EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Honorary Invited Paper

On the structure of regular $\widetilde{\mathcal{H}}$-cryptogroups

Xiangzhi Kong ${ }^{1}$, Yue Ding, K.P. Shum ${ }^{2, *, \dagger}$
${ }^{1}$ School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
${ }^{2}$ Department of Mathematics,The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China

Abstract

We introduce the concepts of Green \sim-relations on $\widetilde{\mathcal{H}}$-abundant semigroups. By using the generalized strong semilattice of semigroups, we show that an $\widetilde{\mathcal{H}}$-cryptogroup is a regular $\widetilde{\mathcal{H}}$-cryptogroup if and only if it is an $\widetilde{\mathcal{H}} G$-strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups. This result not only extends a known result of Petrich from the class of completely regular semigroups to the class of semiabundant semigroups but also generalizes a well known result of Fountain on superabundant semigroups from the class of abundant semigroups to the class of semiabundant semigroups.

AMS subject classifications: 20M10
Key words: The Green ~-relations; Homomorphisms of $\widetilde{\mathcal{H}}$-abundant semigroups; $\widetilde{\mathcal{H}}$-cryptogroups.

1. Introduction

It was proved by Clifford [1] that a regular semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups. It is also known that if the set of all idempotents of a completely regular semigroup S is the center of S, then S can be expressed by a strong semilattice of groups (see [1]). Thus, we usually regard the completely regular semigroups as generalized groups. Moreover, by Petrich and Reilly, we call a completely regular semigroup S a normal cryptogroup if the Green relation \mathcal{H} on S is a normal band congruence on S. In particular, a completely regular semigroup S is a normal cryptogroup if and only if S can be expressed by a strong semilattice of completely simple semigroups (see [12] and [13]). This result was further generalized by Fountain by proving that an abundant semigroup S is a superabundant semigroup if and only if S is a semilattice of completely \mathcal{J}^{*}-simple semigroups [4]. The structure of superabundant semigroups whose set of idempotents forms a subsemigroup have been recently extensively investigated by Ren and Shum in [15] and [16].

The Green $*$-relations on a semigroup S were first defined by Pastijn [11] which can be regarded as the Green relations in some oversemigroups of S. These relations were formulated by

[^0]Fountain [4] as follows:

$$
\begin{aligned}
\mathcal{L}^{*} & =\left\{(a, b) \in S \times S:\left(\forall x, y \in S^{1}\right) a x=a y \Leftrightarrow b x=b y\right\}, \\
\mathcal{R}^{*} & =\left\{(a, b) \in S \times S:\left(\forall x, y \in S^{1}\right) x a=y a \Leftrightarrow x b=y b\right\}, \\
\mathcal{H}^{*} & =\mathcal{L}^{*} \cap \mathcal{R}^{*}, \mathcal{D}^{*}=\mathcal{L}^{*} \vee \mathcal{R}^{*} .
\end{aligned}
$$

Later on, El-Qallali further generalized the Green $*$-relations to Green ~-relations [3] as follows:

$$
\begin{aligned}
\widetilde{\mathcal{L}} & =\{(a, b) \in S \times S:(\forall e \in E(S)) a e=a \Leftrightarrow b e=b\}, \\
\widetilde{\mathcal{R}} & =\{(a, b) \in S \times S:(\forall e \in E(S)) e a=a \Leftrightarrow e b=b\}, \\
\widetilde{\mathcal{H}} & =\widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}, \widetilde{\mathcal{D}}=\widetilde{\mathcal{L}} \vee \widetilde{\mathcal{R}} .
\end{aligned}
$$

We can easily see that $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ are equivalent relations on S, however, the $\widetilde{\mathcal{L}}$ relation is not necessary to be right compatible with the semigroup multiplication and the $\widetilde{\mathcal{R}}$ relation is not necessary to be left compatible with the semigroup multiplication. We now denote the $\widetilde{\mathcal{L}}$-class containing the element a of the semigroup S by \widetilde{L}_{a} and we observe that $\mathcal{L} \subseteq \mathcal{L}^{*} \subseteq \widetilde{\mathcal{L}}$. Among the usual Green relations or the above relations, \mathcal{L} - or the generalized \mathcal{L}-relations are duals of the corresponding \mathcal{R}-relations or generalized \mathcal{R}-relations. In what follows, we only discuss the properties which are related to the \mathcal{L} - relation and the generalized \mathcal{L}-relation, respectively. One can easily see that there is at most one idempotent of the semigroup S in each $\widetilde{\mathcal{H}}$-class. If $e \in \widetilde{\mathcal{H}}_{a} \cap E(S)$, for some $a \in S$, then we simply denote the idempotent e by x^{0}, for any $x \in \widetilde{\mathcal{H}}_{a}$. Clearly, for any $x \in \widetilde{\mathcal{H}}_{a}$ with $a \in S$, we have $x=x x^{0}=x^{0} x$.

If a semigroup S is regular, then every \mathcal{L}-class of S contains at least one idempotent, and so does every \mathcal{R}-class of S. If S is a completely regular semigroup, then every \mathcal{H}-class of S contains an idempotent. According to Fountain [4], a semigroup is abundant if every \mathcal{L}^{*} - and \mathcal{R}^{*}-class of S contains some idempotents. In other words, the term "abundant" means that the semigroup has plenty of idempotents. Clearly, we have $\mathcal{L}^{*}=\mathcal{L}$ on the set of all regular elements of a semigroup. Thus, regular semigroups are obviously special abundant semigroups. Thus, Fountain called such semigroup superabundant [4] if its every \mathcal{H}^{*}-classes contains an idempotent. Obviously, completely regular semigroups are special superabundant semigroups. Following ElQallali [3], we call a semigroup S a semiabundant semigroup if every $\widetilde{\mathcal{L}}$-class and every $\widetilde{\mathcal{R}}$-class of S contain at least one idempotent. A semigroup S is called $\widetilde{\mathcal{H}}$-abundant if every $\widetilde{\mathcal{H}}$-class contains an idempotent of S. Clearly, the $\widetilde{\mathcal{H}}$-abundant semigroups are generalizations of superabundant semigroups in the class of semiabundant semigroups. One can easily see that $\widetilde{\mathcal{L}}=\mathcal{L}$ on the set of regular elements in any $\widetilde{\mathcal{H}}$-abundant semigroup.
Throughout this paper, we call a band B a regular band (right quasi normal band) if B satisfies the identity $a x y a=\operatorname{axaya}(x y a=x a y a)$. According to Petrich and Reilly [12], a completely regular semigroup S was called a regular cryptogroup if the Green relation \mathcal{H} on S is a regular band congruence on S. The structure of regular cryptogroup was investigated by Kong-Shum in [8] and [9]. In the class of abundant semigroups, Guo and Shum [5] called an abundant semigroup whose set of idempotents forms a regular band a cyber group. The semilattice structure of regular cyber groups have been recently investigated in [9].

Naturally, one would ask : can we establish an analogous result of superabundant semigroups [4] in the class of semiabundant semigroups or an analogous result of cryptogroups [12] in the
class of $\widetilde{\mathcal{H}}$-abundant semigroups? In this paper, we will establish a theorem for $\widetilde{\mathcal{H}}$-cryptogroups by using the Green \sim-relations and the $\mathcal{K} G$-strong semilattice of semigroups, as described in [10]. We will show that an $\widetilde{\mathcal{H}}$-cryptogroup is a regular $\widetilde{\mathcal{H}}$-cryptogroup if and only if it is an $\widetilde{\mathcal{H}} G$-strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups. Our results in this paper also generalize and enrich the corresponding results given in [1], [4], [7], [8] and [13].

