_{n}, where n has at most two distinct odd prime factors.
2010 Mathematics Subject Classifications: 05C22; 05C75
Key Words and Phrases: sigraph, balance, clustering, \mathscr{C}-consistency, unitary Cayley sigraph, unitary addition Cayley graph, unitary addition Cayley sigraph

1. Introduction

For standard terminology and notation in graph theory, we refer the reader to Harary [30] and West [45] and to Zaslavsky [46, 47] for sigraphs. Throughout the text, we consider finite, undirected graphs with no loops or multiple edges.

[^0]
1.1. Sigraphs and Some Basic Notions and Notations

A signed graph (or, sigraph in short; see [29]) is an ordered pair $S=\left(S^{u}, \sigma\right)$, where S^{u} is a graph $G=(V, E)$, called the underlying graph of S and $\sigma: E \rightarrow\{+,-\}$ is a function from the edge set E of S^{u} into the set $\{+,-\}$, called the signature of S. Let

$$
E^{+}(S)=\{e \in E(G): \sigma(e)=+\}
$$

and

$$
E^{-}(S)=\{e \in E(G): \sigma(e)=-\} .
$$

The elements of $E^{+}(S)$ and $E^{-}(S)$ are called positive and negative edges of S, respectively. A sigraph is all-positive (all-negative) if all its edges are positive (negative); further, it is said to be homogeneous if it is either all-positive or all-negative and heterogeneous otherwise.

The positive (negative) degree of a vertex $v \in V(S)$ denoted by $d^{+}(v)\left(d^{-}(v)\right.$) is the number of positive (negative) edges incident on the vertex v and $d(v)=d^{+}(v)+d^{-}(v)$. The negation $\eta(S)$ of a sigraph S is a sigraph obtained from S by negating the sign of every edge of S, in the sense that to find $\eta(S)$ we change the sign of every edge to its opposite in S.

A positive (negative) section of a subsigraph S^{\prime} of a sigraph S is a maximal edge-induced connected subsigraph in S consisting of only the positive (negative) edges of S; in particular, a positive (negative) section in a heterogeneous cycle of S is essentially a maximal all-positive (all-negative) path in the cycle.

Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a bijective function $f: V_{1} \rightarrow V_{2}$ such that for all $v_{1}, v_{2} \in V: v_{1} v_{2} \in E_{1} \Leftrightarrow f\left(v_{1}\right) f\left(v_{2}\right) \in E_{2}$. Two sigraphs S_{1} and S_{2} are isomorphic if there is an isomorphism between their underlying graphs that preserves edge signs.

A cycle in a sigraph S is said to be positive if it contains an even number of negative edges. A given sigraph S is said to be balanced if every cycle in S is positive (see [29]); balanced sigraphs were first defined and characterized by Harary [29]. A spectral characterization of balanced sigraphs was given by Acharya [1]. Harary and Kabell [31, 32] developed a simple algorithm to detect balanced sigraphs and also enumerated them.

1.2. The Notion of Balance in a Sigraph

Harary [29] derived the following structural criterion called partition criterion for balance in sigraphs.

Theorem 1 ([29]). A sigraph S is balanced if and only if its vertex set $V(S)$ can be partitioned into two subsets V_{1} and V_{2}, one of them possibly empty, such that every positive edge joins two vertices in the same subset and every negative edge joins two vertices from different subsets.

The following important lemma on balanced sigraphs is given by Zaslavsky:

Lemma 1 ([48]). A sigraph in which every chordless cycle is positive, is balanced.

1.3. The Notion of Clustering in a Sigraph

A signed graph is said to be clusterable if its vertex set can be partitioned into pairwise disjoint subsets, called clusters, such that every negative edge joins vertices in different clusters and every positive edge joins vertices in the same cluster; we shall call such a partition a Davis partition, after its originator [19], or a clustering [16]. Clearly, every graph, treated as an allpositive sigraph, is clusterable with its entire vertex set forming a single cluster. Next, every heterogeneous sigraph is balanced if and only if it is clusterable with exactly two clusters [29]; this particular Davis partition is known as Harary bipartition [46]. Davis [19] characterized clusterable signed graphs as precisely those in which no cycle has exactly one negative edge (also, see [16]).

Theorem 2 ([19]). A siraph S is clusterable if and only if S contains no cycle with exactly one negative edge.

1.4. The Notions of Consistency and Sign-Compatibility in a Sigraph

A marked sigraph is an ordered pair $S_{\mu}=(S, \mu)$ where $S=\left(S^{u}, \sigma\right)$ is a sigraph and

$$
\mu: V\left(S^{u}\right) \rightarrow\{+,-\}
$$

is a function from the vertex set $V\left(S^{u}\right)$ of S^{u} into the set $\{+,-\}$, called a marking of S. A cycle Z in S_{μ} is said to be consistent if it contains an even number of negative vertices. A given sigraph S is said to be consistent if every cycle in it is consistent [2]; for digraphs, the notion was due to Beineke and Harary [11, 12]. In particular, σ induces a unique marking μ_{σ} defined by

$$
\mu_{\sigma}(v)=\prod_{e_{j} \in E_{v}} \sigma\left(e_{j}\right), v \in V(S)
$$

is called the canonical marking (or, \mathscr{C}-marking in short) of S, where E_{v} is the set of edges e_{j} incident at v in S [40].

Now, if every vertex of a given sigraph S is canonically marked, then a cycle Z in S is said to be canonically consistent (\mathscr{C}-consistent) if it contains an even number of negative vertices and the given sigraph S is said be \mathscr{C}-consistent if every cycle in it is \mathscr{C}-consistent. Thus, the original notion of consistent graphs due to Beineke and Harary [11, 12] reduces to that of trivial \mathscr{C}-consistency, when all the vertices receive ' + '. Although consistent digraphs were neatly characterized in $[11,12]$, the problem of characterizing consistent marked graphs was declared open by Beineke and Harary [11]; subsequently, it was solved successfully by many authors (see [46] for a comprehensive appraisal). However, characterization of \mathscr{C}-consistent sigraphs is still an open problem.

A sigraph S is sign-compatible [40] if there exists a marking μ of its vertices such that the end vertices of every negative edge receive ' -1 ' marks in μ and no positive edge in S has both of its ends assigned ' -1 ' marks in μ. sign-incompatible otherwise. The notion of sign-compatibility arises naturally in the characterization of line sigraphs [5].

1.5. Some Notions of Derived Sigraphs

There are many notions of sigraphs derived from a given sigraph, generically addressed here as 'derived sigraphs'. Some of them considered in our investigations include the following ones.

For a sigraph S, Behzad and Chartrand [10] defined its line sigraph, $L(S)$ as the sigraph in which the edges of S are represented as vertices, two of these vertices are defined adjacent whenever the corresponding edges in S have a vertex in common, any such edge ef is defined to be negative whenever both e and f are negative edges in S.

For a sigraph S, Gill [24] defined its \times-line sigraph $L_{\times}(S)$ as follows: the $L_{\times}(S)$ is a sigraph defined on the line graph $L\left(S^{u}\right)$ of the graph S^{u} by assigning to each edge ef of $L\left(S^{u}\right)$, the product of signs of the adjacent edges e and f of S.

