EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 2, 2015, 232-238 ISSN 1307-5543 – www.ejpam.com

On a Proper Subclass of Primeful Modules Which Contains the Class of Finitely Generated Modules Properly

Hosein Fazaeli Moghimi*, Fatemeh Rashedi

¹, ² Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran

Abstract. Let R be a commutative ring with identity and M a unital R-module. Moreover, let PSpec(M) denote the primary-like spectrum of M and Spec(R/Ann(M)) the prime spectrum of R/Ann(M). We define an R-module M to be a ϕ -module, if $\phi: PSpec(M) \to Spec(R/Ann(M))$ given by $\phi(Q) = \sqrt{(Q:M)}/Ann(M)$ is a surjective map. The class of ϕ -modules is a proper subclass of primeful modules, called ψ -modules here, and contains the class of finitely generated modules properly. Indeed, ϕ and ψ are two sides of a commutative triangle of maps between spectrums. We show that if R is an Artinian ring, then all R-modules are ϕ -modules and the converse is true when R is a Noetherian ring.

2010 Mathematics Subject Classifications: 13C13, 13C99

Key Words and Phrases: Primary-like submodule, ϕ -module, Prime submodule, ψ -module

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M, (N:M) denotes the ideal $\{r \in R \mid rM \subseteq N\}$ and annihilator of M, denoted by Ann(M), is the ideal (0:M). A submodule P of an R-module M is said to be prime (or p-prime) if $P \neq M$ and for p = (P:M), whenever $rm \in P$ (where $r \in R$ and $m \in M$) then $m \in P$ or $r \in p$ [5, 11, 12]. The collection of all prime (resp. p-prime) submodules of M, denoted by Spec(M) (resp. $Spec_p(M)$), is called the prime (resp. p-prime) spectrum of M. Also the intersection of all prime submodules of M containing a submodule N is called the radical of N and is denoted by rad N. In the ideal case, we denote the radical of an ideal I of R by \sqrt{I} . An R-module M is said to be a primeful module or a ψ -module if either M = (0) or $M \neq (0)$ and the map $\psi : Spec(M) \to Spec(R/Ann(M))$, defined by $\psi(P) = (P:M)/Ann(M)$, is surjective [9]. If M/N is a ψ -module over R, then $\sqrt{(N:M)} = (rad N:M)$ [9, Proposition 5.3]. A submodule Q of M is said to be primary-like if $Q \neq M$ and whenever $rm \in Q$ (where $r \in R$ and $m \in M$) implies $r \in (Q:M)$ or

Email addresses: hfazaeli@birjand.ac.ir (HF. Moghimi), fatemehrashedi@birjand.ac.ir (F. Rashedi)

^{*}Corresponding author.

 $m \in \operatorname{rad} Q$ [7]. The primary-like spectrum PSpec(M) is defined to be the set of all primary-like submodules N of M such that M/N is a ψ -module over R. In [7, Lemma 2.1] it is shown that, if $Q \in PSpec(M)$, then (Q:M) is a primary ideal of R and so $p = \sqrt{(Q:M)}$ is a prime ideal of R. In this case, the primary-like submodule Q is also called a p-primary-like submodule of M.

Definition 1. We say that an R-module M is a ϕ -module if either M = (0) or $M \neq (0)$ and the map $\phi : PSpec(M) \rightarrow Spec(R/Ann(M))$ defined by $\phi(Q) = \sqrt{(Q:M)}/Ann(M)$ is surjective.

