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Abstract. A smoothing method of multipliers which is a natural result of cross-entropic regulariza-

tion for min-max problems is analyzed. As a smoothing technique, we first show how the smooth

approximation yields the first order information on the behavior of max function. Then under suitable

assumptions, some basic properties including the Hessian are given. At last, the condition number

is analyzed, and the results reveal that the smoothing method of multipliers is stable for any fixed

smoothing parameter.
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1. Introduction

A variety of scientific and engineering problems (such as the problems that arise in struc-

tural optimization, synthesis of filters, antenna design etc) can be formulated as the following

min-max problem (see [1], [2], [3], [4]):

min
x∈X

max
1¶i¶m

�

fi (x)
	

(1)

where X is a common domain of the component functions fi(x), i = 1,2, ...m, which are

usually assumed to be twice continuously differentiable. For a complete treatment of the

min-max problems, see the books ([5], [6], [7]).
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One major difficulty encountered in developing solution methods is the non-differentiability

of the max function:

F (x) := max
1¶i¶m

�

fi (x)
	

(2)

And along with non-smooth optimization methods, the smoothing technique has been used

for the min-max since the early 70s([8]), (see also [3], [9], [10], [11], [12], [13]). Among

them, a class called regularization methods has been developed base on approximating the

max function by certain smooth functions([1], [2], [10], [15], [11], [13]). Gigola and Gomez

([10]), Hiriart-Urruty and Lemarechal ([14]) had given some regularization functions, but no

explicit expressions of the smooth approximation functions were given in their work. Li ([15],

[16]) used entropy function as the regularization function and derived a smooth and good ap-

proximation function in explicit expression for the max function F (x)≈
1

p
ln

m
∑

i=1

exp
�

p fi (x)
�

.

This smooth approximation function is called aggregate function and instead of using the en-

tropy regularization function, the cross-entropy regularization function can lead to another

smooth and good approximation function which is a smooth approximation function of mul-

tipliers and is called cross-entropy aggregate function:

Fp (x ,λ) =
1

p
ln

m
∑

i=1

λi exp
�

p fi (x)
�

(3)

Both the two smoothing approximation functions have a natural interpretation which fits the

special structure of the min-max problem and apply to related problems. The function (3)

is also proposed by Bertsekas ([1]) by means of a tedious derivation using the multiplier

methods with an exponential penalty function.

In this paper, we mainly investigate the approximation function (3), although the uniform

convergence and the algorithmic convergence based on this function had been already given

([16], [1]), the main results in this paper have not appeared in either [16] or [1]. We first

show how the smooth approximation yields the first order information on the behavior of max

function. Then under suitable assumptions, some basic properties including the Hessian are

given. As this smooth approximation function of multipliers is obtained by the cross-entropic

regularization of the classical Lagrangian, if we treat this smooth approximation as a nonlinear

Lagrangian function for the min-max problem, then based on the basic properties, a similar

saddle point result can be obtained. At last, the condition number is analyzed, and the results

reveal that the smoothing method of multipliers is stable for any fixed smoothing parameter.

The rest of this paper is arranged as follows: Section 2 gives the problem formulation

and some basic assumptions. Some basic results including the first order information, basic

properties and the condition number are given in section 3. Section 4 is the conclusion.

2. Problem Formulation and Basic Assumptions

Consider the min-max problem (1). The following are assumptions:

Assumption 1. The optimal set X ∗ is not empty and bounded;
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Without loss of generality we can assume that F(x∗) = 0.

