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Cycles in the Chamber Homology for SL(2, F)
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Abstract. We emphasized finding the explicit cycles in the chamber homology groups and the K-theory
groups in term of each representation for SL(2, F). This led to an explicit computing of chamber
homology and the K-theory groups. We have identified the base change effect on each of these cycles.
The base change map on the homology group level works by sending a generator of the homology
group of SL(2, E) labeled by a character of E× to the generator of the homology group of SL(2, F)
labeled by a character of F× multiplied by the residue field degree. Whilst, it works by sending the
K-theory group generator of the reduce C∗-algebra of SL(2, E) labeled by the 1-cycle (resp. 0-cycle)
to the multiplication of the residue field degree with a generator of the K-theory group of SL(2, F)
labeled by the base changed effect on 1-cycle (resp. 0-cycle).

2010 Mathematics Subject Classifications: 58B34, 11S70, 46L80, 11S31, 19K33, 11F85

Key Words and Phrases: Local Langlands, Base change, K-theory, Chamber Homology, Baum-Conns
map, representation theory, Non-commutative Geometry, Number Theory.

1. Introduction

Let F be a p-adic non-archimedean local field with p 6= 2 and G = SL(2, F). We have
F× ∼= UF × Z, where UF is the group of p-adic units, and the dual of F× is ÓF× ∼= ÓUF × T,
where T is the circle group. In this paper we emphasized finding the explicit cycles in the chamber
homology groups and the K-theory groups in term of each representation for SL(2, F). This led to an
explicit computing of chamber homology and the K-theory groups. We have identified the base change
effect on each of these cycles. The base change map on the homology group level works by sending
a generator of the homology group of SL(2, E) labeled by a character of E× to the generator of the
homology group of SL(2, F) labeled by a character of F× multiplied by the residue field degree. Whilst,
it works by sending the K-theory group generator of the reduce C∗-algebra of SL(2, E) labeled by the
1-cycle (resp. 0-cycle) to the multiplication of the residue field degree with a generator of the K-theory
group of SL(2, F) labeled by the base changed effect on 1-cycle (resp. 0-cycle).
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Consequently, we showed that the base change of Steinberg is again a Steinberg, the base change
of a principal series is always a principle series and the base change of a cuspidal can certainly be either
another cuspidal or a principal series.

We have found that whilst the Baum-Connes correspondence takes the homology group generator
of SL(2, E) to a generator of the K-theory group of C∗-algebra of SL(2, E) by induction, it takes the
effect of the base change map on the homology side to the base change effect on the K-theory side by
induction as well.

2. Local Langlands Correspondence and Base Change

Let F be a non-archimedean local field, and G = SL(2, F). Let LF be the local Langlands group:

LF :=WF × SL(2,C).

A Langlands parameter is a continuous homomorphism

φ :LF → G∨ = PGL(2,C),

where G∨ = PGL(2,C) is the Langlands dual group. We say that two Langlands parameters are
equivalent if they are conjugate under the group PGL(2,C). Let Φ(G) be the set of equivalence classes
of the Langlands parameters. Now, the Local Langlands correspondence is defined to be the surjective
map

I r r(G)−→ Φ(G),
Aφ 7−→ φ

where Aφ is the pre-image of φ which is called the L-packet. The base change map is defined by the
restriction of L-parameter from LF to LE , where E is a finite extension of F

φ|WE
:WE × SL(2,C)→ PGL(2,C).

Lemma 1. Let α
E
= γ

E
◦ β

E
:WE → E×, where γ

E
:W ab

E → E× and β
E

:WE →W ab
E then we have:

i) NE/F (αE(w)) = αF (w), w ∈WE ⊂WF .

ii) f .valE = valF ◦ NE/F .

iii) dE =−valE ◦αE .

iv) Let w ∈WE ⊂WF . Then we have f .dE(w) = dF (w).

Proof. See [2, 1.2.2] for 1, [10, p. 139] for 2, and see [6] for 3 and 4.

Now, an unramified character ψ of WE is given by the following simple formula:

ψ(w) = zdE(w), z ∈ C×.

The base change formula for a character χ of WF is given by

BC(χ) = χ |WE
.

Lemma 2. Under base change we have

BC(ψ)(w) = (z f )dE(w)

for all w ∈WE .
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Proof. The result follows directly from part 4 of lemma 1.