The saturation of a submodule N of an R-module M with respect to a prime ideal p of R is the contraction of N_p in M and designated by $S_p(N)$. It is known that [4, 10]

$$S_p(N) = \{ m \in M \mid rm \in N \text{ for some } r \in R \setminus p \}.$$

If $p \in Spec(R)$ and N is a submodule of an R-module M such that $(N:M) \subseteq p$ and M/N is a ψ -module over R, then $S_p(N+pM)$ is a p-prime submodule of M [9, Proposition 4.4]. Therefore $\rho: PSpec(M) \to Spec(M)$ defined by $\rho(Q) = S_p(Q+pM)$ is a well-defined map, where $p = \sqrt{(Q:M)}$. It is easy to see that $\phi = \psi \circ \rho$, ψ composed with ρ . Thus, if ϕ is a surjective map, so is ψ . This means that every ϕ -module is a ψ -module. We give an example of a ψ -module module which is not a ϕ -module (Example 1). An R-module M is said to be multiplication module if every submodule N of M is of the form M for some ideal M of M is show that the multiplication M-modules, finitely generated modules, free modules (of finite or infinite rank), faithful projective modules over domains and modules over Artinian rings are Φ -modules (Theorem 1, Corollary 1, Theorem 2, Theorem 3 and Theorem 4).

2. ϕ -Modules

We will use \mathcal{X} , X_p and \mathcal{X}_p to represent PSpec(M), $Spec_p(M)$ and $\{Q \in PSpec(M) \mid \sqrt{(Q:M)} = p\}$ respectively. Also V(Ann(M)) will be the set of all prime ideals containing Ann(M). We begin with a lemma which will be referred to in the rest of this section.

Lemma 1 (cf. [9, Theorem 2.1]). Let M be a non-zero R-module. Then the following statements are equivalent.

- (1) M is a ψ -module;
- (2) $X_p \neq \emptyset$ for every $p \in V(Ann(M))$;
- (3) $pM_p \neq M_p$ for every $p \in V(Ann(M))$;
- (4) $S_p(pM)$ is a p-prime submodule for every $p \in V(Ann(M))$.

Theorem 1. Every ϕ -module M over a ring R is a ψ -module, and the converse is true in each of the following cases.

(1) M is a multiplication R-module.

- (2) *M* is a non-zero faithfully flat (or in particular a projective) *R*-module.
- (3) $M/S_n(pM)$ is a ψ -module over R for every $p \in V(Ann(M))$.

Proof. Since $\phi = \psi \circ \rho$, every ϕ -module is a ψ -module. (1) Let $p \in V(Ann(M))$. Then there exists a prime submodule P such that (P:M) = p. Since M is a multiplication module P = pM. Suppose $q \in Spec(R)$ and $p \subseteq q$. By Lemma 1, there exists a prime submodule P' such that (P':M) = q. It follows that $P = pM \subseteq qM = P'$. Hence M/P is a ψ -module and so $P \in PSpec(M)$. Now from $\phi(P) = p/Ann(M)$, we conclude that ϕ is surjective, i.e., M is a ϕ -module. (2) Let $p \in V(Ann(M))$ and (P:M) = p. If M is a projective module, then pM is a prime submodule of M by [1, Corollary 2.3]. Also if M is a faithfully flat module, then pM is a prime submodule by [3, Corollary 2.6]. On the other hand M/pM is a ψ -module and (pM:M) = p by [9, Corollary 4.3 and Proposition 4.5]. Consequently $pM \in \mathcal{X}_p$. Thus M is a ϕ -module. (3) Since M is a ψ -module, $S_p(pM)$ is a p-prime submodule of M by Lemma 1. Hence $S_p(pM) \in \mathcal{X}_p$. Thus M is a ϕ -module.

The following example shows that a ψ -module is not necessarily a ϕ -module.

Example 1 (cf. [9, Example 1]). Let Ω be the set of all prime integers, $M = \prod_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$ and $M' = \bigoplus_{p \in \Omega} \frac{\mathbb{Z}}{p\mathbb{Z}}$, where p runs through Ω . Hence M is a faithful ψ -module over \mathbb{Z} and $Spec(M) = \{M' = S_0(0)\} \cup \{pM : p \in \Omega\}$. Now if ϕ is surjective, then there exists $N \in \mathcal{X}$ such that $\phi(N) = \sqrt{(N : M)} = 0$. It follows that (N : M) = 0. Since M/N is a ψ -module, we have $N \subseteq \bigcap_{p \in \Omega} pM = 0$. But 0 is not prime and so is not primary-like because rad 0 = 0. Hence $N \notin \mathcal{X}$, a contradiction. Thus M is not a ϕ -module.

