Some Relations Between Crossed Modules and Simplicial Objects in Categories of Interest

Yaşar Boyacı ${ }^{1, *}$, Osman Avcıoğlu ${ }^{2}$
${ }^{1}$ Dumlupınar University, Faculty of Education, Kütahya, Turkey
${ }^{2}$ Uşak University, Faculty of Arts and Sciences, Uşak, Turkey

Abstract

We introduce a simplicial object in a category of interest and determine relations between crossed modules and simplicial objects in a category of interest.

2010 Mathematics Subject Classifications: 18B99, 18G30, 18G50,18G55
Key Words and Phrases: Category of interest, Simplicial object, Crossed module

1. Introduction

Categories of interest were introduced in order to study properties of different algebraic categories and different algebras simultaneously. Roughly speaking, category of interest can be seen as a gadget which unifies many algebraic constructions. The idea comes from P.G. Higgins [10] and the definition is due to M. Barr and G. Orzech [11]. The categories of groups, modules over a ring, vector spaces, associative algebras, associative commutative algebras, Lie algebras and Leibniz algebras are categories of interest [11]. The categories of crossed modules and precrossed modules in the category of groups, respectively, are equivalent to the categories of interests (see e.g. [3, 4]).

The functorial relation between crossed modules and simplicial objects with Moore complex of length 1 in groups, commutative algebras, Lie algebras, Leibniz n-algebras were given in $[1,2,5,8,9]$. In this paper, we will define simplicial objects in categories of interest and unify the stated results under the name of categories of interest.

2. Category of Interest

We will have the main definitions and the statements given for category of interest in [4, 7, 11].

[^0]Let \mathbb{C} be a category of groups with a set of operations Ω and with a set of identities \mathbb{E}, such that \mathbb{E} includes the group laws and the following conditions hold. If Ω_{i} is the set of i-ary operations in Ω, then:
(a) $\Omega=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2}$;
(b) the group operations (written additively: $0,-,+$) are elements of Ω_{0}, Ω_{1} and Ω_{2} respectively. Let $\Omega_{2}^{\prime}=\Omega_{2} \backslash\{+\}, \Omega_{1}^{\prime}=\Omega_{1} \backslash\{-\}$. Assume that if $* \in \Omega_{2}$, then Ω_{2}^{\prime} contains $*^{\circ}$ defined by $x *^{\circ} y=y * x$ and assume $\Omega_{0}=\{0\} ;$
(c) for each $* \in \Omega_{2}^{\prime}, \mathbb{E}$ includes the identity $x *(y+z)=x * y+x * z$;
(d) for each $\omega \in \Omega_{1}^{\prime}$ and $* \in \Omega_{2}^{\prime}, \mathbb{E}$ includes the identities $\omega(x+y)=\omega(x)+\omega(y)$ and $\omega(x * y)=\omega(x) * y$.
Let C be an object of \mathbb{C} and $x_{1}, x_{2}, x_{3} \in C$:
Axiom 1: $x_{1}+\left(x_{2} * x_{3}\right)=\left(x_{2} * x_{3}\right)+x_{1}$, for each $* \in \Omega_{2}^{\prime}$.
Axiom 2: For each ordered pair $(*, \bar{*}) \in \Omega_{2}^{\prime} \times \Omega_{2}^{\prime}$ there is a word W such that

$$
\begin{aligned}
\left(x_{1} * x_{2}\right) \bar{*} x_{3}= & W\left(x_{1}\left(x_{2} x_{3}\right), x_{1}\left(x_{3} x_{2}\right),\left(x_{2} x_{3}\right) x_{1}\right. \\
& \left.\left(x_{3} x_{2}\right) x_{1}, x_{2}\left(x_{1} x_{3}\right), x_{2}\left(x_{3} x_{1}\right),\left(x_{1} x_{3}\right) x_{2},\left(x_{3} x_{1}\right) x_{2}\right)
\end{aligned}
$$

where each juxtaposition represents an operation in Ω_{2}^{\prime}.
Definition 1. A category of groups with operations satisfying Axiom 1 and Axiom 2 is called a category of interest by Orzech [11].