Lemma 3. Let φ = 1⊗τ(2) and φ
′
=ψ⊗τ(2) be two L-parameters, whereψ is an unramified character

of WF . Then
φ = φ

′

in PGL(2,C).

Proof. Let

dF : WF
// W ab

F ' F×
valF // Z .

We have ψ(w) = zd(w) where z ∈ C×, ψ unitary character if and only if z ∈ T. Let

φ = 1⊗τ(2) :WF × SL(2,C)→ PGL2(C)

and
φ
′
=ψ⊗τ(2) :WF × SL(2,C)→ PGL2(C)

such that
φ(w, A) = 1 ·τ(2)

�

A
�

= τ(A)

and
φ
′
(w, A) =ψ(w) ·τ(2)

�

A
�

= zd(w) ·τ(A).

We see that τ(A) and (z
d(w)
·τ(A)) are both in the same group PGL(2,C) and this means thatφ = φ

′
.

Theorem 1. Letφ = 1⊗τ(2) be the L-parameter of the Steinberg representation, then we have BC(StG(F)) =
StG(E).

Proof. Let
LF =WF × SL(2,C) and LE =WE × SL(2,C)

be the local Langlands groups and let

φ : LF

1WF⊗τ(2) // PGL(2,C)

be the L-parameter, this parameter works as follows

(w, Y ) 7−→ [Y ].

We know that LE ⊂ LF . The base change works by restriction the L-parameter to WE , in another
words

φ|WE
: LE

1WE⊗τ(2) // PGL(2,C) .

Since the restriction works only on the Weil group side which in our case is the trivial representation
of WF and since the restriction of the trivial representation of WF is also the trivial representation of
WE , then the resulting representation is also the Steinberg representation, i.e

BC(StG(F)) = StG(E).

φ :WF × SL(2,C)

��

// PGL2(C)

‖
��

φ|WE
:WE × SL(2,C) // PGL2(C)
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Theorem 2. Let T be one of the circles in the unitary principal series of SL(2, F), then we have T→ T,
z 7→ z f , under base change E/F.

i) At the level of the K-theory group K1, BC induces the map Z→ Z, α1 7→ f .α1, where f is the residue
field degree and α1 denotes a generator of K1(T) = Z.

ii) At the level of K-theory group K0, BC induces the identity map Z→ Z, α0 7→ α0, where α0 denotes
a generator of K0(T) = Z.

Proof. We know that the principal series of SL(2, F) can be defined as follows:

IndSL(2,F)
B (χ) where χ

�

x y
0 x−1

�

= χ(x).

Now we have
WF × SL(2,C)

��

// PGL2(C)

‖
��

F× × SL(2,C)
φ

// PGL2(C)

This means the above map φ works as follows:

(x ,τ) 7−→
�

χ(x) 0
0 1

�

.

Here
�

χ(x) 0
0 1

�

is the coset of
�

χ(x) 0
0 1

�

∈ PGL2(C). If we twist χ by an unramified character

we get a circle T embedded in PGL2(C). Also, the Weyl group Z/2Z acts on character of F×, character
of F× =UF × 〈$F 〉 splits into {ramified character of UF say χ

1
} and

{an unramified character of 〈$F 〉 say χ
0
($) = z ∈ T}. The generator w of Z/2Z sends z to z−1, it sends

χ1 to χ−1
1 . Suppose that

χ1 6= χ−1
1 , i.e. χ2

1 6= 1.

For such χ, the representation IndSL(2,F)
B χ is irreducible. Define the L-parameter φ as follows: φ =

ρ⊗1 where ρ is a unitary character of WF such that

ρ :WF
// W ab

F ' F×
χ

// T .

Also, we have
ρ 7−→ IndSL(2,F)

B χ

The unitary characters (ρ2 6= 1) of WF factor through F× and we have

ÓF× =Ô〈$〉 ×ÓUF ,

ρ is a unitary character of ÓUF . The group ÓUF admits countably many such characters ρ. Therefore,
the compact orbit is the circle T:

Ot(φ)∼=Ot(BC(φ))∼= T.