2. $\mathcal{K} G$-strong semilattices

We now restate the concept of G-strong semilattice decomposition of semigroup S given by Kong and Shum in [8] and [9].

Let $S=\left(Y ; S_{\alpha}\right)$ be a semilattice of the semigroups S_{α}, where each S_{α} is a subsemigroup of the semigroup S and Y is a semilattice. We define the G-strong semilattice of semigroups by generalizing the well known strong semilattice of semigroups (see [9]).

Definition 2.1 Let $S=\left(Y ; S_{\alpha}\right)$ be a semigroup. Suppose that the following conditions S are satisfied:
(i) $(\forall \alpha, \beta \in Y, \alpha \geqslant \beta)$, there exists a family of homomorphisms $\varphi_{d(\alpha, \beta)}: S_{\alpha} \longrightarrow S_{\beta}$, where $d(\alpha, \beta) \in D(\alpha, \beta)$ and $D(\alpha, \beta)$ is a non-empty index set.
(ii) $(\forall \alpha \in Y), D(\alpha, \alpha)$ is a singleton. Denote the element in $D(\alpha, \alpha)$ by $d(\alpha, \alpha)$. In this case, the homomorphism $\varphi_{d(\alpha, \alpha)}: S_{\alpha} \longrightarrow S_{\alpha}$ is the identity automorphism of the semigroup S_{α}.
(iii) $(\forall \alpha, \beta, \gamma \in Y, \alpha \geqslant \beta \geqslant \gamma)$, if we write $\varphi_{\alpha, \beta}=\left\{\varphi_{d(\alpha, \beta)}: d(\alpha, \beta) \in D(\alpha, \beta)\right\}$ then $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$, where

$$
\varphi_{\alpha, \beta} \varphi_{\beta, \gamma}=\left\{\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)}: \forall d(\alpha, \beta) \in D(\alpha, \beta), d(\beta, \gamma) \in D(\beta, \gamma)\right\}
$$

(iv) for each $\alpha, \beta \in Y$, there is a mapping from S_{α} into the set $\varphi_{\beta, \alpha \beta}$ whose value at any given element $a \in S_{\alpha}$ is denoted by $\varphi_{d(\beta, \alpha \beta)}^{a}$ such that for all $b \in S_{\beta}$,

$$
a b=\left(a \varphi_{d(\alpha, \alpha \beta)}^{b}\right)\left(b \varphi_{d(\beta, \alpha \beta)}^{a}\right) .
$$

Then the above semilatttice of semigroups is called the generalized strong semilattice of semigroups S_{α} and in brevity, the " G-strong semilattice" of semigroups S_{α} and denoted it by $S=$ $G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$.

The following definition is a more general version of G-strong semilattices.

Definition 2.2 Let \mathcal{K} be any equivalent relation on a G-strong semilattice of semigroups $S=$ $G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$. Then, we call S a " $\mathcal{K} G$-strong semilattice of semigroups S_{α} " if for every $\alpha, \beta \in$ Y, the mapping $a \longmapsto \varphi_{\alpha(\beta, \alpha \beta)}^{a}$ has the property that $\varphi_{d(\beta, \alpha \beta)}^{a}=\varphi_{d(\beta, \alpha \beta)}^{b}$ whenever the elements $a, b \in S_{\alpha}$ are in the same \mathcal{K}-class of S.
Thus, it is clear that the G-strong semilattice of semigroups S can be determined by an equivalent
relation \mathcal{K}. We therefore call the above generalized strong semilattice of semigroups S_{α} a " $\mathcal{K} G$ -strong semilattice of semigroups $S_{\alpha} "$ and is denoted by $S=\mathcal{K} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$, where \mathcal{K} is any one of the Green relations $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H}, respectively.

Remark 2.3 It is clear that the $\mathcal{K} G$-strong semilattice is stronger than the G-strong semilattice but it is weaker than the usual strong semilattice. In fact, if ρ and δ are equivalent relations on the semigroup $S=\left(Y ; S_{\alpha}\right)$ with $\rho \subseteq \delta$, then one can observe that $\delta G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ is "stronger" than $\rho G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$. As special cases, $1_{S} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ is the "weakest" $\mathcal{K} G$-strong semilattice of semigroups since 1_{S} is the "smallest" equivalent relation on S and also $\eta G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ is the strongest $\mathcal{K} G$-strong semilattice of semigroups since η is the "greatest" equivalent relation on S, where 1_{S} is the identity relation on S and η is the semilattice congruence on S which partitions the semigroup S into disjoint subsemigroups $S_{\alpha}(\alpha \in Y)$ of S. Hence, we can easily see that $\eta G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ is the usual strong semilattice of semigroups since in this case, every index set $D(\alpha, \beta)$ is a singleton for $\alpha \geqslant \beta$ on Y and hence there exists one and only one structure homomorphism in the set of structure homomorphisms $\varphi_{\alpha, \beta}$.
We have already defined the Green \sim-relations $\widetilde{\mathcal{L}}, \widetilde{\mathcal{R}}, \widetilde{\mathcal{H}}$ and $\widetilde{\mathcal{D}}$ on a semigroup S. In order to define the Green \sim-relation $\widetilde{\mathcal{J}}$ on S, we consider the left \sim-ideal L of a semigroup S.

Definition 2.4 A left (right) ideal $L(R)$ of a semigroup S is called a left \sim-ideal of S if $\widetilde{L}_{a} \subseteq$ $L\left(\widetilde{R}_{a} \subseteq R\right)$ holds, for all $a \in L(a \in R)$. We call a subset I of a semigroup S a \sim-ideal of S if it is both a left \sim-ideal and a right \sim-ideal.
It is noteworthy that if S is a regular semigroup, then every left (right, two-sided) ideal of S is a left (right, two-sided) \sim-ideal. We also observe that for any idempotent e in a semigroup S, the left (right) ideal $S e(e S)$ is a left(right) \sim-ideal. For if $a \in S e$, then $a=a e$, and hence for any element b in \widetilde{L}_{a}, we have $b=b e \in S e$.

By Definition 2.4, we see that the semigroup S is always a \sim-ideal of itself, and we denote the smallest \sim-ideal containing the element a of S by $\widetilde{J}(a)$. Now, we define $\widetilde{\mathcal{J}}=\{(a, b) \in S \times S$: $\widetilde{J}(a)=\widetilde{J}(b)\}$.

Definition 2.5 An $\widetilde{\mathcal{H}}$-abundant semigroup S is called completely $\widetilde{\mathcal{J}}$-simple if S does not contain any non-trivial proper \sim-ideal of S.
We now give some properties of the $\widetilde{\mathcal{H}}$-abundant semigroups. Some of the properties may have already been known or can be easily derived, however, for the sake of completeness, we provide here the proofs.

Lemma 2.6 Let S be an $\widetilde{\mathcal{H}}$-abundant semigroup. Then the following properties hold:
(i) The Green \sim-relation $\widetilde{\mathcal{H}}$ is a congruence on S if and only if for any $a, b \in S,(a b)^{0}=$ $\left(a^{0} b^{0}\right)^{0}$.
(ii) If e, f are $\widetilde{\mathcal{D}}$-related idempotents of S, then $e \mathcal{D} f$.
(iii)

$$
\widetilde{\mathcal{D}}=\widetilde{\mathcal{L}} \circ \widetilde{\mathcal{R}}=\widetilde{\mathcal{R}} \circ \widetilde{\mathcal{L}} .
$$

(iv) If e, f are idempotents in S such that $e \mathcal{J} f$, then $e \mathcal{D} f$.