Example 1. Some examples of categories of interest that are given in [4]: In the example of groups $\Omega_{2}^{\prime}=\varnothing$. In the case of associative algebras with multiplication represented by $*$, we have $\Omega_{2}^{\prime}=\left\{*, *^{\circ}\right\}$. For Lie algebras $\Omega_{2}^{\prime}=\left([],,[,]^{\circ}\right)$ (where $[a, b]^{\circ}=[b, a]=-[a, b]$). For Leibniz algebras $\Omega_{2}^{\prime}=\left([],,[,]^{\circ}\right)$ (here $[a, b]^{\circ}=[b, a]$).
Definition 2. Let $C \in \mathbb{C}$. A subobject of C is called an ideal if it is the kernel of some morphism.
Theorem 1. Let A be a subobject of B in \mathbb{C}. Then A is an ideal of B if and only if the following conditions hold:
i) A is a normal subgroup of B;
ii) $a * b \in A$, for all $a \in A, b \in B$ and $* \in \Omega_{2}^{\prime}$.

Proof. Follows from Theorem 1.7 given in [11].
Definition 3. Let $A, B \in \mathbb{C}$. An extension of B by A is a sequence

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{i} E \xrightarrow{p} B \longrightarrow 0 \tag{1}
\end{equation*}
$$

in which p is surjective and i is the kernel of p. We say that an extension is split if there is a morphism $s: B \longrightarrow E$ such that $p s=1_{B}$.

Definition 4. For $A, B \in \mathbb{C}$ we will say that we have a set of actions of B on A, whenever there is a map $f_{*}: A \times B \longrightarrow A$, for each $* \in \Omega_{2}$.

Definition 5. A split extension of B by A induces an action of B on A corresponding to the operations in \mathbb{C}. For a given split extension (1), we have

$$
\begin{align*}
b \cdot a & =s(b)+a-s(b) \tag{2}\\
b * a & =s(b) * a \tag{3}
\end{align*}
$$

for all $b \in B, a \in A$ and $* \in \Omega_{2}{ }^{\prime}$.
Actions defined by (2) and (3) are called derived actions of B on A. Given an action of B on A, the semidirect product $A \rtimes B$ is a universal algebra whose underlying set is $A \times B$ and the operations are defined by

$$
\begin{aligned}
\omega(a, b) & =(\omega(a), \omega(b)) \\
\left(a^{\prime}, b^{\prime}\right)+(a, b) & =\left(a^{\prime}+b^{\prime} \cdot a, b^{\prime}+b\right) \\
\left(a^{\prime}, b^{\prime}\right) *(a, b) & =\left(a^{\prime} * a+a^{\prime} * b+b^{\prime} * a, b^{\prime} * b\right)
\end{aligned}
$$

for all $a, a^{\prime} \in A, b, b^{\prime} \in B$.
Definition 6. A precrossed module in \mathbb{C} is a triple $\left(C_{1}, C_{0}, \partial\right)$, where $C_{0}, C_{1} \in \mathbb{C}$, the object C_{0} has a derived action on C_{1} or shortly C_{0} acts on C_{1} and $\partial: C_{1} \longrightarrow C_{0}$ is a morphism in \mathbb{C} with the conditions:

CM 1) $\partial\left(c_{0} \cdot c_{1}\right)=c_{0}+\partial\left(c_{1}\right)-c_{0}, \partial\left(c_{0} * c_{1}\right)=c_{0} * \partial\left(c_{1}\right)$, for all $c_{0} \in C_{0}, c_{1} \in C_{1}$, and $* \in \Omega_{2}{ }^{\prime}$. In addition, if $\partial: C_{1} \longrightarrow C_{0}$ satisfies the conditions