For a sigraph S, Acharya and Sinha [6] defined its common-edge sigraph $C_{E}(S)$ as the sigraph whose vertex set is the set of pairs of adjacent edges in S and two vertices of $C_{E}(S)$ are adjacent if the corresponding pairs of adjacent edges of S have exactly one edge in common, with the sign same as that of their common edge.

The semi-total line graph $T_{1}(G)$ [38] of a graph G is the graph whose vertex set is

$$
V(G) \cup E(G)
$$

where $V(G)$ and $E(G)$ are vertex set and edge set of G, respectively and in $T_{1}(G)$ two vertices are adjacent if and only if (i) they are adjacent edges in G, or (ii) one is a vertex and the other is an edge in G incident to it. Sinha et al. [44] extended this notion of semi-total line graphs to the theory of sigraphs as follows:

Let $S=(V, E, \sigma)$ be any sigraph. Its semi-total line sigraph $T_{1}(S)$ has $T_{1}\left(S^{u}\right)$ as its underlying graph and for any edge $u v$ of $T_{1}\left(S^{u}\right)$,

$$
\sigma_{T_{1}}(u v)= \begin{cases}\sigma(u) \sigma(v) & \text { if } u, v \in E, \\ \sigma(v) & \text { if } u \in V \text { and } v \in E .\end{cases}
$$

1.6. Unitary Cayley Graph and its Sigraph Varieties

Let Γ be a group and B be a subset of Γ such that B does not contain the identity of Γ. Assume $B^{-1}=\left\{b^{-1}: b \in B\right\}=B$. The Cayley graph $X^{\prime}=\operatorname{Cay}(\Gamma, B)$ is an undirected graph
having vertex set $V\left(X^{\prime}\right)=\Gamma$ and edge set $E\left(X^{\prime}\right)=\left\{a b: a b^{-1} \in B\right\}$, where $a, b \in \Gamma$. The Cayley graph X^{\prime} is a regular graph of degree $|B|$. Its connected components are the right cosets of the subgroup generated by B. Therefore, if B generates Γ, then X^{\prime} is a connected graph. The books on algebraic graph theory by Biggs [14] and by Godsil and Royle [25] provide many information regarding Cayley graphs.

For a positive integer n, the unitary Cayley graph X_{n} is the graph whose vertex set is Z_{n}, the ring of integers modulo n and if U_{n} denotes set of all its units then two vertices a and b are adjacent if and only if $(a-b) \in U_{n}$. The unitary Cayley graph X_{n} is then the same as $X_{n}=\operatorname{Cay}\left(Z_{n}, U_{n}\right)$. The structure and various properties of unitary Cayley graphs have been studied in literature (see [7, 9, 13, 15, 20-23, 34, 37, 39]).

Let Γ be an abelian group and B be a subset of Γ. The addition Cayley graph

$$
G^{\prime}=\operatorname{Cay}^{+}(\Gamma, B)
$$

is the graph having the vertex set $V\left(G^{\prime}\right)=\Gamma$ and the edge set $E\left(G^{\prime}\right)=\{a b: a+b \in B\}$, where $a, b \in \Gamma$. Several properties of addition Cayley graphs have been discussed in literature (see [$8,17,18,26-28,35,36]$).

For a positive integer n, the unitary addition Cayley graph G_{n} is the graph whose vertex set is Z_{n}, the integers modulo n and if U_{n} denotes set of all units of the ring Z_{n}, then two vertices a and b are adjacent if and only if $a+b \in U_{n}$. The unitary addition Cayley graph G_{n} may also be defined as, $G_{n}=\operatorname{Cay}^{+}\left(Z_{n}, U_{n}\right)$. Some properties of unitary addition Cayley graphs have been studied in literature (see [43]).

Theorem 3 ([43]). The unitary addition Cayley graph G_{n} is isomorphic to the unitary Cayley graph X_{n} if and only if n is even.

Some examples of unitary addition Cayley graphs are displayed in Figure 1.
Our aim in this paper is to introduce an extension of the notion of unitary addition Cayley graphs in a natural way to the theory of sigraphs and study their fundamental properties.

2. Unitary Addition Cayley Sigraphs

We introduce the definition of a unitary addition Cayley sigraph as follows:
Definition 1. For a positive integer n, the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is defined as the sigraph, where Σ_{n}^{u} is the unitary addition Cayley graph and for an edge ab of Σ_{n},

$$
\sigma(a b)= \begin{cases}+ & \text { if } a \in U_{n} \text { or } b \in U_{n} \\ - & \text { otherwise }\end{cases}
$$

Figure 1: Some examples of unitary addition Cayley graphs

Figure 2: Some examples of unitary addition Cayley sigraphs

Three examples of unitary addition Cayley sigraphs for $n=5,6,10$ are displayed as (a), (b) and (c) respectively in Figure 2. Throughout the text, we consider $n \geq 2$.

Theorem 4 ([43]). Let m be any vertex of the unitary addition Cayley graph G_{n}. Then,

$$
d(m)= \begin{cases}\phi(n)-1 & \text { if } n \text { is odd and }(m, n)=1 \\ \phi(n) & \text { otherwise }\end{cases}
$$

where $\phi(n)$ denotes the Euler totient function that gives the number of primes not exceeding n.
Lemma 2. For an integer n, if $i \in U_{n}$ then $(n-i) \in U_{n}$ and if $i \notin U_{n}$ then $(n-i) \notin U_{n}$.
Proof. Suppose n is any integer. Then, $i \in U_{n} \Rightarrow(n, i)=1$, where (n, i) is $\operatorname{gcd}(n, i)$. We want to show that $(n-i) \in U_{n}$. Suppose, on the contrary, $(n-i) \notin U_{n}$. Then, $(n, n-i)=k \Rightarrow k \mid n$ and $k \mid(n-i)$, whence $n=\alpha k$ and $(n-i)=\beta k$. But, $n=\alpha k$ gives $\alpha k-i=\beta k \Rightarrow(\alpha-\beta) k=i \Rightarrow k \mid i$. Thus, $k \mid i$ and $k \mid n$ imply $(n, i) \neq 1$, a contradiction to our hypothesis. Hence, if $i \in U_{n}$ then $(n-i) \in U_{n}$.

Next, suppose $i \notin U_{n}$. Then, $(n-i) \in U_{n} \Rightarrow(n,(n-i))=1$. As $i \notin U_{n} \Rightarrow 1 \neq(n, i)=l \Rightarrow l \mid n$ and $l \mid i \Rightarrow n=\alpha l$ and $i=\beta l$. This shows that $n-i=\alpha l-\beta l \Rightarrow(\alpha-\beta) l \Rightarrow l \mid(n-i)$. Thus, $l \mid n$ and $l \mid(n-i)$ imply $(n,(n-i)) \neq 1$, a contradiction to the hypothesis. Hence, by contraposition, if $i \notin U_{n}$ then $(n-i) \notin U_{n}$. Thus, the result follows.

Theorem 5. The unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma_{1}\right)$ is isomorphic to the unitary Cayley sigraph $S_{n}=\left(S_{n}^{u}, \sigma_{2}\right)$ if and only if n is even.

Proof. Necessity: Suppose $\Sigma_{n} \cong S_{n}$. Then, $\Sigma_{n}^{u} \cong S_{n}^{u}$, whence the proof follows by Theorem 3.