After restriction and using the local class functions theory we get that this map has degree f . Therefore,
if χ2 6= 1 this means by Lemma 1 and Theorem 2 in each circle the base change formula is z 7→ z f .
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3. Representatives in the Chamber Homology H0

In this section we will investigate the case H0. Since we have two types of representations for
SL(2, F) which are: the discrete series and the principal series representations, so we need to describe
each case individually. The unitary principal series representation are as same as described in H1. We
need to deal with reducible principal series, the special representation and the discrete series. Let’s start
with the special representation. This means we are going to deal with the Steinberg representation.
We recall the maximal compact subgroups J0 and J1, which were described in the previous section as
the stabilizer subgroups of the vertices of the edge of the tree βSL(2, F).

Theorem 3. Let J0 and J1 be the two maximal compact open subgroups of SL(2) and let I the Iwahori sub-
group of SL(2). There are only three generators for H0 which are 1J0

, 1J1
, and the induced representation

of 1I to J0 or J1.

Proof. Let 1J0
(resp. 1J1

) be a representation in R(J0) (resp. R(J1)), so [1J0
, 0] and [0,1J1

] ∈ H0.
We have

[IndJ0
I 1I , 0] = [0, IndJ1

I 1I]⇐⇒∃v ∈R(I)

such that (IndJ0
I 1I ,−IndJ1

I 1I) = ∂ (v).
This means we have only one possibility which is v = 1I . Therefor three possibilities for H0-

generators are 1J0
, 1J1

, and IndJ0
I 1I (resp. IndJ1

I 1I ).

The question here is which combination of these three generators correspond to the Steinberg
representation StG of SL(2)?

Theorem 4. The 0-cycle corresponding to StG of SL(2) in K0 is (IndJ0
I 1I −1J0

, 0).

Proof. Let G = SL(2, F) and J0 = SL(2,O ). According to the Anh Reciprocity Theorem in [5, p. 57],
if dµ is a Haar measure then we have the following:

i) IndG
I 1I =

∫

X
πdµ(π), X = {π ∈ bGr : π|I ⊃ 1I}.

ii) IndG
J0
1J0
=
∫

Y
πdµ(π), Y = {π ∈ bGr : π|J0

⊃ 1J0
}.

Now,

IndG
I 1I =IndG

J0
1J0
⊕ StG

⇐⇒IndG
J0
(IndJ0

I 1I)− IndG
J0
1J0
= StG

⇐⇒IndG
J0
(IndJ0

I 1I −1J0
) = StG .

Therefore the 0-cycle corresponding to StG is (IndJ0
I 1I − 1J0

, 0). We also see that the Baum-Connes
conjecture (map) in this case is IndG

J0
.

The proof of the above theorem shows that the map IndG
J0

takes

[IndJ0
I 1I −1J0

, 0]F 7→ [StG]F ,

i.e. it takes the generator of H F
0 to the generator of K F

0 labeled by StG . This means we have three
independent elements. In the same way this map works on the E-sides by taking the

[IndJ0
I 1I −1J0

, 0]E 7→ [StG]E .

From now on we will replace the notation of StG by St F
2 and StE

2 to refer for the Steinberg representa-
tion of SL(2, F) and SL(2, E) respectively.
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Theorem 5. The base change on K0-theory level takes the K0-generator of the reduce C∗-algebra of
SL(2, E) labeled by StE

2 to the K0-generator of the reduce C∗-algebra of SL(2, F) labeled by St F
2 and

the K-theory group K0 C∗r SL(2, F) = Z3.

Proof. From Theorems 3 and 4 we have only three generators and this implies that K0 C∗r SL(2, F) =
Z3.

H0(SL(2, E))

BC
��

µE
0 // K0C∗r SL(2, E)

K0(BC)
��

H0(SL(2, F))
µF

0 // K0C∗r SL(2, F)

Figure 1: The base change for SL(2)

On the chamber homology level, the base change map works by taking the generator of the group
H0 of SL(2, E) to the generator of H0 of SL(2, F); see Figure 1.

On the other hand, if we deal with the reducible principal series (the intervals), this means we are
going to induce the Legendre character to one of the maximal compact subgroups J0, J1 or both.

Theorem 6. There are three generators for H0 which they are constructed by inducing a representation of
the Legendre character from I to the maximal subgroups J0 and J1.

Proof. We know that if λ2 = 1 then Ind
SL(2,Fp)
B λ= λ+B ⊕λ

−
B . This means our induced representation

can be written as decomposition of two representations. So if we induced to the maximal compact
subgroups J0, J1 we would have three multiple choices. Let λI be any representation in R(I), then
IndJ0

I λI (resp. IndJ1
I λI ) is the induced representation of the Legendre character from I to J0 (resp. J1).