CM 2) $\partial\left(c_{1}\right) \cdot c_{1}^{\prime}=c_{1}+c_{1}^{\prime}-c_{1}, \partial\left(c_{1}\right) * c_{1}^{\prime}=c_{1} * c_{1}^{\prime}$,
for all $c_{1}, c_{1}^{\prime} \in C_{1}$, and $* \in \Omega_{2}^{\prime}$, then the triple $\left(C_{1}, C_{0}, \partial\right)$ is called a crossed module in \mathbb{C}.
Definition 7. A morphism between two crossed modules $\left(C_{1}, C_{0}, \partial\right) \longrightarrow\left(C_{1}^{\prime}, C_{0}^{\prime}, \partial^{\prime}\right)$ is a pair of morphisms $\left(\mu_{1}, \mu_{0}\right)$ in $\mathbb{C}, \mu_{0}: C_{0} \longrightarrow C_{0}^{\prime}, \mu_{1}: C_{1} \longrightarrow C_{1}^{\prime}$, such that
i) $\mu_{0} \partial(c)=\partial^{\prime} \mu_{1}(c)$,
ii) $\mu_{1}(r \cdot c)=\mu_{0}(r) \cdot \mu_{1}(c)$,
iii) $\mu_{1}(r * c)=\mu_{0}(r) * \mu_{1}(c)$,
for all $r \in C_{0}, c \in C_{1}$ and $* \in \Omega_{2}{ }^{\prime}$.
With this definition, we have a category whose objects are crossed modules and morphisms are morphisms of crossed modules defined above.

The category of crossed modules will be denoted by $\mathfrak{X m o d}(\mathbb{C})$.

3. Simplicial Objects in a Category of Interest

Let Δ be the category of finite ordinals. A simplicial object in a category of interest \mathbb{C} is a functor from the opposite category $\triangle^{o p}$ to \mathbb{C}. In other words, a simplicial object \mathbb{C} in \mathbb{C} is a sequence

$$
\mathbf{C}=\left\{C_{0}, C_{1}, \ldots, C_{n}, \ldots\right\}
$$

together with face and degeneracy maps

$$
\begin{array}{lll}
d_{i}^{n}: & C_{n} \longrightarrow C_{n-1}, 0 \leq i \leq n(n \neq 0) \\
s_{i}^{n}: & C_{n} \longrightarrow C_{n+1}, 0 \leq i \leq n
\end{array}
$$

which are homomorphisms of objects in \mathbb{C} satisfying the following simplicial identities;

$$
\begin{aligned}
& s_{i} s_{j}=s_{j+1} s_{i} \quad \text { for } i \leq j
\end{aligned}
$$

for $0 \leq i \leq n$ (Here the superscripts of maps are dropped for shortness).

3.1. The Moore Complex

The Moore complex NC of a simplicial object \mathbf{C} in a category of interest \mathbb{C} is the complex

$$
\mathrm{NC}: \cdots \longrightarrow N C_{n} \xrightarrow{\partial_{n}} N C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} N C_{1} \xrightarrow{\partial_{1}} N C_{0}
$$

where $N C_{0}=C_{0}, N C_{n}=\bigcap_{i=0}^{n-1} \operatorname{Kerd}_{i}$ and ∂_{n} is the restriction of d_{n} to $N C_{n}$.
We say that the Moore complex NC of a simplicial object \mathbf{C} is of length k if $N C_{n}=0$, for all $n \geq k+1$. Now define a category whose objects are simplicial objects with Moore complex of length k and the morphisms are families of homomorphisms compatible with face and degeneracy maps. We denote this category by $\mathfrak{S i m p}_{\leq k}(\mathbb{C})$.