Corollary 1. Every finitely generated R-module M is a ϕ -module, hence so is the factor module M/N of M by any submodule N of M.

Proof. Follows from Lemma 1 and Theorem 1.

Corollary 2. Let R be a ring of (Krull) dimension 0 and M be a non-zero R-module. Then the following statements are equivalent.

- (1) $mM \neq M$ for every $m \in V(Ann(M)) \cap Max(R)$;
- (2) M is a ψ -module;
- (3) M is a ϕ -module.

Proof. (1) \Leftrightarrow (2) follows from [9, Result 3].

(2) \Rightarrow (3) Suppose M is a ψ -module. We show that $M/S_p(pM)$ is a ψ -module for every $p \in V(Ann(M))$. Assume $(S_p(pM):M) \subseteq q$ for a prime ideal q of R. Hence $p \subseteq q$. Since dim(R) = 0, then p = q. Hence $S_q(qM)$ is a q-prime submodule containing $S_p(pM)$. Thus M is a ϕ -module by Theorem 1.

 $(3) \Rightarrow (2)$ follows from Theorem 1.

Corollary 3. Let R be a domain which is not a field. If a non-zero R-module M is either a divisible module or a faithful torsion module, then M is not a ϕ -module.

Proof. Use Theorem 1 and [9, Proposition 2.6]. □

Theorem 2. Every free module is a ϕ -module.

Proof. Suppose F is a free R-module and $\overline{p} \in Spec(R/Ann(F))$. It is easy to see that pF is a prime, and hence a primary-like submodule, of F. Now we show that F/pF is a ψ -module. Assume q is a prime ideal of R containing (pF : F). It follows from [13, Proposition 2.2] that (qF : F) = q and hence $qF \neq F$. Thus qF is a q-prime submodule of F containing pF [11, Theorem 3]. It implies that F/pF is a ψ -module.

Theorem 3. Let R be a domain and M be a faithful projective R-module. Then M is a ϕ -module.

Proof. Assume $M \neq (0)$ and $p \in Spec(R)$. We show that $pM \in \mathcal{X}$. By [9, Corollary 3.4], M is a ψ -module and hence $pM \neq M$ by [9, Result 2]. It follows from [11, Theorem 3] that pM is a p-prime, and hence a p-primary-like, submodule of M. It remains to show that M/pM is a ψ -module. Suppose q is a prime ideal of R containing p = (pM : M). Therefore $pM \subseteq qM$ and $qM \in X_q$. Thus M/pM is a ψ -module and so M is a ϕ -module.

Proposition 1. Let M be a non-zero ϕ -module over a ring R. Then the following statements hold.

- (1) Let I be a radical ideal of R. Then (IM : M) = I if and only if $I \supseteq Ann(M)$.
- (2) $mM \in \mathcal{X}$ for every $m \in V(Ann(M)) \cap Max(R)$.
- (3) If M is faithful, then M is flat if and only if M is faithfully flat.

Proof. (1) follows from [9, Proposition 3.1] and Theorem 1.

- (2) By Theorem 1, M is a ψ -module. Hence by [9, Result 2], $mM \neq M$. Thus mM is a m-prime, and hence m-primary-like, submodule of M. It remains to show that M/mM is a ψ -module. Assume p is a prime ideal of R containing (mM:M). Since $m \in Max(R)$, then m = p and so M/mM is a ψ -module. Thus $mM \in \mathcal{X}$.
- (3) The sufficiency is clear. Suppose that M is flat. Hence by part (2), we have $mM \neq M$ for every $m \in Max(R)$. This implies that M is faithfully flat.