Proof.
(i) (Necessity). For any $a, b \in S$, we have $a \widetilde{\mathcal{H}} a^{0}$ and $b \widetilde{\mathcal{H}} b^{0}$. Since $\widetilde{\mathcal{H}}$ is a congruence on S, $a b \widetilde{\mathcal{H}} a^{0} b^{0}$. But $a b \widetilde{\mathcal{H}}(a b)^{0}$, and so $(a b)^{0}=\left(a^{0} b^{0}\right)^{0}$ since every $\widetilde{\mathcal{H}}$-class contains a unique idempotent.
(Sufficiency). We only need to show that $\widetilde{\mathcal{H}}$ is compatible with the semigroup multiplication of S since $\widetilde{\mathcal{H}}$ is an equivalent relation on S. Let $(a, b) \in \widetilde{\mathcal{H}}$ and $c \in S$. Then $(c a)^{0}=\left(c^{0} a^{0}\right)^{0}=\left(c^{0} b^{0}\right)^{0}=(c b)^{0}$ and hence, $\widetilde{\mathcal{H}}$ is left compatible to the semigroup multiplication. Dually, $\widetilde{\mathcal{H}}$ is right compatible with the semigroup multiplication and thus $\widetilde{\mathcal{H}}$ is a congruence on S.
(ii) Since $e \widetilde{\mathcal{D}} f$, there exist elements a_{1}, \cdots, a_{k} of S such that $e \widetilde{\mathcal{L}} a_{1} \widetilde{\mathcal{R}} a_{2} \cdots a_{k} \widetilde{\mathcal{L}} f$. Since S is an $\widetilde{\mathcal{H}}$-abundant semigroup, $e \mathcal{L} a_{1}^{0} \mathcal{R} a_{2}^{0} \cdots a_{k}^{0} \mathcal{L} f$. Thus $e \mathcal{D} f$.
(iii) If $a, b \in S$ and $a \widetilde{\mathcal{D}} b$, then by (ii), $a^{0} \mathcal{D} b^{0}$. Hence there exist elements c, d in S with $a^{0} \mathcal{L} c \mathcal{R} b^{0}$ and $a^{0} \mathcal{R} d \mathcal{L} b^{0}$, and consequently, $a \widetilde{\mathcal{L}} c \widetilde{\mathcal{R}} b$ and $a \widetilde{\mathcal{R}} d \widetilde{\mathcal{L}} b$. Thus the result is proved.
(iv) Since $S e S=S f S$, there exist elements x, y, s, t in S such that $f=s e t$ and $e=x f y$. Let $h=(f y)^{0}$ and $k=(s e)^{0}$. Then $h f y=f y=f f y$ and so $h=h^{2}=f h$ and $s e k=s e=s e e$, and thereby, $k=k^{2}=k e$. Hence, $h f, e k$ are the idempotents satisfying the relations $h f \mathcal{R} h$ and $e k \mathcal{L} k$. These imply that $e h f \mathcal{R} e h$ and $e k f \mathcal{L} k f$. Now by $e h=x f y h=x f y=e$ and $k f=k s e t=s e t=f$, we have $e \operatorname{Re} e f \mathcal{L} f$. This shows that $e \mathcal{D} f$.

Similar to the definition of cyber group given by Guo and Shum [5], we formulate the following definition.

Definition 2.7 An $\widetilde{\mathcal{H}}$-abundant semigroup S is called an $\widetilde{\mathcal{H}}$-cryptogroup if the Green \sim-relation $\widetilde{\mathcal{H}}$ is a congruence on S. Also, we call an $\widetilde{\mathcal{H}}$-abundant semigroup S a regular $\widetilde{\mathcal{H}}$-cryptogroup if $\widetilde{\mathcal{H}}$ is a congruence on S such that $S / \widetilde{\mathcal{H}}$ is a regular band. Thus, $\widetilde{\mathcal{H}}$-cryptogroups are analogy of cryptogroups in the class of $\widetilde{\mathcal{H}}$-abundant semigroups. Also, we see in [5] that an $\widetilde{\mathcal{H}}$-cryptogroup is a generalized cyber groups.
The $\widetilde{\mathcal{H}}$-cryptogroup S has the following properties:

Lemma 2.8

(i) For any element a of the $\widetilde{\mathcal{H}}$-cryptogroup $S, \widetilde{J}(a)=S a^{0} S$.
(ii) For the $\widetilde{\mathcal{H}}$-cryptogroup $S, \widetilde{\mathcal{J}}=\widetilde{\mathcal{D}}$.
(iii) If the $\widetilde{\mathcal{H}}$-cryptogroup S is completely $\widetilde{\mathcal{J}}$-simple, then the idempotents of S are primitive.
(iv) If the $\widetilde{\mathcal{H}}$-cryptogroup S is completely $\widetilde{\mathcal{J}}$-simple, then the regular elements of S generate a regular subsemigroup of S.

Proof.
(i) Obviously, we have $a^{0} \in \widetilde{J}(a)$ and so $S a^{0} S \subseteq \widetilde{J}(a)$. We need to show that the ideal $S a^{0} S$ is in fact a \sim-ideal and since $a=a a^{0} a^{0} \in S a^{0} S, \widetilde{J}(a) \subseteq S a^{0} S$. Let $b=x a^{0} y \in$ $S a^{0} S(x, y \in S)$ and $k=\left(a^{0} y\right)^{0}$. Then $a^{0} a^{0} y=a^{0} y=k a^{0} y$ so that $a^{0}\left(a^{0} y\right)^{0}=k^{2}=k$. Also since $\widetilde{\mathcal{H}}$ is a congruence, $x a^{0} y \widetilde{\mathcal{H}} x k$. Now let $h=(x k)^{0}=\left(x a^{0} y\right)^{0}$. Then $x k h=$ $x k=x k k$ so that $h=h^{2}=h k=h a^{0} k \in S a^{0} S$. Hence if $c \in \widetilde{L}_{b}, d \in \widetilde{R}_{b}$, then $c=c h, d=h d \in S a^{0} S$ and hence, $S a^{0} S$ is a \sim-ideal, as required.
(ii) Suppose that $(a, b) \in S$ with $a \widetilde{\mathcal{J}} b$. Then by (i), we have $S a^{0} S=S b^{0} S \widetilde{\mathcal{J}}$. Now, by Lemma 2.6 (iv), $a^{0} \mathcal{D} b^{0}$ and so $a \widetilde{\mathcal{H}} a^{0} \mathcal{D} b^{0} \widetilde{\mathcal{H}} b$. This implies that $a \widetilde{\mathcal{D}} b$ and hence $\widetilde{\mathcal{J}} \subseteq \widetilde{\mathcal{D}}$. Conversely, let $a, b \in S$ with $a \widetilde{\mathcal{D}} b$. Then by Lemma 2.6 (iii), there exists an element $c \in S$ such that $a \widetilde{\mathcal{L}} c \widetilde{\mathcal{R}} b$. This leads to $a^{0} \mathcal{L} c^{0} \mathcal{R} b^{0}$ and so $S a^{0} S=S c^{0} S=S b^{0} S$. Now, by (i), $(a, b) \in \widetilde{\mathcal{J}}$ and hence $\widetilde{\mathcal{D}} \subseteq \widetilde{\mathcal{J}}$. Therefore, $\widetilde{\mathcal{J}}=\widetilde{\mathcal{D}}$.
(iii) Let e, f be idempotents in S with $e \leqslant f$. Since S is completely $\widetilde{\mathcal{J}}$-simple, $f \in S e S$. Now by the first part of Exercise 3 in [14][$£ 8.4]$, there exists an idempotent g of S such that $f \mathcal{D} g$ and $g \leqslant e$. Let $a \in S$ be such that $f \mathcal{L} a \mathcal{R} g$. Then $f \mathcal{L} a^{0} \mathcal{R} g$ and since $g \leqslant f$, we have

$$
a^{0}=g a^{0}(g f) a^{0}=g\left(f a^{0}\right)=g f=g .
$$

Now by noting that $g \leqslant f$ and $g \mathcal{L} f$, we have $f=f g=g$. However, since $g \leqslant e$, we obtain $e=f$ and hence all idempotents of S are primitive.
(iv) Let a, b be regular elements of S. Since S consists of a single $\widetilde{\mathcal{D}}$-class, by (ii) and by Lemma 2.6 (iii), there exists an element $c \in S$ such that $a \widetilde{\mathcal{L}} c \widetilde{\mathcal{R}} b$. Hence $a \widetilde{\mathcal{L}} c^{0} \widetilde{\mathcal{R}} b$. This leads to $c^{0} b=b$ and $a \mathcal{L} c^{0}$ since a is regular. Now we have $a b \mathcal{L} b$ and so the regularity of $a b$ follows from the regularity of b.

