An Unconventional Splitting for Korteweg de Vries-Burgers Equation
Keywords:
Korteweg de Vries--Burgers equations, splitting methods, finite differencesAbstract
Numerical solutions of the Korteweg de Vries--Burgers (KdVB) equation based on splitting is studied. We put a real parameter into a KdVB equation and split the equation into two parts. The real parameter that is inserted into the KdVB equation enables us to play with the splitted parts. The real parameter enables to write the each splitted equation  as close to the Korteweg de Vries (KdV) equation as we wish and as far from the Burgers equation as we wish or vice a versa. Then we solve the splitted parts numerically and compose the solutions to obtained the integrator for the KdVB equation. Finally we present some numerical experiments for the solution of the KdV, Burger's and KdVB equations. The numerical experiments shows that the new splitting gives feasible and valid results.ÂDownloads
Published
2015-01-29
Issue
Section
Algebraic Topology
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
An Unconventional Splitting for Korteweg de Vries-Burgers Equation. (2015). European Journal of Pure and Applied Mathematics, 8(1), 50-63. https://www.ejpam.com/index.php/ejpam/article/view/2008