Now, we have
IndJ0

I λI = λ
+
J0
⊕λ−J0

and
IndJ1

I λI = λ
+
J1
⊕λ−J1

.

This means we have three generators for H0 which are:

λ+J1
, λ+J0

and λ−J0
or λ−J1

, λ+J0
and λ−J0

.

This also shows that the assembly map IndG
J0

works as follows

[IndJ0
I λI −λ+J0

, 0]F 7→ [λ−J0
]F

i.e. it takes the generator of H F
0 to the generator of K F

0 labeled by λ−J0
. In the same way this map works

on the E-sides by taking the
[IndJ0

I λI −λ+J0
, 0]E 7→ [λ−J0

]E .

This means we have three independent elements.

Theorem 7. The base change on K0-theory level takes the K0-generator of the reduced C∗-algebra of
SL(2, E) labeled by λ−J0(E)

to the K0-generator of the reduce C∗-algebra of SL(2, F) labeled by λ−J0(F)
. The

K-theory group K0 C∗r SL(2, F) in this case is Z3.
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Proof. Theorem 6 shows that we have three generators for K0 and this means K0 = Z3.

On the other hand, we introduce the cuspidal representations as follows:
let

ℵ= ρ⊗1 :WF × SL(2,C)→ PGL(2,C)

then we have
ℵ |WE

:WE × SL(2,C)→ PGL(2,C).

Now let ℵ be an irreducible representation.

i) If ℵ |WE
remains irreducible after restriction, then this determines a cuspidal representation of

SL(2, E). Base change in this case, will send one cuspidal representation of SL(2, F) to a cuspidal
representation of SL(2, E).

ii) If ℵ |WE
is reducible, then this representation split into two 1-dimensional representations. i.e.

ℵ= ℵ1 ⊕ℵ2 = (ρ1 ⊗1)⊕ (ρ2 ⊗1), where ρ1 and ρ2 are two characters of WE .

This means on the K-theory level there is one generator for each cuspidal representation and the
K0 = Z.

4. Representatives in the Chamber Homology H1

A description of the cycles in the group H1 will be introduced in this section. Let
G = SL(2, F) be the group of unimodular 2 × 2 matrices with entries in the field F . It is a locally
compact totally disconnected topological group [8, 9].

Let I =
�

O O
$O O

�

∩SL(2). This is a compact open subgroup of G, called the Iwahori subgroup.

Let w0 =
�

0 −1
1 0

�

and w1 =
�

0 −$−1

$ 0

�

. These elements appear in the Tits system

associated to G, which plays an important role in what follows [3, 7].
Let

J0 = I ∪ Iw0 I =
�

O O
O O

�

∩ SL(2)

and

J1 = I ∪ Iw1 I =
�

O $−1O
$O O

�

∩ SL(2),

these are compact open subgroups of G, we have J0 ∩ J1 = I . The tree for G = SL(2) is the graph
βG, the group G acting on βG by multiplication on the left. We see that I is the stabilizer of the
fundamental edge, and that J0, J1 are the stabilizer of the vertices of this edge, respectively.

Now if I , J0 and J1 are the compact subgroups of G = SL(2) defined in the previous two paragraphs,
then we have this chain complex

0 R(J0)⊕R(J1)oo R(I)
IndJ0

I ⊕−IndJ1
I =∂oo 0oo

So that

H0 =
R(J0)⊕R(J1)

∂R(I)
and

H1 = ker∂ .

For more details see [1].
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Definition 1. A character χ of F× is called tame character if χ|U 1
F

is trivial.

Lemma 4. Let χ be a tame character of I then χ −χ−1 ∈ H1.

Proof. Let χ be character of I , i.e.

I
modp

// B ⊂ SL2(Fp)

χ : SL(2)∩
�

O O
pO O

�

−→ T,
�

x y
0 x−1

�

7−→ χ(x).

Now let

w =
�

0 −1
1 0

�

∈ SL(2), w ∈W

whereW is the Weyl group of SL(2). We have wχ(x) = χ(wxw−1). To prove that
χ − wχ ∈ H1 it is enough to show that χ − wχ ∈ R(I), i.e. ∂ (χ − wχ) = 0. In other words we need
to show that

IndJ0
I (χ −wχ) = 0

and
IndJ1

I (χ −wχ) = 0.