Sufficiency: Suppose n is even. Then, by Theorem 3, we get $\Sigma_{n}^{u} \cong S_{n}^{u}$. Now, consider a function $f: V\left(G_{n}\right) \rightarrow V\left(X_{n}\right)$ such that

$$
f(m)= \begin{cases}m & \text { if } m \text { is even } \\ n-m & \text { if } m \text { is odd }\end{cases}
$$

Let $U_{n}=\left\{a_{1}, a_{2}, \ldots, a_{\phi(n)}\right\}$. Since the vertex m is adjacent to the vertices of type $a_{r}-m$, consider a set

$$
A=\left\{a_{1}-m, a_{2}-m, \ldots, a_{\phi(n)}-m\right\} .
$$

Suppose two vertices i and j are adjacent in G_{n}, then j is of the form $a_{r}-i$, where $a_{r} \in U_{n}$.
Case I: If i is even, then $j=a_{r}-i$ is odd. This implies that $f(i)=i$ and $f(j)=n-j=n-\left(a_{r}-i\right)$. Now, by Theorem 3, we can see that $f(i)$ and $f(j)$ are adjacent in X_{n}. It is clear that $i \notin U_{n}$. Now, either $j \in U_{n}$ or $j \notin U_{n}$. If $j \in U_{n}$, then by Lemma $2, n-j \in U_{n}$. Then, by the definition of unitary Cayley sigraph $\sigma_{2}(i j)=+$. Now, $f(i) \notin U_{n}$ as $f(i)$ is even and $f(j) \in U_{n}$ as $f(j)=n-j \in U_{n}$. So, by the definition of unitary addition Cayley sigraph

$$
\sigma_{1}(f(i) f(j))=+.
$$

If $j \notin U_{n}$, then by Lemma $2 n-j \notin U_{n}$. Then, by the definition of unitary Cayley sigraph $\sigma_{2}(i j)=-$ and as in the above argument

$$
\sigma_{1}(f(i) f(j))=-
$$

Thus, we have

$$
\sigma_{1}(f(i) f(j))=\sigma_{2}(i j)
$$

Case II: If i is odd, then $j=a_{r}-i$ is even. Thus, $j \notin U_{n}$. Again, either $i \in U_{n}$ or $i \notin U_{n}$. If $i \in U_{n}$, then $n-i \in U_{n}$ and $\sigma_{2}(i j)=+$ and as in the above argument, $\sigma_{1}(f(i) f(j))=+$. If $i \notin U_{n}$, then $n-i \notin U_{n}$. Hence, by the same argument, $\sigma_{2}(i j)=-$ and $\sigma_{1}(f(i) f(j))=-$. Now, one can easily verify that f is one-to-one and onto function that preserves adjacency as well as sign of the edges. Hence, $\Sigma_{n} \cong S_{n}$.

3. Balance in Σ_{n}

In this section, we establish a characterization of balanced unitary addition Cayley sigraphs. We recall a known result first.

Theorem 6 ([43]). The unitary addition Cayley graph $G_{n}, n \geq 2$, is bipartite if and only if either $n=3$ or n is even.

Lemma 3. For the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$, if $n=p^{a}$, where p is a prime number, then Σ_{n} is an all-positive sigraph.

Proof. For the unitary addition Cayley sigraph Σ_{n}, if $n=p^{a}$, then U_{n} consists of all the numbers less than n, which are not multiples of p. Suppose αp and βp are two numbers less than n and multiples of p. Then, by the definition of the unitary addition Cayley sigraph, we have a negative edge only when αp is adjacent to βp. Now, we have three possibilities, viz., $\alpha p+\beta p<n, \alpha p+\beta p=n$ or $\alpha p+\beta p>n$. When, $\alpha p+\beta p<n$, we see that $\alpha p+\beta p \notin U_{n}$ as it is a number less than n and a multiple of p. Secondly, when $\alpha p+\beta p=n$, we get $\alpha p+\beta p=0 \notin U_{n}$. When $\alpha p+\beta p>n$, there exists an integer k such that $\alpha p+\beta p=n+k=k$, which is again a number less than n and a multiple of p. This implies $\alpha p+\beta p \notin U_{n}$. Thus, in each case αp is not adjacent with βp since their addition $\alpha p+\beta p \notin U_{n}$. Thus, Σ_{n} is an all-positive sigraph.

We shall now establish the following characterization of balanced unitary addition Cayley sigraphs.

Theorem 7. The unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is balanced if and only if either n is even or it does not have more than one distinct prime factors.

Proof. Necessity: Suppose the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is balanced. Assume that the conclusion is false. Suppose n is odd and it has at least two distinct prime factors. So, let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$, where all $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes, $p_{1} \neq 2$ and
$p_{1}<p_{2}<\cdots<p_{m}$.
In the unitary addition Cayley graph Σ_{n}^{u}, p_{1} is adjacent with 1 as $p_{1}+1$ is not a multiple of any p_{i} 's for $i=1,2, \ldots, m$ i.e., $p_{1}+1 \in U_{n}$. Now, we claim that p_{1} and p_{2} are also adjacent in Σ_{n}^{u}. If possible, suppose p_{1} and p_{2} are not adjacent in Σ_{n}^{u}. This shows, $p_{1}+p_{2} \notin U_{n}$. Then, $p_{1}+p_{2}$ is a multiple of some p_{i} 's for $i=1,2, \ldots, m$. Suppose $p_{1}+p_{2}$ is a multiple of p_{1}. Then,

$$
\begin{aligned}
p_{1}+p_{2} & =\alpha p_{1} \\
p_{2} & =\alpha p_{1}-p_{1} \\
& =(\alpha-1) p_{1}
\end{aligned}
$$

for some positive integer α, which is not possible. Similarly, we can see that $p_{1}+p_{2}$ is not a multiple of p_{2}. Now, the possibilities are $i=3,4, \ldots, m$. Suppose $p_{1}+p_{2}=\alpha p_{i}$ for $i=3,4, \ldots, m$. Since $p_{1}+p_{2}$ is even, α is even and is at least 2 , for any positive integer α. But as $p_{1}<p_{2}<p_{i}, p_{1}+p_{2}$ is always less than any multiple of p_{i} for $i=3,4, \ldots, m$. Thus, $p_{1}+p_{2}$ is not a multiple of any p_{i} 's for $i=1,2, \ldots, m$. So $p_{1}+p_{2} \in U_{n}$. This shows that p_{1} and p_{2} are adjacent in Σ_{n}^{u}. Now, if p_{2} is adjacent with 1 in Σ_{n}^{u}, then we have a cycle

$$
Z=\left(p_{1}, p_{2}, 1, p_{1}\right)
$$

in Σ_{n}. Clearly, p_{1} and p_{2} do not belong to U_{n} and $1 \in U_{n}$. Then, by the definition of Σ_{n}, Z has exactly one negative edge $p_{1} p_{2}$. Thus, Z is a negative cycle in Σ_{n}. This implies that Σ_{n} is not balanced. Now, suppose p_{2} is not adjacent with 1 in Σ_{n}^{u}, i.e., $p_{2}+1 \not{ }_{l} n U_{n}$. Then, $p_{2}+1$ is multiple of one of the p_{i} 's for $i=1,2, \ldots, m$. Clearly, i cannot exceed 1 , as $p_{2}<p_{3} \cdots<p_{m}$. So, the only possibility is $i=1$, whence $p_{2}+1$ is a multiple of p_{1}. Then,

