Robust control system for Spacecraft Motion Trajectory
Keywords:
Robust control system, Spacecraft Motion Trajectory, adaptive control approach, nonlinear system modeling, reference model, Lyapunov method.Abstract
In aerospace field the economic realization of a spacecraft is one of the main objectives which should be accomplished by conceiving the optimal propulsion system and best control programs. This article focuses on the implementation of uncertain control system theory and development of a robust control system of Spacecraft Motion Trajectory (SMT). The proposed strategy involves the nonlinear mathematical model of SMT expressed in the central field, which is linearized by the Taylor expansion, and model reference Adaptive Control Approach (ACA) with the second Lyapunov method to offer a high rate and unfailing performance in the functioning. The efficiencies of the linearization procedure and the control approach are theoretically investigated through some realistic simulations and tests under Matlab.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.