The min-max problem (1) has the classical Lagrangian function L (x ,λ) =
m
∑

i=1

λi fi (x) for

each x ∈ X , where λ denotes the Lagrangian multipliers that are restricted to fall within the

simplex Λ ≡

¨

λ|λ¾ 0;
m
∑

i=1

λi = 1

«

. The following Karush-Kuhn-Tucker (K−K−T) conditions

for problem (1) hold true:



















∇x L (x∗,λ∗) =
m
∑

i=1

λ∗i∇ fi (x
∗) = 0

λ∗i ≥ 0, i = 1,2, · · · , m,
m
∑

i=1

λ∗i = 1

λ∗i fi (x
∗) = 0 i = 1,2, · · · , m

(4)

Let I (x∗) =
�

i| fi (x
∗) = F(x∗)
	

is the active set at point x∗ and |I (x∗)| = r, where |Q| is the

cardinal number of the set Q. Respectively,

∇ fI (x) = J
�

fI (x)
�

=
�

∇ fi1
(x) · · ·∇ fir

(x)
�T

, ik ∈ I (x) k = 1,2, · · · r;

∇ f (x) = J
�

f (x)
�

=
�

∇ f1 (x) · · ·∇ fm (x)
�T

are their Jacobians. ∇ fI (x
∗) linear indepen-

dence, and the pair (x∗,λ∗) satisfies the second order optimality conditions:

¬

∇2
x x L
�

x∗,λ∗
�

d , d
¶

≥ ρ 〈d , d〉 ,ρ > 0,∀d 6= 0 :∇ fI

�

x∗
�T

d = 0 (5)

the strictly complementary condition is true: λ∗ ∈ Λ and λ∗i > 0, i ∈ I (x∗).

Then the max function can be obtained as

F (x) =max
λ∈Λ

L (x ,λ) , x ∈ X (6)

Unfortunately, the above maximization rarely has an explicit solution. Therefore the regular-

ization methods add some terms that are called regularization functions

Lp (x ,λ) = L (x ,λ) +
1

p
R
�

λ;µ
�

(7)

where p > 0 is a control parameter, R is a regularization function, and µ is an optional

parameter vector of R. Then, by carefully choosing the function R, maximizing the Lp(x ,λ)

could result in a smooth approximation function.

When R
�

λ,µ
�

=
m
∑

i=1

λi ln
λi

µi

, we have the following cross-entropic regularization formula:

Fp

�

x ,µ
�

≡max
λ∈Λ

(

L (x ,λ)−
1

p
R
�

λ;µ
�

=

m
∑

i=1

λi fi (x)−
1

p

m
∑

i=1

λi ln
λi

µi

)

(8)

where µ is an additional control vector representing some known as priori information (dis-

tribution).
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A simple calculation results in the following solution:

λ∗i =
µi exp
�

p fi (x)
�

Z
, i = 1,2, · · · , m (9)

where Z =
m
∑

i=1

µi exp
�

p fk (x)
�

. Substituting (9) into (8), we have the smooth approximation

function of multiplier (3): Fp

�

x ,µ
�

=
1

p
ln

m
∑

i=1

µi exp
�

p fi (x)
�

. The reason for the name of

the smooth approximation function of multiplier is that if the pair (x l ,µl) have been found

already, we find the next approximation (x l+1,µl+1) by the following formulas:

x l+1 = arg min
x

¦

Fp

�

x ,µl
�©

(10)

µl+1
i
=

µl
i
exp
�

p fi (x)
�

m
∑

k=1

µl
k

exp
�

p fk (x)
�

, i = 1,2, · · · , m (11)

So µ is the Lagrangian multiplier in practice, we can just denote the smooth approximation

function of multiplier as Fp (x ,λ) =
1

p
ln

m
∑

i=1

λi exp
�

p fi (x)
�

.

3. Main Results

3.1. First Order Information: Subgradient

It is well known that the max function F(x) has discontinuous first derivatives at points

where two or more of the components fi(x) are equal to F(x) even if each fi(x) is smooth with

any order. So we first analyze whether the approximation function (3) could yield the first

order information on the behavior of F(x). The results reveal that for the convex situation the

subgradients of F(x) can be obtained from the gradients of smooth approximation function

Fp(x).

The first order behavior of convex non-smooth function around a point x is reflected by

the the concepts of subgradients and subdifferential ([17] p214).

Definition 1. A vector ω is said to be a subgradient of a convex function at a point x if

f (z)− f (x)¾ 〈ω, z − x〉 ∀z ∈ X (12)

The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by

∂ f (x), i.e.