We now establish the following theorem for $\widetilde{\mathcal{H}}$-cryptogroups.
Theorem 2.9 Let S be an $\widetilde{\mathcal{H}}$-cryptogroup. Then S is a semilattice Y of completely $\widetilde{\mathcal{J}}$-simple semigroups $S_{\alpha}(\alpha \in Y)$ such that for every $\alpha \in Y$ and $a \in S_{\alpha}$, we have $\widetilde{L}_{a}(S)=\widetilde{L}_{a}\left(S_{\alpha}\right)$ and $\widetilde{R}_{a}(S)=\widetilde{L}_{a}\left(S_{\alpha}\right)$.

Proof. If $a \in S$, then $a \widetilde{\mathcal{H}} a^{2}$ and so, $\widetilde{J}(a)=\widetilde{J}\left(a^{2}\right)$. Now for $a, b \in S$, we have $(a b)^{2} \in S b a S$, and hence, it follows that

$$
\widetilde{J}(a b)=\widetilde{J}\left((a b)^{2}\right) \subseteq \widetilde{J}(b a) .
$$

Now, by symmetry, we obtain $\widetilde{J}(a b)=\widetilde{J}(b a)$. Since, by Lemma 2.8 (i), we have $\widetilde{J}(a)=S a^{0} S$ and $\widetilde{J}(b)=S b^{0} S$ so that if $c \in \widetilde{J}(a) \cap \widetilde{J}(b)$, then $c=x a^{0} y=z b^{0} t$ for some $x, y, z, t \in S$. Now $c^{2}=z b^{0} t x a^{0} y \in S b^{0} t x a^{0} S \subseteq \widetilde{J}\left(b^{0} t x a^{0}\right)$ and hence, $\widetilde{J}\left(b^{0} t x a^{0}\right)=\widetilde{J}\left(a^{0} b^{0} t x\right)$ by using previous arguments. Thus, $c^{2} \in \widetilde{J}\left(a^{0} b^{0}\right)$ and since $c \widetilde{\mathcal{H}} c^{2}$, we have $c \in \widetilde{J}\left(a^{0} b^{0}\right)$. Since $a \widetilde{\mathcal{H}} a^{0}$,
$b \widetilde{\mathcal{H}} b^{0}$ and $\widetilde{\mathcal{H}}$ is a congruence on S, we have $a b \widetilde{\mathcal{H}} a^{0} b^{0}$. Consequently, $c \in \widetilde{J}(a b)$, and thereby $\widetilde{J}(a) \cap \widetilde{J}(b) \subseteq \widetilde{J}(a b)$. The converse containment is clear so that $\widetilde{J}(a) \cap \widetilde{J}(b)=\widetilde{J}(a b)$. We can easily see that the set Y of all ~-ideals $\widetilde{J}(a)(a \in S)$ forms a semilattice under set intersection and that the mapping $a \mapsto \widetilde{J}(a)$ is a homomorphism from S onto Y. The inverse image of $\widetilde{J}(a)$ is just the $\widetilde{\mathcal{J}}$-class \widetilde{J}_{a} which is a subsemigroup of S. Hence S is a semilattice Y of the semigroups \widetilde{J}_{a}. Now let a, b be elements of $\widetilde{\mathcal{J}}$-class \widetilde{J} and suppose that $(a, b) \in \widetilde{\mathcal{L}}(\widetilde{J})$. Then, $a^{0}, b^{0} \in \widetilde{J}$ so that $\left(a^{0}, b^{0}\right) \in \widetilde{\mathcal{L}}(\widetilde{J})$, that is, $a^{0} b^{0}=a^{0}, b^{0} a^{0}=b^{0}$ and $\left(a^{0}, b^{0}\right) \in \widetilde{\mathcal{L}}(S)$. It follows that $(a, b) \in \widetilde{\mathcal{L}}(S)$ and consequently, by $\widetilde{L}_{a}(S) \subseteq \widetilde{J}$, we have $\widetilde{L}_{a}(S)=\widetilde{L}_{a}(\widetilde{J})$. By using a similar argument, we can show that $\widetilde{R}_{a}(S)=\widetilde{R}_{a}(\widetilde{J})$. From the above discussion, we can deduce that $\widetilde{H}_{a}(\widetilde{J})=\widetilde{H}_{a}(S)$ and so \widetilde{J} is indeed an $\widetilde{\mathcal{H}}$-abundant semigroup. Furthermore, if $a, b \in \widetilde{J}$, then by Lemma 2.8 (i), $(a, b) \in \widetilde{\mathcal{D}}(S)$ and hence, by Lemma 2.6 (iii), there exists an element c in $\widetilde{L}_{a}(S) \cap \widetilde{R}_{b}(S)=\widetilde{L}_{a}(\widetilde{J}) \cap \widetilde{R}_{b}(\widetilde{J})$. Thus a, b are $\widetilde{\mathcal{D}}$-related in \widetilde{J} and so \widetilde{J} is $\widetilde{\mathcal{J}}$-simple.

For the $\widetilde{\mathcal{H}}$-cryptogroups, we have the following theorem.
Theorem 2.10 Let S be an $\widetilde{\mathcal{H}}$-cryptogroup which is expressed by the semilattice of semigroups $S=\left(Y ; S_{\alpha}\right)$. Then the following statements hold:
(i) For α, and β in the semilattice Y with $\alpha \geqslant \beta$, if $a \in S_{\alpha}$ then there exists $b \in S_{\beta}$ with $a \geqslant b$;
(ii) For $a, b, c \in S$ with $b \widetilde{\mathcal{H}} c$, if $a \geqslant b, a \geqslant c$ then $b=c$;
(iii) For $a \in E(S)$ and $b \in S$, if $a \geqslant b$ then $b \in E(S)$.

Proof. (i) Let $c \in S_{\beta}$. Then, by Lemma 2.6 (i), we see that $a(a c a)^{0},(a c a)^{0} a$ and $(a c a)^{0}$ are all in the same $\widetilde{\mathcal{H}}$-class of the semigroup S and hence, $a(a c a)^{0}=(a c a)^{0} a(a c a)^{0}=(a c a)^{0} a$. Write $b=a(a c a)^{0}$. Then $b \in S_{\beta}$ and $a \geqslant b$. (ii) By the definition of " \geqslant ", there exist $e, f, g, h \in E(S)$ such that $b=e a=a f, c=g a=a h$. From $e b=b$ and $b \widetilde{\mathcal{H}} b^{0}$, we have $e b^{0}=b^{0}$. Similarly, $c^{0} h=c^{0}$. Thus ec $=e c^{0} c=e b^{0} c=b^{0} c=c$. By using similar arguments, we have $b h=b$ and so, $b=b h=e a h=e c=c$, as required. (iii) We have $b=e a=a f$ for some $e, f \in E(S)$, and whence

$$
b^{2}=(e a)(a f)=e a^{2} f=b .
$$

The following fact can be easily observed:
Fact 2.11 Let φ be a homomorphism which maps an $\widetilde{\mathcal{H}}$-cryptogroup S into another $\widetilde{\mathcal{H}}$-cryptogroup T. Then $(a \varphi)^{0}=a^{0} \varphi$.