We give an elementary example of a module which is not a ϕ -module.

Example 2. The \mathbb{Z} -module \mathbb{Q} is flat and faithful, but not faithfully flat. So, \mathbb{Q} is not a ϕ -module, by Proposition 1.

Proposition 2. Let M be a non-zero ϕ -module over a ring R. Then M_p is a non-zero ϕ -module over R_p for every $p \in V(Ann(M))$.

Proof. Suppose M is a non-zero ϕ -module over R. Hence $M_p \neq (0)$ for every $p \in V(Ann(M))$. Assume $q' \in Spec(R_p/Ann(M_p))$. We set $q = (q')^c$, the contraction of q' in R. It is easy to check that q is a prime ideal of R. We show that there exists a q'-primary-like submodule Q_p of M_p such that M_p/Q_p is a ψ -module. Since R_p is a local ring, $p_p \supseteq q' \supseteq Ann(M_p) \supseteq (Ann(M))_p$. Taking the contraction of each term of this sequence of ideals in R, we have that

$$p \supseteq q \supseteq Ann(M_p) \cap R \supseteq S_p(Ann(M)) \supseteq Ann(M).$$

Hence $q \in Spec(R/Ann(M))$. Since M is a ϕ -module over R, there exists $Q \in \mathcal{X}$ such that $\sqrt{(Q:M)} = q$. Thus by [7, Theorem 3.8] Q_p is a q'-primary-like submodule in M_p such that M_p/Q_p is a ψ -module and hence M_p is a ϕ -module over R_p for every $p \in V(Ann(M))$.

Theorem 4. Let R be a ring. Consider the following statements.

- (1) R is an Artinian ring.
- (2) Every R-module is a ϕ -module.
- (3) Every R-module is a ψ -module.
- (4) $mM \neq M$ for every R-module M and $m \in V(Ann(M)) \cap Max(R)$.
- (5) dim(R) = 0

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$. Furthermore, if R is a Noetherian ring, then the above statements are equivalent.

Proof. (1) ⇒ (2) Let M be a non-zero R-module. Then $Ann(M) \neq R$. Since R is Artinian, we have $R = R_1 \times \cdots \times R_n$, where $n \in \mathbb{N}$ and each R_i is an Artinian local ring. First we assume that n = 1, i.e., R is an Artinian local ring with maximal ideal m. Since J(R), the Jacobson radical of R, equals to m and J(R) is T-nilpotent, $mM \neq M$ by [8, Theorem 23.16]. Thus every R-module is a ϕ -module, by Corollary 2. Now assume $n \geq 2$ and let m_i be the maximal ideal of the local ring R_i for every $1 \leq i \leq n$. Let m be a maximal ideal of R containing R_i containing R_i is the form $R_1 \times \cdots \times R_{i-1} \times m_i \times R_{i+1} \times \cdots \times R_n$ for some R_i . Without loss of generality we may assume that $R_i = 1$, i.e., $R_i = m_1 \times R_2 \times \cdots \times R_n$. Again, by Corollary 2, it suffices to show that $R_i = 1$, i.e., $R_i = m_1 \times R_2 \times \cdots \times R_n$. Again, by Corollary 2, it suffices to show that $R_i = 1$ and $R_i = 1$ is easy to verify that $R_i = 1$ and $R_i = 1$ an

$$R_1 \times (0) \times \cdots \times (0) \subseteq Ann(M) \subseteq m_1 \times R_2 \times \cdots \times R_n$$

a contradiction. Thus $m_1M_1 \neq M_1$ by using case n = 1. On the other hand, for each $x \in M$, $(1,0,\cdots,0)x \in M = (m_1 \times R_2 \times \cdots \times R_n)M$. Thus for each $x \in M$, $(1,0,\cdots,0)x = \sum_{j=1}^{s} (p_{1j},r_{2j},\cdots,r_{nj})x_j$ for some $s \in \mathbb{N}$, $x_j \in M$, $y_{1j} \in M_1$ and $y_{1j} \in R$,

REFERENCES 237

where $2 \le i \le n$ and $1 \le j \le s$. Multiplying the former equation by $(1,0,\cdots,0)$, we get $(1,0,\cdots,0)x \in (m_1 \times (0) \times \cdots \times (0))M$ for each $x \in M$. It follows that

$$(R_1 \times (0) \times \cdots \times (0))M \subseteq (m_1 \times (0) \times \cdots \times (0))M$$

and so $m_1M_1 = M_1$, a contradiction.