3.2. Truncated Simplicial Objects

The following terminology is adapted from [6]. Details of the group case can be found in [6]. For each $k \geq 0$ we have a subcategory of \triangle, denoted by $\Delta_{\leq k}$ obtained by the objects [j] of Δ with $j \leq k$. A k-truncated simplicial object is a functor from $\triangle_{\leq k}^{o p}$ to \mathbb{C}. Consequently, a k-truncated simplicial object is a family of objects $\left\{C_{0}, C_{1}, \ldots, C_{k}\right\}$ and homomorphism $d_{i}: C_{n} \longrightarrow C_{n-1}, s_{i}: C_{n} \longrightarrow C_{n+1}$, for each $0 \leq i \leq n$ which satisfy the simplicial identities. We denote the category of k-truncated simplicial objects by $\mathfrak{T r}_{k} \mathfrak{S i m p}(\mathbb{C})$. There is a truncation functor $t r_{k}$ from the category $\mathfrak{S i m p}(\mathbb{C})$ to the category $\mathfrak{T r}_{k} \mathfrak{S i m p}(\mathbb{C})$ given by restrictions. This
truncation functor has a left adjoint $s t_{k}$ and a right adjoint $\cos _{k}$ called as k-skeleton and k-coskeleton respectively. These adjoints can be pictured as follows;

$$
\mathfrak{T r}_{k} \mathfrak{S i m p}(\mathbb{C}) \underset{\operatorname{cost}_{k}}{\stackrel{t r_{k}}{\leftrightarrows}} \operatorname{Simp}(\mathbb{C}) \underset{s t_{k}}{\stackrel{t r_{k}}{\rightleftarrows}} \mathfrak{T r}_{k} \mathfrak{S i m p}(\mathbb{C}) .
$$

See [6] for details about the functors $\cos _{k}$ and $s t_{k}$.
Theorem 2. The category $\mathfrak{X m o d}(\mathbb{C})$ of crossed modules is naturally equivalent to the category $\mathfrak{S i m p}_{\leq 1}(\mathbb{C})$ of simplicial objects with Moore complex of length 1 .

Proof. Let \mathbf{C} be a simplicial object with Moore complex of length 1 . Take $G=\operatorname{ker} d_{0}$ and ∂ is the restriction of d_{1} to G. Define the actions of C_{0} on G by

$$
\begin{aligned}
c_{0} \cdot g & =s_{0}\left(c_{0}\right)+g-s_{0}\left(c_{0}\right), \\
c_{0} * g & =s_{0}\left(c_{0}\right) * g,
\end{aligned}
$$

for all $c_{0} \in C_{0}$ and $g \in G$. By using this action $\partial: G \longrightarrow C_{0}$ is a crossed module. Indeed,
CM 1: Since $d_{1} s_{0}=i d$, we have

$$
\begin{aligned}
\partial\left(c_{0} \cdot g\right) & =\partial\left(s_{0}\left(c_{0}\right)+g-s_{0}\left(c_{0}\right)\right) \\
& =c_{0}+\partial(g)-c_{0}, \\
\partial\left(c_{0} * g\right) & =\partial\left(s_{0}\left(c_{0}\right) * g\right) \\
& =c_{0} * \partial(g),
\end{aligned}
$$

for all $c_{0} \in C_{0}$ and $g \in G$.
CM 2: Since $s_{0} d_{1}=d_{2} s_{0}, d_{2} s_{1}=i d$, we have

$$
\begin{aligned}
\partial\left(g^{\prime}\right) * g & =s_{0} d_{1}\left(g^{\prime}\right) * g \\
& =\left(s_{0} d_{1}\left(g^{\prime}\right)-g^{\prime}+g^{\prime}\right) * g \\
& =\left(s_{0} d_{1}\left(g^{\prime}\right)-g^{\prime}\right) * g+g^{\prime} * g \\
& =\left(d_{2} s_{0} g^{\prime}-d_{2} s_{1} g^{\prime}\right) *\left(d_{2} s_{1} g\right)+g^{\prime} * g \\
& =d_{2}\left(\left(s_{0} g^{\prime}-s_{1} g^{\prime}\right) *\left(s_{1} g\right)\right)+g^{\prime} * g \\
& =g^{\prime} * g,
\end{aligned}
$$

for all $g, g^{\prime} \in G$.
By a similar way, we have

$$
\partial\left(g^{\prime}\right) \cdot g=g^{\prime}+g-g^{\prime}
$$

for all $g, g^{\prime} \in G$.
So we obtain the functor

$$
N_{1}: \mathfrak{S i m p}_{\leq 1}(\mathbb{C}) \longrightarrow \mathfrak{X m o d}(\mathbb{C}) .
$$