3. Properties of regular $\widetilde{\mathcal{H}}$-cryptogroups

Lemma 3.1 Let S be a regular $\widetilde{\mathcal{H}}$-cryptogroup(that is, $\widetilde{\mathcal{H}}$ is a congruence on the $\widetilde{\mathcal{H}}$-abundant semigroup S such that S / \mathcal{H} is a regular band). For every $a \in S$, we define a relation ρ_{a} on S by $\left(b_{1}, b_{2}\right) \in \rho_{a}$ if and only if $\left(a b_{1} a\right)^{0}=\left(a b_{2} a\right)^{0},\left(b_{1}, b_{2} \in S\right)$. Then the following properties hold on S :
(i) ρ_{a} is a band congruence on S;
(ii) $\left(\forall a, a_{1} \in S_{\alpha}\right), \rho_{a}=\rho_{a_{1}}$, that is, ρ_{a} depends only on the component S_{α} containing the element a rather than on the element itself, hence we can write $\rho_{\alpha}=\rho_{a}$, for all $a \in S_{\alpha}$.
(iii) $(\forall \alpha, \beta \in Y$ with $\alpha \geqslant \beta), \rho_{\alpha} \subseteq \rho_{\beta}$ and $\left.\rho_{\beta}\right|_{S_{\alpha}}=\omega_{S_{\alpha}}$, where $\omega_{S_{\alpha}}$ is the universal relation on S_{α}.

Proof. (i) It is easy to see that ρ_{a} is an equivalent relation on S, for all $a \in S$. We now prove that ρ_{a} is left compatible with the semigroup multiplication. For this purpose, we let $(x, y) \in \rho_{a}$ and $c \in S$. Then, by the definition of ρ_{a}, we have $(a x a)^{0}=(\underset{\sim}{\mathcal{H}})^{0}$. Since S is a regular $\widetilde{\mathcal{H}}$-cryptogroup, by Lemma 2.6 (i) and the regularity of the band $S / \widetilde{\mathcal{H}}$, we obtain that

$$
(a c x a)^{0}=(a c(a x a))^{0}=\left((a c)^{0}(a x a)^{0}\right)^{0}=\left((a c)^{0}(a y a)^{0}\right)^{0}=(a c y a)^{0}
$$

Hence, $(c x, c y) \in \rho_{a}$. Dually, we can prove that ρ_{a} is right compatible with the semigroup multiplication. Thus ρ_{a} is a congruence on S. Obviously, $\widetilde{\mathcal{H}} \subseteq \rho_{a}$ and so ρ_{a} is a band congruence on S. (ii) Let $(x, y) \in \rho_{a}$. Then, by the definition of ρ_{a}, we have $(a x a)^{0}=(a y a)^{0}$ and so $a_{1}^{0}(a x a)^{0} a_{1}^{0}=$ $a_{1}^{0}(a y a)^{0} a_{1}^{0}$. This leads to $\left(a_{1}^{0}(a x a)^{0} a_{1}^{0}\right)^{0}=\left(a_{1}^{0}(a y a)^{0} a_{1}^{0}\right)^{0}$. Since $S / \widetilde{\mathcal{H}}=\left(Y ; S_{\alpha} / \widetilde{\mathcal{H}}\right)$ is a regular band and by Lemma 2.6 (i), we obtain $\left(a_{1} a a_{1} x a_{1} a a_{1}\right)^{0}=\left(a_{1} a a_{1} y a_{1} a a_{1}\right)^{0}$. However, since a, a_{1} are elements of the completely $\widetilde{\mathcal{J}}$-simple semigroup $S_{\alpha},\left(a_{1} a a_{1}\right)^{0}=a_{1}^{0}$. Thereby, by Lemma 2.6 (i) again, we have $\left(a_{1} x a_{1}\right)^{0}=\left(a_{1} y a_{1}\right)^{0}$, that is, $(x, y) \in \rho_{a_{1}}$. This shows that $\rho_{a} \subseteq \rho_{a_{1}}$. Similarly, we also have $\rho_{a_{1}} \subseteq \rho_{a}$. Thus, $\rho_{a}=\rho_{a_{1}}$. Since this relation holds for all $a \in S_{\alpha}$, we usually write $\rho_{a}=\rho_{\alpha}$. (iii) Let $a \in S_{\alpha}, b \in S_{\beta}$ and $\alpha \geqslant \beta$. We need to prove that $\rho_{\alpha} \subseteq \rho_{\beta}$. For this purpose, we let $(x, y) \in \rho_{\alpha}=\rho_{a}$, by (ii). Then, by the definition of ρ_{a}, we have $(a x a)^{0}=(a y a)^{0}$ and hence $b(a x a)^{0} b=b(a y a)^{0} b$. By Lemma 2.6 (i) and the regularity of the band, we have $(b a b x b a b)^{0}=(b a b y b a b)^{0}$. Since $\alpha \geqslant \beta$ in Y and $a \in S_{\alpha}, b \in S_{\beta}$, we have $(b a b)^{0}=b^{0}$. By using Lemma 2.6 (i) again, we can show that $(b x b)^{0}=(b y b)^{0}$, that is, $(x, y) \in \rho_{b}=\rho_{\beta}$. Thus, $\rho_{\alpha} \subseteq \rho_{\beta}$ as required. Furthermore, it is trivial that $\rho_{\beta} \mid S_{\alpha}=\omega_{S_{\alpha}}$, which is the universal relation on the semigroup S_{α}.

We now use the band congruence ρ_{α} defined in Lemma 3.1 to describe the structural homomorphisms for the $\widetilde{\mathcal{H}}$-cryptogroup $S=\left(Y ; S_{\alpha}\right)$, where each S_{α} is a completely $\widetilde{\mathcal{J}}$-simple semigroup.

We first consider the congruence $\rho_{\alpha, \beta}=\left.\rho_{\alpha}\right|_{S_{\beta}}$ for $\alpha, \beta \in Y$, which is a band congruence on the semigroup S_{β}. Now, we denote all the $\rho_{\alpha, \beta}$-classes of S_{β} by $\left\{S_{d(\alpha, \beta)}: d(\alpha, \beta) \in D(\alpha, \beta)\right\}$, where $D(\alpha, \beta)$ is a non-empty index set. In particular, the set $D(\alpha, \alpha)$ is a singleton and we can therefore write $d(\alpha, \alpha)=D(\alpha, \alpha)$. We have the following lemma.