- $(2) \Rightarrow (3)$ follows from Theorem 1.
- $(3) \Rightarrow (4)$ follows from [9, Result 2].
- (4) \Rightarrow (5) Suppose p be a prime ideal of R and K the quotient field of R/p. We know that K is a non-zero divisible R/p-module. Let $0 \neq r + p \in R/p$. Then (r + p)K = K implies that Ann(K) + R/p(r+p) = R/p. Otherwise, if $Ann(K) + R/p(r+p) \neq R/p$, then there is a maximal ideal m/p of R/p containing Ann(K) + R/p(r+p). Thus $K = (r+p)K \subseteq (m/p)K$ follows that (m/p)K = K, contradicting the assumption in (4). Now, let $Ann(K) \neq (0)$. Take $r+p \in Ann(K)$ and hence by the above argument Ann(K) = R/p, i.e., K = (0), a contradiction. Thus Ann(K) = (0). Hence R/p(r+p) = R/p for any $0 \neq r+p \in R/p$. Thus dim(R) = 0.

 $(4) \Rightarrow (5)$ follows from [2, Theorem 8.5].

The following is now immediate.

Corollary 4. Let R be a domain. Then the following statements are equivalent.

- (1) Every R-module is a ϕ -module;
- (2) Every R-module is a ψ -module;
- (3) R is a field.

References

- [1] M. Alkan and Y. Tiras. Projective Modules and Prime Submodules, Czechoslovak Mathematical Journal, 56(2), 601-611, 2006.
- [2] M. F. Atiyah and I. G. McDonald. *Introduction to Commutative Algebra*, Addison Wesley Publishing Company, Inc., 1969.
- [3] A. Azizi. Prime Submodules and Flat Modules, Acta Mathematica Sinica, English Series, 23, 147-152, 2007.
- [4] N. Bourbaki. Algebre Commutative, Paris: Hermann, 1961.
- [5] F. Callialp and U. Tekir. On Unions of Prime Submodules, The Southeast Asian Bulletin of Mathematics, 28, 213-218, 2004.
- [6] Z. A. El-Bast and P. F. Smith. Multiplication Modules, Communications in Algebra, 16, 755-779, 1988.
- [7] H. F. Moghimi and F. Rashedi. Primary-like Submodules Satisfying the Primeful Property, Transactions on Algebra and its Applications, 1:43-54, 2015.

REFERENCES 238

[8] T. Y. Lam. *A First Course in Noncommutative Rings*, Graduate text in Math, Springer-Verlag, Berlin-Heidelberg-New York, 1991.

- [9] C. P. Lu. A Module Whose Prime Spectrum Has the Surjective Natural Map, Houston Journal of Mathematics, 33, 125-143, 2007.
- [10] C. P. Lu. Saturations of Submodules, Communications in Algebra, 31, 2655-2673, 2003.
- [11] C. P. Lu. *Prime Submodules of Modules*, Commentarii Mathematici Universitatis Sancti Pauli, 33, 61-69, 1984.
- [12] R. L. McCasland, M. E. Moore and P. F. Smith. *On the Spectrum of a Module Over a Commutative Ring*, Communications in Algebra, 25, 79-103, 1997.
- [13] D. P. Yilmaz and P. F. Smith. *Radicals of Submodules of Free Modules*, Communications in Algebra, 27, 2253-2266, 1999.