$$
\begin{equation*}
p_{2}+1=\alpha p_{1} \tag{1}
\end{equation*}
$$

for some positive integer α.
By Lemma 2, it is clear that $n-p_{2} \notin U_{n}$. Now, we claim $n-p_{2}$ is adjacent with 1 i.e., $n-p_{2}+1=n-\left(p_{2}-1\right) \in U_{n}$. If $p_{2}-1 \in U_{n}$, then by Lemma $2, n-p_{2}+1=n-\left(p_{2}+1\right) \in U_{n}$. Suppose $p_{2}-1 \notin U_{n}$. Then, $p_{2}-1$ is a multiple of one of the p_{i} 's for $i=1,2, \ldots, m$ and by the same argument as above $i=1$, whence $p_{2}-1$ is a multiple of p_{1}. Then, $p_{2}-1=\beta p_{1}$. But, from equation $1, p_{2}=\alpha p_{1}-1$. This implies,

$$
\begin{aligned}
p_{2}-1 & =\beta p_{1} \\
\alpha p_{1}-1-1 & =\beta p_{1} \\
\alpha p_{1}-2 & =\beta p_{1} \\
\alpha p_{1}-\beta p_{1} & =2 \\
(\alpha-\beta) p_{1} & =2 .
\end{aligned}
$$

This is not possible as p_{1} is at least 3 . Thus, $p_{2}-1$ is not a multiple of any of the p_{i} 's, whence $p_{2}-1 \in U_{n}$. Hence, $n-p_{2}+1=n-\left(p_{2}-1\right) \in U_{n}$, whence $n-p_{2}$ is adjacent with 1 in Σ_{n}^{u}.

Now, $n-p_{2}+p_{1}=n-\left(p_{2}-p_{1}\right)$. Since $p_{1}<p_{2}<\cdots p_{m}, p_{2}-p_{1}$ is not a multiple of any of the p_{i} 's for $i=2,3, \ldots m$. Also, $p_{2}-p_{1}$ is not a multiple of p_{1}. This shows that $p_{2}-p_{1} \in U_{n}$ and by Lemma $2, n-\left(p_{2}-p_{1}\right) \in U_{n}$. This shows that $n-p_{2}$ is adjacent with p_{1} in Σ_{n}. Thus, we have a cycle

$$
Z^{\prime}=\left(p_{1}, n-p_{2}, 1, p_{1}\right)
$$

in Σ_{n}. Clearly, p_{1} and $n-p_{2}$ do not belong to U_{n} and $1 \in U_{n}$. Then, by the definition of Σ_{n}, Z^{\prime} has exactly one negative edge $p_{1}\left(n-p_{2}\right)$. Thus, Z^{\prime} is a negative cycle in Σ_{n}. This implies that Σ_{n} is not balanced, a contradiction to the hypothesis. So, by contraposition, the conditions are satisfied.

Sufficiency: Suppose n is even. Then, U_{n} does not contain any multiple of 2 . Then, by Theorem 6, Σ_{n} is bipartite, whence all its cycles are even. Therefore, every cycle in Σ_{n} contains alternately either even-odd or odd-even labeled vertices. Without loss of generality, let

$$
Z^{\prime \prime}=\left(e_{1}, o_{1}, e_{2}, o_{2}, \ldots, e_{m}, o_{m}, e_{1}\right)
$$

be a cycle of even length in Σ_{n}. Clearly, $e_{i} \notin U_{n} \forall i=1,2, \ldots, m$.
Case(i): Suppose $o_{j} \in U_{n} \forall j=1,2, \ldots, m$. Then, all the edges in $Z^{\prime \prime}$ are positive.
Case(ii): Suppose $o_{j} \notin U_{n}$ for some $j=1,2, \ldots, m$. Then, $Z^{\prime \prime}$ contains two negative edges $e_{j} o_{j}$ and $o_{j} e_{j+1}$ with respect to each $o_{j} \notin U_{n}$. Thus, $Z^{\prime \prime}$ contains an even number of negative edges. Since $Z^{\prime \prime}$ is an arbitrary cycle in Σ_{n}, using Lemma 1 , we conclude Σ_{n} is balanced.

Next, suppose n is odd and it does not have more than one distinct prime factors. That means, $n=p^{a}$. Now, using Lemma 3, Σ_{n} is an all-positive sigraph which is trivially balanced. Hence the theorem.

Figure 3: Smallest unbalanced unitary addition Cayley sigraph

The smallest heterogeneous unbalanced unitary addition sigraph is Σ_{15}, which is shown in Figure 3.

4. Clusterability of Σ_{n}

In this section, we discuss clusterability of unitary addition Cayley sigraphs and obtain the following somewhat surprising result.

Theorem 8. A unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is clusterable if and only if it is balanced.

Proof. Sufficiency: Suppose the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is balanced. Then, by the definition of clusterability, Σ_{n} is clusterable with two clusters.

Necessity: Suppose unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is clusterable. If possible, suppose Σ_{n} is not balanced. Then, by Theorem 7, n is odd with at least two distinct prime factors. So, let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$, where all of $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes, $p_{1} \neq 2$ and $p_{1}<p_{2}<\cdots<p_{m}$. Now, as in the proof of Theorem 7, we have at least one of the cycles $Z=\left(p_{1}, p_{2}, 1, p_{1}\right)$ and $Z^{\prime}=\left(p_{1}, n-p_{2}, 1, p_{1}\right)$ in Σ_{n}. Clearly, p_{1} and p_{2} do not belong to U_{n} and $1 \in U_{n}$. Then, by the definition of Σ_{n}, Z has exactly one negative edge $p_{1} p_{2}$. Also, p_{1} and $n-p_{2}$ do not belong to U_{n} and $1 \in U_{n}$. Then, again by the definition of Σ_{n}, Z^{\prime} has exactly one negative edge $p_{1}\left(n-p_{2}\right)$. Thus, in each case we have a cycle with exactly one negative edge. This shows that Σ_{n} is not clusterable, a contradiction to the hypothesis. Thus, Σ_{n} is balanced. Hence, the theorem.

5. Sign-compatibility of Σ_{n}

Theorem 9 ([41]). A sigraph S is sign-compatible if and only if S does not contain a subsigraph isomorphic to either of the two sigraphs, S_{1} formed by taking the path $P_{4}=(x, u, v, y)$ with both the edges $x u$ and $v y$ negative and the edge $u v$ positive and S_{2} formed by taking S_{1} and identifying the vertices x and y (Figure 4).

Figure 4: Two forbidden subsigraphs for a sign-compatible sigraph [40]

Theorem 10. Every unitary addition Cayley sigraph Σ_{n} is sign-compatible.
Proof. Suppose that the unitary addition Cayley sigraph Σ_{n} is not sign-compatible. Then, by Theorem 9 , there is at least one positive edge, say $v_{i} v_{j}$ in Σ_{n} such that there are negative edges on both the vertices, v_{i} and v_{j} in. Since $v_{i} v_{j}$ is a positive edge in Σ_{n}, by the definition of Σ_{n}, at least one of $v_{i}, v_{j} \in U_{n}$. As at least one of $v_{i}, v_{j} \in U_{n}$, again by the definition of Σ_{n}, there is no negative edge on at least one vertex, a contradiction to the hypothesis. Hence, Σ_{n} is sign-compatible.

