Transparency of Polynomial Ring Over a Commutative Noetherian Ring
Keywords:
automorphism, $\sigma$-derivation, quotient ring, transparent ringAbstract
In this paper, we discuss a stronger type of primary decomposition (known as transparency) in noncommutative set up. One of the class of noncommutative rings are the skew polynomial rings. We show that certain skew polynomial rings satisfy this type of primary decomposition. Recall that a right Noetherian ring $R$ is said to be \textit{transparent ring} if there exist irreducible ideals $I_{j}$, 1 $\leq j \leq n$ such that $\cap_{j = 1}^{n}I_{j} = 0$ and each $R/I_{j}$ has a right artinian quotient ring. Let $R$ be a commutative Noetherian ring, which is also an algebra over $\mathbb{Q}$ ($\mathbb{Q}$ is the field of rational numbers). Let $\sigma$ be an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Then we show that the skew polynomial ring $R[x;\sigma,\delta]$ is a transparent ring.Downloads
Published
2015-01-29
Issue
Section
Game Theory
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Transparency of Polynomial Ring Over a Commutative Noetherian Ring. (2015). European Journal of Pure and Applied Mathematics, 8(1), 111-117. https://www.ejpam.com/index.php/ejpam/article/view/2102