Lemma 3.2 Let $S=\left(Y ; S_{\alpha}\right)$ be a regular $\widetilde{\mathcal{H}}$-cryptogroup. Then, for all $\alpha, \beta \in Y$ with $\alpha \geqslant \beta$, the following statements hold for all $d(\alpha, \beta) \in D(\alpha, \beta)$.
(i) For all $a \in S_{\alpha}$, there exists a unique $a_{d(\alpha, \beta)} \in S_{d(\alpha, \beta)}$ satisfying $a \geqslant a_{d(\alpha, \beta)}$;
(ii) For all $a \in S_{\alpha}$ and $x \in S_{d(\alpha, \beta)}$, if $a^{0} \geqslant e$ for some idempotent $e \in S_{d(\alpha, \beta)}$ then $e a x=$ $a x, x a e=x a, e a=a e$ and $(e a)^{0}=e$;
(iii) Let $a \in S_{\alpha}$. Define $\varphi_{d(\alpha, \beta)}: S_{\alpha} \longrightarrow S_{d(\alpha, \beta)}$ by $a \varphi_{d(\alpha, \beta)}=a_{d(\alpha, \beta)}$, where $a_{d(\alpha, \beta)} \in$ $S_{d(\alpha, \beta)}$ and $a \geqslant a_{d(\alpha, \beta)}$. Then $\varphi_{d(\alpha, \beta)}$ is a homomorphism and $a_{d(\alpha, \beta)}=a(a b a)^{0}=$ $(a b a)^{0} a$ for any $b \in S_{d(\alpha, \beta)}$.
Proof. (i) We first show that for any $a \in S_{\alpha}$ and $b \in S_{d(\alpha, \beta)}$, we have $a b \in S_{d(\alpha, \beta)}$, that is, $(a b, b) \in \rho_{\alpha, \beta}$. In fact, since $S=\left(Y, S_{\alpha}\right)$ is an $\widetilde{\mathcal{H}}$-cryptogroup, each S_{α} is a completely $\widetilde{\mathcal{J}}$-simple semigroup. Hence, we have $(x a x)^{0}=x_{\tilde{\sim}}^{0}$, for all $x \in S_{\alpha}$. This leads to $(x a b x)^{0}=(x a x b x)^{0}=$ $(x b x)^{0}$ by the regularity of the band $S / \widetilde{\mathcal{H}}$ and Lemma 2.6 (i). Thereby, $(a b, b) \in \rho_{\alpha, \beta}$. Similarly, we also have $b a \in S_{d(\alpha, \beta)}$. Invoking the above results, we have $a b a \in S_{d(\alpha, \beta)}$ for any $b \in S_{d(\alpha, \beta)}$. Since $\widetilde{\mathcal{H}}$ is a band congruence on S, by Lemma 2.6 (i) again, we see that $a(a b a)^{0},(a b a)^{0}$ and $(a b a)^{0} a$ are in the same $\widetilde{\mathcal{H}}$-class of S so that $a(a b a)^{0}=(a b a)^{0} a(a b a)^{0}=(a b a)^{0} a$. Let $a(a b a)^{0}=$ $a_{d(\alpha, \beta)}$. Then by the natural partial order imposed on S, we have $a \geqslant a_{d(\alpha, \beta)}$. In order to show the uniqueness of $a_{d(\alpha, \beta)}$, we assume that there is another $a_{d(\alpha, \beta)}^{*} \in S_{d(\alpha, \beta)}$ satisfying $a \geqslant a_{d(\alpha, \beta)}^{*}$. Then, by the definition of " \leqslant ", we can write $a_{d(\alpha, \beta)}^{*}=e a=a f$ for some $e, f \in E(S)$ and so $a_{d(\alpha, \beta)}^{*} a^{0}=a_{d(\alpha, \beta)}^{*}=a^{0} a_{d(\alpha, \beta)}^{*}$. By the fact $a_{d(\alpha, \beta)}^{*} \widetilde{\mathcal{H}} a^{0}$, we have $\left(a_{d(\alpha, \beta)}^{*}\right)^{0} a^{0}=\left(a_{d(\alpha, \beta)}^{*}\right)^{0}$ and $a^{0}\left(a_{d(\alpha, \beta)}^{*}\right)^{0}=\left(a_{d(\alpha, \beta)}^{*}\right)^{0}$. Consequently, by the definition of " \leqslant ", we have $a^{0} \geqslant\left(a_{d(\alpha, \beta)}^{*}\right)^{0}$. By Lemma 2.6 (i) again, we deduce that

$$
\left(a_{d(\alpha, \beta)}^{*}\right)^{0}=\left(a^{0}\left(a_{d(\alpha, \beta)}^{*}\right)^{0} a^{0}\right)^{0}=\left(a a_{d(\alpha, \beta)}^{*} a\right)^{0}=(a b a)^{0} .
$$

Hence, $\left(a_{d(\alpha, \beta)}^{*}, a_{d(\alpha, \beta)}\right) \in \widetilde{\mathcal{H}}$, and consequently, by Theorem 2.10 (ii), $a_{d(\alpha, \beta)}^{*}=a_{d(\alpha, \beta)}$. This shows the uniqueness of $a_{d(\alpha, \beta)}$. (ii) It is easy to see that, by the definition of " \leqslant ", $a^{0} \geqslant$ $\left(a^{0}(a x)^{0} a^{0}\right)^{0}$. Also, since $a \in S_{\alpha}$ and $x \in S_{d(\alpha, \beta)}$, we have $a x \in S_{d(\alpha, \beta)}$ by (i). Moreover, since $S_{d(\alpha, \beta)}$ is a $\rho_{\alpha, \beta}$-congruence class, $(a x)^{0} \in S_{d(\alpha, \beta)}$. Thus, by (i) again, we have $\left(a^{0}(a x)^{0} a^{0}\right)^{0} \in$ $S_{d(\alpha, \beta)}$ and $e=\left(a^{0}(a x)^{0} a^{0}\right)^{0}$. Thereby, we have eax $=\left(a^{0}(a x)^{0} a^{0}\right)^{0} a^{0}(a x)^{0} a^{0} a x=a x$. Similarly, we have $x a e=x a$. Since x is arbitrarily chosen element in $S_{d(\alpha, \beta)}$, we can particularly choose $x=e$. In this way, we obtain $e a=a e$ and consequently, by Lemma 2.6 (i), we have $(e a)^{0}=\left(e a^{0}\right)^{0}=e$. (iii) By using the result in (i), we can define $\varphi_{d(\alpha, \beta)}: S_{\alpha} \longrightarrow S_{d(\alpha, \beta)}$ by $a \varphi_{d(\alpha, \beta)}=a_{d(\alpha, \beta)}=a(a c a)^{0}=(a c a)^{0} a$, for any $a \in S_{\alpha}$ and $c \in S_{d(\alpha, \beta)}$. Then, for any $a, b \in S_{\alpha}$, we have, by (ii),

$$
\begin{aligned}
\left(a \varphi_{d(\alpha, \beta))}\right)\left(b \varphi_{d(\alpha, \beta)}\right) & =a_{d(\alpha, \beta)} b_{d(\alpha, \beta)} \\
& =(a c a)^{0} a b(b c b)^{0} \\
& =(a c a)^{0}\left(a b(b c b)^{0}\right) \\
& =a b(b c b)^{0} .
\end{aligned}
$$

Similarly, we can show that $\left(a \varphi_{d(\alpha, \beta)}\right)\left(b \varphi_{d(\alpha, \beta)}\right)=(a c a)^{0} a b$. Hence, $a b \geqslant\left(a \varphi_{d(\alpha, \beta)}\right)\left(b \varphi_{d(\alpha, \beta)}\right)$. Thus $(a b) \varphi_{d(\alpha, \beta)}=\left(a \varphi_{d(\alpha, \beta)}\right)\left(b \varphi_{d(\alpha, \beta)}\right)$, by the definition of $\varphi_{d(\alpha, \beta)}$. This shows that $\varphi_{d(\alpha, \beta)}$ is indeed a homomorphism.
We now proceed to show that the homomorphisms given in Lemma 3.2 (iii) are the structural homomorphisms for the G-strong semilattice $G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ induced by the semigroup $S=$ ($Y ; S_{\alpha}$) under the band congruence ρ_{α} on the semigroup S_{α}.