It has been shown elsewhere that all line sigraphs are sign-compatible [5]. Hence, in view of Theorem 10 the question arises whether any unitary addition Cayley sigraph is a line sigraph. The answer of this question is given in Theorem 12.

Theorem 11. Unitary addition Cayley graph G_{n} is a line graph if and only if $n \in\{2,3,4,6\}$.
Proof. Necessity: Suppose unitary addition Cayley graph G_{n} is a line graph. If possible, suppose $n \notin\{2,3,4,6\}$.

Case I: Suppose n is a prime number. Clearly, in this case $n \geq 5$. Since n is prime, U_{n} contains all numbers from 1 to ($n-1$). Now, 0 is adjacent with all the vertices of G_{n}. Also, for any other vertex i in G_{n}, i is not adjacent only with $(n-i)$ as $i+(n-i)=n=0 \neq U_{n}$. Thus, for any two vertices i and j in G_{n} such that $i \neq j \neq 0$, we have an induced subgraph in G_{n}, which is shown in Figure 5.

Figure 5: Showing an induced subgraph of G_{n}, which is forbidden for G_{n} to be a line graph.
This is one of the Beineke's nine forbidden subgraphs for line graph [30]. This shows that G_{n} is not a line graph, a contradiction to the hypothesis.

Case II: Suppose n is not a prime number. Clearly, 1 is (always) adjacent with 0 in G_{n}. Also, 1 is adjacent with p_{1}, as $p_{1}+1 \in U_{n}$, where p_{1} is the smallest multiple of n. Suppose a is some number such that $a p_{1}=n$. Now,

$$
\begin{aligned}
1+(a-1) p_{1} & =1+a p_{1}-p_{1} \\
& =1+n-p_{1} \\
& =n-\left(p_{1}-1\right) .
\end{aligned}
$$

Since $p_{1}-1 \in U_{n}$, by Lemma $2, n-\left(p_{1}-1\right) \in U_{n}$. Thus, 1 and $(a-1) p_{1}$ are adjacent in G_{n}. Also, 0 is not adjacent with p_{1} and $(a-1) p_{1}$ as their addition is a multiple of p_{1}. Similarly, p_{1} and $(a-1) p_{1}$ are not adjacent in G_{n} as their addition is a multiple of p_{1}. Thus, we have an induced subgraph in G_{n}, which is shown in Figure 6. Again, we have a forbidden subgraph $K_{1,3}$ for a line graph showing that G_{n} is not a line graph, a contradiction to the hypothesis. Hence, the condition is satisfied.

Figure 6: Showing $K_{1,3}$ as an induced subgraph of G_{n}, which is forbidden for G_{n} to be a line graph.

Sufficiency: Suppose $n=2,3,4$ or 6 . The corresponding graphs are shown in Figure 7, which are line graphs of P_{3}, P_{4}, C_{4} and C_{6}, respectively. Hence, the result.

Figure 7: Showing G_{2}, G_{3}, G_{4} and G_{6}

Theorem 12. Unitary addition Cayley sigraph Σ_{n} is a line sigraph if and only if $n \in\{2,3,4,6\}$.
Proof. Necessity: Suppose the unitary addition Cayley sigraph Σ_{n} is a line sigraph. If possible, suppose $n \notin\{2,3,4,6\}$. Then, by Theorem $11, \Sigma_{n}^{u}$ is not a line graph, a contradiction to the hypothesis. Hence, $n \in\{2,3,4,6\}$.

Sufficiency: Now, suppose $n \in\{2,3,4,6\}$. The corresponding sigraphs $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and Σ_{6} and the sigraphs whose line sigraphs are these sigraphs are shown in Figure 8. Hence, Σ_{n} is a line sigraph for $n \in\{2,3,4,6\}$.

Figure 8: Showing $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and Σ_{6} and the sigraphs whose line sigraphs are these sigraphs

Remark 1. Unitary addition Cayley sigraph Σ_{n} is a product line sigraph if and only if $n \in\{2,3,4,6\}$.

Proof. Suppose the unitary addition Cayley sigraph Σ_{n} is a product line sigraph. Since, for any given sigraph S, the underlying graphs of the line sigraph $L(S)$ and the product line sigraph $L_{\times}(S)$ are the same, the condition follows from Theorem 11.

Conversely, suppose $n \in\{2,3,4,6\}$. By Theorem 7 for these values of n, Σ_{n} is balanced. Since the product line sigraph of any sigraph is always balanced and its underlying structure is the line graph (see [3]), the result follows from Theorem 7 and Theorem 11.

Unitary addition Cayley sigraphs $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and Σ_{6} and the sigraphs whose product line sigraphs are these sigraph are shown in Figure 9.

6. \mathscr{C}-consistency of Σ_{n}

Now, we present a characterization of \mathscr{C}-consistent unitary addition Cayley sigraphs.
Theorem 13 ([33]). Let G be a marked graph and T be a spanning tree of G. Then, G is consistent if and only if G satisfies the following two conditions:
(i) each fundamental cycle relative to T is positive, and
(ii) the two end vertices of any common path between each pair of fundamental cycles relative to T have the same mark.

Figure 9: Showing $\Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and Σ_{6} and the sigraphs whose product line sigraphs are these sigraphs

Theorem 14 ([42]). The unitary Cayley sigraph $S_{n}=\left(S_{n}^{u}, \sigma\right)$, where n has at most two distinct odd prime factors, is \mathscr{C}-consistent if and only if n is either odd or n is 2,6 or a multiple of 4 .

Lemma 4. In the unitary addition Cayley sigraph Σ_{n}, if $n=2 p_{1}^{a_{1}}$, where p_{1} is an odd prime, then the negative degree of the vertex 2 of Σ_{n} is odd.

Proof. Suppose $n=2 p_{1}^{a_{1}}$ in Σ_{n}, where p_{1} is an odd prime. By the definition of Σ_{n}, negative edges are incident at the vertex 2 of Σ_{n} only when 2 is adjacent to multiples of p_{1}. Since addition of 2 and any even multiple of p_{1} is an even number and U_{n} does not contain an even number, the vertex 2 is not adjacent to any even multiple of p_{1}. Now, the number of odd multiples of p_{1} are $p_{1}^{a_{1}-1}$. Now, 2 is adjacent with all the odd multiples of p_{1} as their addition with 2 is neither a multiple of 2 nor a multiple of $p_{1} .2$ is negatively adjacent with $p_{1}^{a_{1}-1}$. Since p_{1} is an odd prime, $d^{-}(2)$ is odd.

Lemma 5 ([42]). In the unitary Cayley sigraph S_{n}, if $n=2 p_{1}^{a_{1}} p_{2}^{a_{2}}$, where p_{1} and p_{2} are distinct odd primes, then the negative degree of the vertex 2 of S_{n} is odd.

Lemma 6. In the unitary addition Cayley sigraph Σ_{n}, if $n=2 p_{1}^{a_{1}} p_{2}^{a_{2}}$, where p_{1} and p_{2} are distinct odd primes, then the negative degree of the vertex 2 of Σ_{n} is odd.