Now choose χ 6= wχ, so

wχ
�

x y
0 x−1

�

:= χ
�

x−1 0
−y x

�

.

This means wχ = χ−1. Therefore we only need to prove IndJ0
I (χ −χ

−1) = 0 and
IndJ1

I (χ − χ
−1) = 0. But IndJ0

I (χ − χ
−1) = 0 if and only if IndJ0

I χ
∼= IndJ0

I χ
−1. Since χ and χ−1 are

distinct, then they are determine the the same representation and this representation is irreducible if
and only if χ2 6= 1 [4]. This means IndJ0

I χ
∼= IndJ0

I χ
−1. Therefore

IndJ0
I (χ −χ

−1) = 0. Same results will be shown if we take J1. This means we have
χ −χ−1 ∈ H1.

Now let k be a positive integer, I(k) =
�

O O
$kO O

�

∩ SL(2, F). Consider now the subgroup

I(k)w = I(k)∩w−1 I(k)w =
�

O $kO
$kO O

�

∩ SL(2). Let ψ be an invariant function on I and let

α : SL(2)→ SL(2), α :
�

a b
c d

�

7→
�

d $−1c
$b a

�

.

Define ψα(g) = ψ(α(g)), then ψ induces to zero on J1(resp. J0) if and only if ψα induces to zero on
J0(resp. J1). Therefore ψ ∈ H1 if and only if ψα ∈ H1. Fix a character χ : UF → T not of order two,
and let k be the least positive integer such that χ[1+$kO ] = 1. The character χ extends to the group
I(k) using the formula

χ :
�

a b
$kc d

�

7→ χ(a).

Lemma 5. Let ψ
χ
= Ind I

I(k)χ then

i) ψ
χ

is an irreducible character.
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ii) ψα
χ
=ψ

χ
, where α is the automorphism of SL(2).

Now let cχ = ψχ
−ψ

χ
. Then cχ ∈ H1, and the cycle cχ , one selected from each pair of characters

{χ,χ}, constitute a basis for H1. Therefore all cycles will be of this form.

Theorem 8.

i) The base change on K1-theory level works as follows:

K1C∗r SL(2, E)
K1(BC)

// K1C∗r SL(2, F) , α
σ◦NE/F

7−→ f ·ασ

ii) The base change on H1-level works as follows:

(βSL(2, E))
1

BC // H1(βSL(2, F)) , c
σ◦NE/F

7−→ f · cσ

where
α
σ◦NE/F

(resp.α
σ
) and c

σ◦NE/F
(resp.cσ)

are the K1 and H1 generator of SL(2, E)
�

SL(2, F)
�

respectively.

Proof. By Theorem 2 this map has degree f . The base change on the K1-theory level takes the
K1-generator of the reduce C∗-algebra of SL(2, E) to the K1-generator of the reduce C∗-algebra of
SL(2, F) multiplying by the residue field degree f , so (1) has been proved. We also know that the
base change on the chamber homology side works by sending each unramified unitary character of the
Iwahori subgroup of SL(2, F) to itself composed with the norm map. So, the base change map on the
chamber homology side takes the generator of the chamber homology group of SL(2, E) (labeled by
this composite) to the generator of the chamber homology group of SL(2, F) (labeled by unramified
unitary character) multiplying by the residue field degree f .

Corollary 1. The assembly map H1(SL(2, F))
µF

1 // K1C∗r SL(2, F) under the base change works as
follows:

f · cσ 7−→ f ·ασ
where cσ and ασ are H1 and K1 generators for SL(2, F) respectively.

This corollary shows that the Baum-Connes conjecture under base change takes the base change’s
effect on the homology group side to the base change’s effect on the K-theory side, i.e. the multiplica-
tion between the generator of the chamber homology group for SL(2, F) and the residue field degree
to the multiplication between the K1-generator of the reduce C∗-algebra for SL(2, F) by the residue
field’s degree:

H1(SL(2, E))

BC

��

µE
1 // K1C∗r SL(2, E)

K1(BC)

��

H1(SL(2, F))
µF

1 // K1C∗r SL(2, F)

c
σ◦NE/F

BC

��

µE
1 // α

σ◦NE/F

K1(BC)

��

f · cσ
µF

1 // f ·ασ

.
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