∂ f (x) :=
�

ω| f (z)− f (x)¾ 〈ω, z − x〉 ∀z ∈ X
	

(13)

Theorem 1. For the max function F(x) and the smooth approximation function of multipliers

Fp(x ,λ), the following statements are equivalent:
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i) ω is a subgradient of F at x;

ii) there is a weighted vector ξ, such that ω =
∑

i∈I(x)

ξi∇ fi (x);

iii)ω= lim
p→∞

¦

∇x Fp (x ,λ)
©

Proof. The equivalence between (i) and (ii) is well known, and is obtained by applying

standard calculus rules for computing subgradients ([17]).

lim
p→∞

¦

∇x Fp (x ,λ)
©

= lim
p→∞











m
∑

i=1

λi exp
�

p fi (x)
�

m
∑

k=1

λk exp
�

p fk (x)
�

∇ fi (x)











=
∑

i∈I(x)

λi∇ fi (x) (14)

as exp
�

p fi (x)
�

→
p→∞

0, i /∈ I (x) and λ ∈ Λ.

Remark 1. In this proof, we use the assumption that F(x∗) = 0. In fact, without this assumption,

we can also obtain the result in theorem 1 by subtracting F(x) both in the numerator and

denominator in the middle part in formula (14).

3.2. Basic Properties

For approximation function (3), the following results establish the basic properties of this

function at any K − K − T pair (x∗,λ∗):

Lemma 1. For any K − K − T pair (x∗,λ∗), the following hold for any p ≥ 0:

i) Fp (x
∗,λ∗) = F (x∗) = 0;

ii)∇x Fp

�

x∗,λ∗, p
�

= 0

Proof. i)Using the K − K − T condition (4) directly.

ii) As the computation in subsection 3.1 we have

∇x Fp (x ,λ) =

m
∑

i=1

λi exp
�

p fi (x)
�

m
∑

k=1

λk exp
�

p fk (x)
�

∇ fi (x)

=

m
∑

i=1

λi∇ fi (x)

m
∑

k=1

λk

�

exp
�

p fk (x)
�

− exp
�

p fi (x)
��

(15)

Applying the K − K − T condition, we have

∇x Fp

�

x∗,λ∗
�

=

m
∑

i=1

λ∗
i
∇ fi (x

∗)

m
∑

k=1

λ∗
k

�

exp
�

p fk (x
∗)
�

− exp
�

p fi (x
∗)
��

= 0 (16)
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Theorem 2. Let (x∗,λ∗) be K − K − T pair of min-max problem (1). Assume that ∇ fi (x
∗) , i ∈

I (x∗) are linearly independent and x∗ satisfy the second-order sufficiency condition. Then the

following hold: There exists ρ > 0 and p0 > 0,

¬

∇2
x x Fp

�

x∗,λ∗
�

d , d
¶

≥ ρ 〈d , d〉 (17)

for any fixed p ≥ p0 and d ∈ Rn.

Proof.

∇2
x x Fp (x ,λ) =

m
∑

i=1

λi exp
�

p fi (x)
�

m
∑

k=1

λk exp
�

p fk (x)
�

∇2 fi (x)+ p

m
∑

i=1

λi exp
�

p fi (x)
�

∇ fi (x)
T ∇ fi (x)

m
∑

k=1

λk exp
�

p fk (x)
�

− p

�

m
∑

i=1

λi exp
�

p fi (x)
�

∇ fi (x)

�T m
∑

i=1

λi exp
�

p fi (x)
�

∇ fi (x)

�

m
∑

k=1

λk exp
�

p fk (x)
�

�2
(18)

and

∇2
x x Fp

�

x∗,λ∗
�

=

m
∑

i=1

λ∗i exp
�

p fi (x
∗)
�

m
∑

k=1

λ∗
k

exp
�

p fk (x
∗)
�

∇2 fi

�

x∗
�

+ p

m
∑

i=1

λ∗i exp
�

p fi (x
∗)
�

∇ fi (x
∗)

T ∇ fi (x
∗)

m
∑

k=1

λ∗
k

exp
�

p fk (x
∗)
�

− p

�

m
∑

i=1

λ∗
i
exp
�

p fi (x
∗)
�

∇ fi (x
∗)