Proof. Given that $n=2 p_{1}^{a_{1}} p_{2}^{a_{2}}$, where p_{1} and p_{2} are distinct odd primes, since n is even, $\Sigma_{n} \cong S_{n}$ by Theorem 5. Since 2 is an even number, by the consideration of mapping in Theorem 5, vertex 2 of S_{n} is mapped to the vertex 2 in Σ_{n} and by Lemma 5, negative degree of the vertex 2 in Σ_{n} is odd.

Lemma 7. In the unitary addition Cayley sigraph Σ_{n}, if $n=p_{1}^{a_{1}} p_{2}^{a_{2}}$, where n is odd, then the negative degree of the vertices of Σ_{n} that are multiples of p_{1} or p_{2} is even.

Proof. Given that $n=p_{1}^{a_{1}} p_{2}^{a_{2}}$, where n is odd, and p_{1} and p_{2} are distinct odd primes it follows from the definition of Σ_{n}, that the negative edges are incident at the vertex p_{1} when p_{1} is adjacent to multiples of p_{2} which do not have p_{1} as the factor. Every multiple of p_{2}, which does not contain any multiple of p_{1}, is adjacent with p_{1} as its addition is neither a multiple of p_{1} nor a multiple of p_{2}. Thus,

$$
\begin{aligned}
d^{-}\left(p_{1}\right) & =p_{1}^{a_{1}} p_{2}^{a_{2}-1}-p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \\
& =p_{1}^{a_{1}-1} p_{2}^{a_{2}-1}\left(p_{1}-1\right) .
\end{aligned}
$$

Since p_{1} and p_{2} are odd, $d^{-}\left(p_{1}\right)$ is even. This formula works for any multiple of p_{1} except those which have p_{2} as a factor. Similarly,

$$
\begin{aligned}
d^{-}\left(p_{2}\right) & =p_{1}^{a_{1}-1} p_{2}^{a_{2}}-p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} . \\
& =p_{1}^{a_{1}-1} p_{2}^{a_{2}-1}\left(p_{2}-1\right) .
\end{aligned}
$$

Since p_{1} and p_{2} are odd, $d^{-}\left(p_{2}\right)$ is even. This formula works for any multiple of p_{2} except those which have p_{1} as a factor. And the negative degree of the vertices of Σ_{n} that are multiples of $p_{1} p_{2}$ is zero. Thus, the negative degree of the vertices of Σ_{n} that are multiples of p_{1} or p_{2} is even.

Theorem 15. The unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$, where n has at most two distinct odd prime factors, is \mathscr{C}-consistent if and only if n is either odd, or n is 2,6 or a multiple of 4 .

Proof. Necessity: Suppose the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$ is \mathscr{C}-consistent. Let, on contrary, $n \equiv 2(\bmod 4)$ with $n \neq 2$ and $n \neq 6$. Then, either $n=2 p_{1}^{a_{1}}$ or $n=2 p_{1}^{a_{1}} p_{2}^{a_{2}}$, where p_{1} and p_{2} are distinct odd primes.

Case(i): Suppose $n \equiv 0(\bmod 3)$. Then, either $n=2 \times 3^{a_{1}}$ or $n=2 \times 3^{a_{1}} \times p_{2}^{a_{2}}$. First, suppose $p_{2} \neq 5$ and $p_{2} \neq 7$. Then, due to Lemma 4 and Lemma 6 ,

$$
\mu_{\sigma}(2)=-
$$

Since the vertex $5 \in U_{n}$, by the definition of $\Sigma_{n}, d^{-}(5)=0$. It follows,

$$
\mu_{\sigma}(5)=+.
$$

Now, the vertex 5 is adjacent to the vertex 2 since $5+2=7 \in U_{n}$. Since
$(n-4)+(n-3)=n+(n-7)=n-7 \in U_{n}$ as $7 \in U_{n},(n-4)$ and $(n-3)$ are adjacent in Σ_{n}^{u} and $(n-3)+2=n-1 \in U_{n}$. This implies $(n-3)$ and 2 are also adjacent in Σ_{n}^{u}. Similarly, $(n-4)+5=n+1=1 \in U_{n}$. This implies 5 and $(n-4)$ are adjacent in Σ_{n}^{u}. Consider the two cycles, $Z_{1}=(2,5,0,1,4,3,2)$ and $Z_{2}=(2,5,(n-4),(n-3), 2)$ in Σ_{n}. Clearly, the
cycles Z_{1} and Z_{2} share the chord whose end vertices are 2 and 5 . Now, if either Z_{1} or Z_{2} is \mathscr{C}-inconsistent cycle, then we have a contradiction to the hypothesis. Therefore, Z_{1} and Z_{2} are both \mathscr{C}-consistent cycles. However, the end vertices 2 and 5 of their common chord are marked oppositely under the canonical marking and this contradicts Theorem 13.

Now, if $n=2 \times 3^{a_{1}} \times p_{2}^{a_{2}}$, where either $p_{2}=5$ or $p_{2}=7$, then since the vertex $11 \in U_{n}$, by the definition of $\Sigma_{n}, d^{-}(11)=0$. It follows,

$$
\mu_{\sigma}(11)=+
$$

Now, the vertex 11 is adjacent to the vertex 2 since $11+2=13 \in U_{n}$. Since $(n-12)+(n-1)=n+(n-13) \in U_{n}$ as $13 \in U_{n},(n-12)$ and $(n-1)$ are adjacent in Σ_{n}^{u} and $(n-1)+2=n+1=1 \in U_{n}$. This implies, $(n-1)$ and 2 are also adjacent in Σ_{n}^{u}. Similarly, $(n-12)+11=n-1 \in U_{n}$, which implies 11 and $(n-12)$ are adjacent in Σ_{n}^{u}. Now, consider the two cycles, $Z_{3}=(11,2,9,4,7,6,11)$ and $Z_{4}=(2,11,(n-12),(n-1), 2)$ in Σ_{n}. Clearly, the cycles Z_{3} and Z_{4} share the chord whose end vertices are 2 and 11 . As argued above, Z_{3} and Z_{4} are both \mathscr{C}-consistent cycles. However, the end vertices 2 and 11 of their common chord are marked oppositely under the canonical marking, a contradiction to Theorem 13.

Case(ii): Suppose either $n \equiv 1(\bmod 3)$ or $n \equiv 2(\bmod 3)$. That means, 3 does not divide n, which implies that the vertex $3 \in U_{n}$. Now, consider a cycle $Z=(0,1,2,(n-1), 0)$ in Σ_{n}. Since $1 \in U_{n}$ and $(n-1) \in U_{n}$, by the definition of $\Sigma_{n}, d^{-}(1)=d^{-}(n-1)=0$. It follows that in the cycle Z,

$$
\mu_{\sigma}(1)=\mu_{\sigma}(n-1)=+
$$

Since the vertex 0 is adjacent to those vertices which belong to $U_{n}, d^{-}(0)=0$. That means,

$$
\mu_{\sigma}(0)=+
$$

Now, due to Lemma 4 and Lemma 6,

$$
\mu_{\sigma}(2)=-
$$

Thus, the cycle Z is \mathscr{C}-inconsistent, whence Σ_{n} is not \mathscr{C}-consistent, a contradiction to the hypothesis. Thus, this part of the proof is complete.