Conversely, let $\partial: G \longrightarrow H$ be a crossed module. By using the action of H on G, we can form the semi-direct product $C_{1}:=G \rtimes H=\{(g, h): h \in H, g \in G\}$. We have the homomorphisms

$$
\begin{gathered}
d_{0}: G \rtimes H \longrightarrow H \\
(g, h) \longmapsto h \\
d_{1}: G \rtimes H \longrightarrow H \\
(g, h) \longmapsto \partial(g)+h \\
s_{0}: H \longrightarrow G \rtimes H \\
h \longmapsto(0, h)
\end{gathered}
$$

which satisfy the simplicial identities. Finally

$$
C_{1} \underset{s_{0}}{\stackrel{d_{1}, d_{0}}{\rightleftarrows}} C_{0}
$$

is a 1-truncated simplicial object. Thus we have the functor

$$
s_{1}: \mathfrak{X m o d}(\mathbb{C}) \longrightarrow \mathfrak{T r}_{1} \mathfrak{S i m p}(\mathbb{C})
$$

By using the functor $s t_{k}$ from the category of k-truncated simplicial objects to that of simplicial objects with Moore complex of length 1, we have

$$
M: \mathfrak{X m o d}(\mathbb{C}) \longrightarrow \mathfrak{S i m p}_{\mathrm{in}_{1}}(\mathbb{C})
$$

defined as the composition of s_{1} and $s t_{1}$. Finally we have the natural equivalence between the category of simplicial objects with Moore complex of length 1 and that of crossed modules in a category of interest \mathbb{C}.

The main result of the paper can be diagramized as

$$
\mathfrak{S i m p}_{\leq_{1}}(\mathbb{C}) \underset{M}{\stackrel{N}{\rightleftarrows}} \mathfrak{X m o d}(\mathbb{C})
$$

References

[1] Z Arvasi and I Akça. Simplicial and crossed lie algebras. Homology, Homotopy and Applications, 4(1):43-57, 2002.
[2] Z Arvasi and T Porter. Higher dimensional peiffer elements in simplicial commutative algebras. Theory and Applications of Categories, 3(1):1-23, 1997.
[3] J M Casas, T Datuashvili, and M Ladra. Actor of a precrossed module. Communication in Algebra, 37(12):4516-4541, 2009.
[4] J M Casas, T Datuashvili, and M Ladra. Universal strict general actors and actors in categories of interest. Applied Categorical Structures, 18(1):85-114, 2010.
[5] J M Casas, E Khmaladze, and M Ladra. Crossed modules for leibniz n- algebras. Forum Math, 20:841-858, 2008.
[6] E B Curtis. Simplicial homotopy theory. Advances in Mathematics, 6(2):107-209, 1971.
[7] T Datuashvili. Cohomologically trivial internal categories in categories of groups with operations. Applied Categorical Structures, 3(3):221-237, 1995.
[8] G J Ellis. Higher dimensional crossed modules of algebras. Journal of Pure and Applied Algebra, 52(3):277-282, 1988.
[9] G J Ellis. Homotopical aspects of lie algebras. Journal of The Australian Mathematical Society, 54(3):393-419, 1993.
[10] P J Higgins. Groups with multiple operators. Proceedings of The London Mathematical Society, 6(3):366-416, 1956.
[11] G Orzech. Obstruction theory in algebraic categories 1 and 2. Journal of Pure and Applied Algebra, 2(4):287-314 and 315-340, 1972.

[^0]: *Corresponding author.
 Email addresses: yasar.boyaci@dpu.edu.tr (Y. Boyacı), osman.avcioglu@usak.edu.tr (O. Avcıoğlu)