�T m
∑

i=1

λ∗
i
exp
�

p fi (x
∗)
�

∇ fi (x
∗)

�

m
∑

k=1

λ∗
k

exp
�

p fk (x
∗)
�

�2

(19)

= ∇2
x x L
�

x∗,λ∗
�

+ p
∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�T ∇ fi

�

x∗
�

− p







∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�







T





∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�






(20)
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as the convexity of the quadratic function, we have the inequality

∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�T ∇ fi

�

x∗
�

≥







∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�







T





∑

i∈I(x∗)

λ∗i∇ fi

�

x∗
�






(21)

combining the second order optimality condition we have

¬

∇2
x x Fp

�

x∗,λ∗
�

d , d
¶

≥
¬

∇2
x x L
�

x∗,λ∗
�

d , d
¶

≥ ρ 〈d , d〉 (22)

Corollary 1. if fi ∈ C2, ∇ fi (x
∗) , i ∈ I (x∗) are linearly independent and the second order

sufficiently condition is satisfied, then for any λ > 0 and p > 0, the Hessian of Fp (x ,λ) is

positive definite for any x ∈ Rn, i.e. Fp (x ,λ) is strictly convex in Rn and strongly convex on any

bounded set in Rn.

Remark 2. As the approximation function (3) is obtained by the cross-entropic regularization

of classical lagrangian, so when we treat function (3) as a nonlinear lagrangian function of the

min-max problem, under the same conditions in theorem 2, for p > p0 we can have the similar

saddle point result

Fp

�

x ,λ∗
�

≥ Fp

�

x∗,λ∗
�

≥ Fp

�

x∗,λ
�

,∀x ∈ U (x ,ǫ) (23)

3.3. Condition Number

Based on the analysis in subsection 3.2, we give the following result about the condition

number.

Theorem 3. Let (x∗,λ∗) be K − K − T pair of min-max problem (1), assume that

∇ fi (x
∗) , i ∈ I (x∗) are linearly independent and the second-order sufficiency condition is satis-

fied, then there exists p0 and M0 ≥ τ0 ≥ 0 that

M0 〈d , d〉 ¾
¬

∇2
x x Fp

�

x∗,λ∗
�

d , d
¶

¾ τ0 〈d , d〉 (24)

is true for any fixed p ≥ p0.

Proof. The right inequality is the result in theorem 2, and the left inequality follows from

the formulas (20) and (21) if p ≥ p0 and p0 large enough.

Corollary 2. If fi(x) are twice continuous differentiable and ǫ ≥ 0 is small enough then for any

fixed p ≥ p0, there exists M ≥ τ ≥ 0 such that for any pair

ω = (x ,λ) ∈ U (ω∗,ǫ) = {ω|ω−ω∗| ¶ ǫ} the following inequalities

M 〈d , d〉 ¾
¬

∇2
x x Fp

�

x∗,λ∗
�

d , d
¶

¾ τ 〈d , d〉 ,∀d ∈ Rn (25)

hold true.
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So the theorem 3 and the corollary 2 mean that in the neighborhood of the K−K− T pair

(x∗,λ∗) the condition number cond∇2
x x Fp (x ,λ)¶

τ

M
is stable for any fixed p ≥ p0.

Remark 3. Only the first order information results in subsection 3.1 need the convexity assump-

tion. The results in subsection 3.2 and 3.3 are true whether F(x) and all fi(x) are convex or

not.

4. Concluding remarks

As the uniform convergence and the algorithm are well known concepts, in this paper we

have given some basic results that are required for the analysis of this research. It should be

noticed that the efficiency of this smoothing method of multipliers depends on the parameter

p. A similar parameter analysis in the nonlinear rescaling method for the constrained opti-

mization problems is discussed in [18]. For this, some problems are investigated, such as, for

the min-max problem to find an explicit general threshold value of p. The smoothing approx-

imation has some properties that are related to the parameter p. The research (including the

implementations, properties and so on) of the smoothing method of multipliers leads to an

important subject for research.
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