Sufficiency: Next, suppose n is odd, 2,6 or a multiple of 4 .
Case(i): Let n be odd, and $n=p_{1}^{a_{1}} p_{2}^{a_{2}}$, where p_{1} and p_{2} are distinct odd primes. Using Lemma 7 one can easily see that all the vertices in Σ_{n} which are multiples of p_{1} and p_{2} are even and all other vertices belong to U_{n}. So, their negative degrees are zero. Hence, all the vertices of Σ_{n} are marked positively under the canonical marking. Hence, Σ_{n} is \mathscr{C}-consistent.

Case(ii): Suppose $n=2,6$ in Σ_{n}. Then, we can easily verify that Σ_{2} and Σ_{6} are \mathscr{C}-consistent.
Case(iii): Suppose n is a multiple of 4. Here n is even and by Theorem $5 \Sigma_{n} \cong S_{n}$ and by Theorem $14, \Sigma_{n}$ is \mathscr{C}-consistent.

7. Balance in Certain Derived Sigraphs

In this section, we consider the conditions that a given sigraph must satisfy in order that its certain derived sigraphs are balanced.
Corollary 1. For the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$, its negation sigraph $\eta\left(\Sigma_{n}\right)$ is balanced if and only if either $n=3$ or n is even.

Proof. First, suppose $\eta\left(\Sigma_{n}\right)$ is balanced. Assume that the conclusion is false. Suppose n is odd and not equal to 3 . Then, $2 \in U_{n}$. Since $0+2=2 \in U_{n}, 0$ and 2 are adjacent in Σ_{n}^{u} and $2+(n-1)=n+1=1 \in U_{n}$. This implies, 2 and $n-1$ are adjacent in Σ_{n}^{u}. Thus, we can consider a triangle $T:(0,2, n-1,0)$ in Σ_{n}. Since $2, n-1 \in U_{n}$, by the definition of Σ_{n} all the edges of T are positive. That means, all the edges of the triangle T are negative in $\eta\left(\Sigma_{n}\right)$. Thus, $\eta\left(\Sigma_{n}\right)$ is unbalanced, which contradicts the hypothesis.
Conversely, suppose n is even or $n=3$. Now, due to Theorem 6, S_{n}^{u} is bipartite and due to Theorem 7, Σ_{n} is balanced. Thus, $\eta\left(\Sigma_{n}\right)$ is balanced.

Theorem 16 ([4]). For a sigraph S, its line sigraph $L(S)$ is balanced if and only if the following conditions hold:
(i) for any cycle Z in S,
(a) if Z is all-negative, then Z has even length,
(b) if Z is heterogeneous, then Z has an even number of negative sections with even length, and
(ii) for $v \in S$, if $d(v)>2$, then there is at most one negative edge incident at v in S.

Corollary 2. For the unitary addition Cayley sigraph Σ_{n}, its line sigraph $L\left(\Sigma_{n}\right)$ is balanced if and only if $n=p^{a}$, where p is a prime number.

Proof. Suppose $L\left(\Sigma_{n}\right)$ is balanced for the unitary addition Cayley sigraph Σ_{n}. Assume that the conclusion is false. Let n have at least two distinct prime factors. Suppose p_{1} and p_{2} are two smallest prime factors of n such that $p_{1}<p_{2}$. It is shown in the proof of Theorem 7, p_{1} is adjacent with 1 and p_{2}. Suppose $\alpha p_{2}=n$ for any positive integer α. Now,

$$
\begin{aligned}
(\alpha-1) p_{2}+p_{1} & =\alpha p_{2}-p_{2}+p_{1} \\
& =n-p_{2}+p_{1} \\
& =n-\left(p_{2}-p_{1}\right)
\end{aligned}
$$

Since $p_{2}-p_{1} \in U_{n}$, by Lemma $2 n-\left(p_{2}-p_{1}\right) \in U_{n}$, whence $(\alpha-1) p_{2}+p_{1} \in U_{n}$. This shows that $(\alpha-1) p_{2}$ is adjacent with p_{1}. Clearly, the vertex p_{2} and $(\alpha-1) p_{2}$ are adjacent to the vertex p_{1} with negative edges in Σ_{n}. That means, $d^{-}\left(p_{1}\right) \geq 2$ and clearly $d\left(p_{1}\right)>2$ except $n=6$ in Σ_{n}. Thus, condition (ii) of Theorem 16 does not hold for Σ_{n} and when $n=6$ it is easy to see that condition (i)(b) does not hold, which implies that $L\left(\Sigma_{n}\right)$ is unbalanced, a contradiction to the hypothesis. Hence $n=p^{a}$, where p is a prime number. Converse part can be proved easily by using Lemma 3 .

Theorem 17 ([6]). For any sigraph $S, C_{E}(S)$ is balanced if and only if S is a balanced sigraph such that for every vertex $v \in V(S)$ with $d(v) \geq 3$
(i) if $d(v)>3$ then $d^{-}(v)=0$
(ii) if $d(v)=3$ then $d^{-}(v)=0$ or $d^{-}(v)=2$
(iii) for every $x-y$ path $P_{4}=(x, v, w, y)$ of length three, $v w$ is a positive edge in S.

Theorem 18. For the unitary addition Cayley sigraph $\Sigma_{n}=\left(\Sigma_{n}^{u}, \sigma\right)$, its $C_{E}\left(\Sigma_{n}\right)$ is balanced if and only if $n=p^{a}$ or $n=6$, where p is a prime number.

Proof. Suppose $C_{E}\left(\Sigma_{n}\right)$ is balanced for the unitary addition Cayley sigraph Σ_{n}. Assume that the conclusion is false. Let $n \neq 6$ and have at least two distinct prime factors. So, let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$, where all of $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes and $p_{1}<p_{2}<\cdots<p_{m}$.

Case I: Suppose n is even. Clearly, $p_{1}=2 \notin U_{n} . p_{2}$ can never be adjacent with any number in U_{n} because U_{n} contains only odd numbers as n is even and then sum of these two elements will be always even and does not belong to U_{n}. Since $p_{2} \notin U_{n}$, by Theorem 4, we have $d\left(p_{2}\right)=\phi(n)$. So all the degrees of p_{2} are negative and greater than 3 . Thus, the condition (i) of Theorem 17 does not hold for Σ_{n}, which implies that $C_{E}(\Sigma)$ is unbalanced, a contradiction to the hypothesis.

Case II: Now, suppose n is odd. We have already shown that p_{1} is adjacent p_{2}. Clearly, $d\left(p_{1}\right)>3$ and $d^{-}\left(p_{1}\right) \geq 1$. Thus, condition (i) of Theorem 17 does not hold for Σ_{n}, which implies that $C_{E}(\Sigma)$ is unbalanced, a contradiction to the hypothesis. Hence $n=p^{a}$ or $n=6$, where p is a prime number. Converse part can be proved easily by using Lemma 3 .

Theorem 19 ([3]). The \times-line sigraph $L_{\times}(S)$ of a sigraph S is a balanced sigraph.
Theorem 20. For the unitary addition Cayley sigraph Σ_{n}, its \times-line sigraph $L_{\times}\left(\Sigma_{n}\right)$ is balanced.
Proof. Result follows from Theorem 19.