Lemma 3.3 Let $S=\left(Y ; S_{\alpha}\right)$ be an $\widetilde{\mathcal{H}}$-cryptogroup and $\varphi_{\alpha, \beta}=\left\{\varphi_{d(\alpha, \beta)} \mid d(\alpha, \beta) \in D(\alpha, \beta)\right\}$ for $\alpha \geqslant \beta$ on Y, where $D(\alpha, \beta)$ is a non-empty index set. Then
(i) $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$ for $\alpha \geqslant \beta \geqslant \gamma$ on Y.
(ii) For $a \in S_{\alpha}$ and $\beta \in Y$,

$$
a \varphi_{\alpha, \alpha \beta}=\left\{a \varphi_{d(\alpha, \alpha \beta)} \mid \forall d(\alpha, \alpha \beta) \in D(\alpha, \alpha \beta)\right\} \subseteq S_{d(\beta, \alpha \beta)},
$$

for some $\rho_{\beta, \alpha \beta}$-class $S_{d(\beta, \alpha \beta)}$.
Proof. (i) Clearly, $\varphi_{d(\alpha, \alpha)}$ is an identity automorphism of S_{α}. We now prove that $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq$ $\varphi_{\alpha, \gamma}$ for $\alpha \geqslant \beta \geqslant \gamma$ on Y. Pick $\varphi_{d(\alpha, \beta)}: S_{\alpha} \longrightarrow S_{d(\alpha, \beta)} \subseteq S_{\beta}$ and $\varphi_{d(\beta, \gamma)}: S_{\beta} \longrightarrow S_{d(\beta, \gamma)} \subseteq$ S_{γ}. We show that $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)}=\varphi_{d(\alpha, \gamma)}$ for some $\varphi_{d(\alpha, \gamma)}: S_{\alpha} \longrightarrow S_{d(\alpha, \gamma)} \subseteq S_{\gamma}$. For this purpose, we let $a \in S_{\alpha}, b_{1}, b_{2} \in S_{d(\alpha, \beta)}$ and $c \in S_{d(\beta, \gamma)}$. Then, because $S / \widetilde{\mathcal{H}}$ is a band, by Lemma 3.2, we have $b_{1} \varphi_{d(\beta, \gamma)}=b_{1}\left(b_{1} c b_{1}\right)^{0}, b_{2} \varphi_{d(\beta, \gamma)}=b_{2}\left(b_{2} c b_{2}\right)^{0}$. Since $b_{1}, b_{2} \in S_{d(\alpha, \beta)}$, by the definition of $\rho_{\alpha, \beta},\left(b_{1}, b_{2}\right) \in \rho_{\alpha, \beta}$. This leads to $\left(a b_{1} a\right)^{0}=\left(a b_{2} a\right)^{0}$. Now, by the regularity of the band $S / \widetilde{\mathcal{H}}$, we can easily deduce that

$$
\begin{aligned}
\left(a\left(b_{1} \varphi_{d(\beta, \gamma)}\right) a\right)^{0} & =\left(a b_{1}\left(b_{1} c b_{1}\right)^{0} a\right)^{0}=\left(\left(a b_{1} a\right)^{0} c\left(a b_{1} a\right)^{0}\right)^{0} \\
& =\left(\left(a b_{2} a\right)^{0} c\left(a b_{2} a\right)^{0}\right)^{0}=\left(a\left(b_{2}\left(b_{2} c b_{2}\right)^{0}\right) a\right)^{0} \\
& =\left(a\left(b_{2} \varphi_{d(\beta, \gamma)}\right) a\right)^{0}
\end{aligned}
$$

Thus, by the definition of $\rho_{\alpha, \gamma}$, we have $\left(b_{1} \varphi_{d(\beta, \gamma)}, b_{2} \varphi_{d(\beta, \gamma)}\right) \in \rho_{\alpha, \gamma}$. In other words, there exists a $\rho_{\alpha, \gamma}$-class $S_{d(\alpha, \gamma)}$ satisfying $S_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)} \subseteq S_{d(\alpha, \gamma)}$. Also, $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)}$ clearly maps S_{α} into $S_{d(\alpha, \gamma)}$ by the transitivity of " \leqslant ", and hence $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)}=\varphi_{d(\alpha, \gamma)}$. This proves that $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$. (ii) It suffices to show that for any $\varphi_{d(\alpha, \alpha \beta)}$ and $\varphi_{d^{\prime}(\alpha, \alpha \beta)} \in \varphi_{\alpha, \alpha \beta}$, we have $\left(a \varphi_{d(\alpha, \alpha \beta)}, a \varphi_{d^{\prime}(\alpha, \alpha \beta)}\right) \in \rho_{\beta, \alpha \beta}$. For this purpose, we let $x \in S_{d(\alpha, \alpha \beta)}$ and $x^{\prime} \in S_{d^{\prime}(\alpha, \alpha \beta)}$. Then, by Lemma 3.2 (iii), we have $a \varphi_{d(\alpha, \alpha \beta)}=a(a x a)^{0}$ and $a \varphi_{d^{\prime}(\alpha, \alpha \beta)}=a\left(a x^{\prime 0}\right.$. Let $b \in S_{\beta}$. Since $S_{\alpha \beta}$ is a completely $\widetilde{\mathcal{J}}$-simple semigroup, and bab, $a \varphi_{d(\alpha, \alpha \beta)}, a \varphi_{d^{\prime}(\alpha, \alpha \beta)}$ are elements in $S_{\alpha \beta}$, we obtain that $\left(b a b,(b a b)\left(a \varphi_{d(\alpha, \alpha \beta)}\right)(b a b)\right) \in \widetilde{\mathcal{H}}$ and $\left(b a b,(b a b)\left(a \varphi_{d^{\prime}(\alpha, \alpha \beta)}\right)(b a b)\right)$ $\in \widetilde{\mathcal{H}}$. Since every $\widetilde{\mathcal{H}}$-class of $S_{\alpha \beta}$ contains a unique idempotent, $\left((b a b)\left(a \varphi_{d(\alpha, \alpha \beta)}\right)(b a b)\right)^{0}=$ $\left((b a b)\left(a \varphi_{d^{\prime}(\alpha, \alpha \beta)}\right)(b a b)\right)^{0}$. In other words, we have $\left.\left((b a b)\left(a(a x a)^{0}\right)\right)(b a b)\right)^{0}=\left((b a b)\left(a\left(a x^{\prime 0}\right)(b a b)\right)^{0}\right.$. Thus, by the regularity of the band $S / \widetilde{\mathcal{H}}$, we can further simplify the above equality to $\left(b\left(a(a x a)^{0}\right) b\right)^{0}=$ $\left(b\left(a\left(a x^{0}\right) b\right)^{0}\right.$, that is, $\left(b\left(a \varphi_{d(\alpha, \alpha \beta)}\right) b\right)^{0}=\left(b\left(a \varphi_{d^{\prime}(\alpha, \alpha \beta)}\right) b\right)^{0}$. By the definition of $\rho_{\beta, \alpha \beta}$, we see that $\left(a \varphi_{d(\alpha, \alpha \beta)}, a \varphi_{d^{\prime}(\alpha, \alpha \beta)}\right) \in \rho_{\beta, \alpha \beta}$.
Finally we show that $S=\left(Y ; S_{\alpha}\right)$ equipped with the above structural homomorphisms acting on the $\rho_{\alpha, \beta}$-equivalence class of S forms a G-strong semilattice of semigroups S_{α}. We need the following lemma.
Lemma 3.4 Let $S=\left(Y ; S_{\alpha}\right)$ be a regular $\widetilde{\mathcal{H}}$-cryptogroup. For any $a \in S_{\alpha}, b \in S_{\beta}$, suppose that $a \varphi_{\alpha, \alpha \beta} \subseteq S_{d(\beta, \alpha \beta)}, b \varphi_{\beta, \alpha \beta} \subseteq S_{d(\alpha, \alpha \beta)}$, where $\varphi_{\alpha, \alpha \beta}$ and $\varphi_{\beta, \alpha \beta}$ are the structural homomorphisms defined in Lemma 3.3. Then we have

$$
a b=\left(a \varphi_{d(\alpha, \alpha \beta)}\right)\left(b \varphi_{d(\beta, \alpha \beta)}\right) .
$$