Theorem 21 ([44]). The semi-total line sigraph $T_{1}(S)$ of a sigraph S is a balanced sigraph.
Theorem 22. For the unitary addition Cayley sigraph Σ_{n}, its semi-total line sigraph $T_{1}\left(\Sigma_{n}\right)$ is balanced.

Proof. Result follows from Theorem 21.

ACKNOWLEDGEMENTS This research is supported by the Department of Science and Technology (Govt. of India), New Delhi, India under the Project SR/S4/MS: 409/06.

References

[1] B.D. Acharya, A spectral criterion for cycle balance in networks, Journal of Graph Theory, 4(1), 1-11. 1980.
[2] B.D. Acharya, A characterization of consistent marked graphs, National Academy of Science Letters, 6, 431-440. 1983
[3] M. Acharya, \times-line sigraph of a sigraph, Journal of Combinatorial Mathematics and Combinatorial Computing, 69, 103-111. 2009.
[4] M. Acharya and D. Sinha, A characterization of sigraphs whose line sigraphs and jump sigraphs are switching equivalent, Graph Theory Notes N. Y., XLIV, 30-34. 2003.
[5] M. Acharya and D. Sinha, Characterizations of line sigraphs, National Academy of Science Letters, 28(1 \& 2), 31-34. 2005.
[6] M. Acharya and D. Sinha, Common-edge sigraphs, AKCE International Journal of Graphs and Combinatorics, 3(2), 115-130. 2006.
[7] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, Electronic Journal of Combinatorics, 16(1)(2009), \#R117.
[8] N. Alon, Large sets in finite fields are sumsets, Journal of Number Theory, 126(1)(2007), 110-118.
[9] N.D. Beaudrap, On restricted unitary Cayley graphs and symplectic transformations modulo n, Electronic Journal of Combinatorics, 17(2010), \#R69.
[10] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, Elemente der Mathematik, 24(3) (1969), 49-52.
[11] L.W. Beineke and F. Harary, Consistency in marked graphs, Journal of Mathematical Psychology, 18(3)(1978), 260-269.
[12] L.W. Beineke and F. Harary, Consistent graphs with signed points, Rivista di Matematica per le Scienze Economiche e Sociali, 1(1978), 81-88.
[13] P. Berrizbeitia and R.E. Giudici, On cycles in the sequence of unitary Cayley graphs, Discrete Mathematics, 282(1-3)(2004), 239-243.
[14] N. Biggs, Algebraic Graph Theory, Second Edition, Cambridge Mathematical Library, Cambridge University Press, 1993.
[15] M. Boggess, T. Jackson-Henderson, I. Jiménez and R. Karpman, The structure of unitary Cayley graphs, SUMSRI Journal, (2008), 1-23.
[16] G.T. Chartrand, Graphs as Mathematical Models, Prindle, Weber and Schmidt. Inc., Boston, Massachusetts, 1977.
[17] B. Cheyne, V. Gupta and C. Wheeler, Hamilton cycles in addition graphs, Rose-Hulman Undergraduate Math Journal, 4(1)(2003), 1-17.
[18] F.R.K. Chung, Diameters and eigenvalues, Journal of the American Mathematical Society, 2(2)(1989), 187-196.
[19] J.A. Davis, Clustering and structural balance in graphs, Human Relations, 20(1967), 181187.
[20] I.J. Dejter and R.E. Giudici, On unitary Cayley graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 18(1995), 121-124.
[21] A. Droll, A classification of Ramanujan unitary Cayley graphs, Electronic Journal of Combinatorics, 17(2010), \#N29.
[22] E.D. Fuchs and J. Sinz, Longest induced cycles in Cayley graphs, eprint arXiv:math/0410308v2 (2004), 1-16.
[23] E.D. Fuchs, Longest induced cycles in circulant graphs, Electronic Journal of Combinatorics, 12(2005), 1-12.
[24] M.K. Gill, Contribution to some topics in graph theory and its applications, Ph.D. Thesis, Indian Institute of Technology, Bombay, 1983.
[25] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Springer, 207, 2001.
[26] B.J. Green, Counting sets with small sumset, and the clique number of random Cayley graphs, Combinatorica, 25(2005), 307-326.
[27] D. Grynkiewicz, V.F. Lev and O. Serra, The connectivity of addition Cayley graphs, Electronic Notes in Discrete Mathematics, 29(2007), 135-139.
[28] D. Grynkiewicz, V.F. Lev and O. Serra, Connectivity of addition Cayley graphs, Journal of Combinatorial Theory, Series B, 99(1)(2009), 202-217.
[29] F. Harary, On the notion of balance of a signed graph, Michigan Mathematical Journal, 2(1953), 143-146.
[30] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.
[31] F. Harary and J.A. Kabell, A simple algorithm to detect balance in signed graphs, Mathematical Social Sciences, 1(1980-81), 131-136.
[32] F. Harary and J.A. Kabell, Counting balanced signed graphs using marked graphs, Proceedings of the Edinburgh Mathematical Society, 24(2)(1981), 99-104.
[33] C. Hoede, A characterization of consistent marked graphs, Journal of Graph Theory, 16(1)(1992), 17-23.
[34] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electronic Journal of Combinatorics, 14(2007), \#R45.
[35] V.F. Lev, Sums and differences along Hamiltonian cycles, Electronic Notes in Discrete Mathematics, 28(2007), 25-31.
[36] V.F. Lev, Sums and differences along Hamiltonian cycles, Discrete Mathematics, 310(3)(2010), 575-584.
[37] H.N. Ramaswamy and C.R. Veena, On the energy of unitary Cayley graphs, Electronic Journal of Combinatorics, 16(2009), \#N24.
[38] E. Sampathkumar and S.B. Chikkodimath, Semitotal graphs of a graph-I, Journal of Karnatak University Science, 18(1973), 274-280.
[39] T. Sander, Eigenspaces of Hamming graphs and unitary Cayley graphs, Ars Mathematica Contemporanea, 3(2010), 13-19.
[40] D. Sinha, New frontiers in the theory of signed graphs, Ph.D. Thesis, University of Delhi, 2005.
[41] D. Sinha and A. Dhama, Sign-Compatibility of some derived signed graphs, Indian Journal of Mathematics, 55(1), 2013.
[42] D. Sinha and P. Garg, On the unitary Cayley signed graphs, Electronic Journal of Combinatorics, 18(2011), \#P229.
[43] D. Sinha, P. Garg and A. Singh, Some properties of unitary addition Cayley graphs, Notes on Number Theory and Discrete Mathematics, 17(3)(2011), 49-59.
[44] D. Sinha and P. Garg, Some results on semi-total signed graphs, Discussiones Mathematicae. Graph Theory, 31(4)(2011b), 625-638.
[45] D.B. West, Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd., 1996.
[46] T. Zaslavsky, Glossary of signed and gain graphs and allied areas, II Edition, Electronic Journal of Combinatorics, \#DS8(1998).
[47] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, VII Edition, Electronic Journal of Combinatorics, \#DS8(1998). (Latest update: 8th Edition, September 2012).
[48] T. Zaslavsky, Signed analogs of bipartite graphs, Discrete Mathematics, 179(1998), 205216, (1998).

[^0]: *Corresponding author.

 Email addresses: deepa_sinha2001@yahoo.com (D. Sinha), ayushi.dhama2@gmail.com (A. Dhama), devadas.acharya@gmail.com (B. Acharya)