Proof. Let $c_{1} \in S_{d(\alpha, \alpha \beta)}, c_{2} \in S_{d(\beta, \alpha \beta)}$. Then $\left(a c_{1} a\right)^{0} \in S_{d(\alpha, \alpha \beta)}$ because $S_{d(\alpha, \alpha \beta)}$ is a $\rho_{\alpha, \alpha \beta^{-}}$ equivalence class of $S_{\alpha \beta}$. Now, by Lemma 3.2, $a \varphi_{d(\alpha, \alpha \beta)}=\left(a c_{1} a\right)^{0} a$ and $b \varphi_{d(\beta, \alpha \beta)}=b\left(b c_{2} b\right)^{0}$ for $\varphi_{d(\alpha, \alpha \beta)} \in \varphi_{\alpha, \alpha \beta}$ and $\varphi_{d(\beta, \alpha \beta)} \in \varphi_{\beta, \alpha \beta}$. Since we assume that $a \varphi_{\alpha, \alpha \beta} \subseteq S_{d(\beta, \alpha \beta)}$, we have $a \varphi_{d(\alpha, \alpha \beta)}=\left(a c_{1} a\right)^{0} a \in S_{d(\beta, \alpha \beta)}$. Similarly, we have $b \varphi_{d(\beta, \alpha \beta)} \in S_{d(\alpha, \alpha \beta)} \cap S_{d(\beta, \alpha \beta)}$. Thus, by Lemma 3.2 (ii), we have

$$
\left(a \varphi_{d(\alpha, \alpha \beta)}\right)\left(b \varphi_{d(\beta, \alpha \beta)}\right)=\left(a c_{1} a\right)^{0}\left(a b\left(b c_{2} b\right)^{0}\right)=a b\left(b c_{2} b\right)^{0}
$$

and also

$$
\left(a \varphi_{d(\alpha, \alpha \beta)}\right)\left(b \varphi_{d(\beta, \alpha \beta)}\right)=\left(\left(a c_{1} a\right)^{0} a b\right)\left(b c_{2} b\right)^{0}=\left(a c_{1} a\right)^{0} a b
$$

However, by the definition of the natural partial order " \leqslant ", we have $a b \geqslant\left(a \varphi_{d(\alpha, \alpha \beta)}\right)\left(b \varphi_{d(\beta, \alpha \beta)}\right)$. On the other hands, since every semigroup $S_{\alpha \beta}$ is primitive, we obtain

$$
a b=\left(a \varphi_{d(\alpha, \alpha \beta)}\right)\left(b \varphi_{d(\beta, \alpha \beta)}\right) .
$$

4. Structure of regular $\widetilde{\mathcal{H}}$-cryptogroups

In this section, we use the $\mathcal{K} G$-strong semilattice to characterize regular $\widetilde{\mathcal{H}}$-cryptogroups. Also, we consider the question when will the Green \sim-relation $\widetilde{\mathcal{H}}$ to be a right quasi-normal band congruence? By using the $\mathcal{K} G$-strong semilattice, we are able to give a description for the normal $\widetilde{\mathcal{H}}$-cryptogroups. We note here that the orthodox regular $\widetilde{\mathcal{H}}$-cryptogroups with $\mathcal{K} G$-strong semilattices have been studies in [10]. A construction theorem of orthodox regular $\widetilde{\mathcal{H}}$-cryptogroups was also given in [8].

Theorem 4.1 An $\widetilde{\mathcal{H}}$-cryptogroup S is a regular $\widetilde{\mathcal{H}}$-cryptogroup if and only if S is an $\widetilde{\mathcal{H}} G$-strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups, that is, $S=\widetilde{\mathcal{H}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$.

Proof. By the definition of the $\mathcal{K} G$-strong semilattice and the results obtained in $\S 3$, we have already proved the necessity part of Theorem 4.1 since it is obvious that $\left.\widetilde{\mathcal{H}}\right|_{S_{\beta}} \subseteq \rho_{\alpha, \beta}$ for $\alpha \geqslant \beta$ on Y. We now prove the sufficiency part of the theorem. To prove that $S / \widetilde{\mathcal{H}}$ is a regular band, we use a result in [14]. What we need is to prove that the usual Green relations \mathcal{L} and \mathcal{R} are congruences on $S / \widetilde{\mathcal{H}}$. In fact, we only need to verify that \mathcal{L} is a left congruence on $S / \widetilde{\mathcal{H}}$ since \mathcal{R} is a right congruence on $S / \widetilde{\mathcal{H}}$ can be proved in a similar fashion. Since $S=\left(Y ; S_{\alpha}\right)$ is an $\widetilde{\mathcal{H}}$-cryptogroup, we can let $e \widetilde{\mathcal{H}}, f \widetilde{\mathcal{H}}$ and $g \widetilde{\mathcal{H}} \in S / \widetilde{\mathcal{H}}$, where $e, f \in S_{\alpha} \cap E(S), g \in S_{\beta} \cap E(S)$ with $(e, f) \in \widetilde{\mathcal{L}}$. Then, we have $e f=e$ and $f e=f$. By the definition of $\widetilde{\mathcal{H}} G$-strong semilattice $\widetilde{\mathcal{H}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$, we can find the homomorphisms $\varphi_{d(\beta, \alpha \beta)}^{e f}$ and $\varphi_{d(\beta, \alpha \beta)}^{f} \in \varphi_{\beta, \alpha \beta}, \varphi_{d(\alpha, \alpha \beta)}^{g} \in \varphi_{\alpha, \alpha \beta}$ such that

$$
\begin{aligned}
(g e g f) \widetilde{\mathcal{H}} & =\{[g(e f)](g f)\} \widetilde{\mathcal{H}} \\
& =\left\{\left[\left(g \varphi_{d(\beta, \alpha \beta)}^{e f}\right)\left((e f) \varphi_{d(\alpha, \alpha \beta)}^{g}\right)\right]\left[\left(g \varphi_{d(\beta, \alpha \beta)}^{f}\right)\left(f \varphi_{d(\alpha, \alpha \beta)}^{g}\right)\right]\right\} \widetilde{\mathcal{H}} \\
& =\left[\left(g \varphi_{d(\beta, \alpha \beta)}^{e f}\right)\left(f \varphi_{d(\alpha, \alpha \beta)}^{g}\right)\right] \widetilde{\mathcal{H}}
\end{aligned}
$$

and

$$
\begin{aligned}
(g e) \widetilde{\mathcal{H}} & =[g(e f)] \widetilde{\mathcal{H}} \\
& =\left[\left(g \varphi_{d(\beta, \alpha \beta)}^{e f}\right)\left((e f) \varphi_{d(\alpha, \alpha \beta)}^{g}\right)\right] \widetilde{\mathcal{H}} \\
& =\left[\left(g \varphi_{d(\beta, \alpha \beta)}^{e f}\right)\left(f \varphi_{d(\alpha, \alpha \beta)}^{g}\right)\right] \widetilde{\mathcal{H}} .
\end{aligned}
$$

Thereby, $(g e g f) \widetilde{\mathcal{H}}=(g e) \widetilde{\mathcal{H}}$. Analogously, we can also prove that $(g f g e) \widetilde{\mathcal{H}}=(g f) \widetilde{\mathcal{H}}$. This proves that \mathcal{L} is left compatible with the multiplication of $S / \widetilde{\mathcal{H}}$. Since \mathcal{L} is always right congruence, \mathcal{L} is a congruence on $S / \widetilde{\mathcal{H}}$, as required. Dually, \mathcal{R} is also a congruence on $S / \widetilde{\mathcal{H}}$. Thus by [14] (see II. 3.6 Proposition), $S / \widetilde{\mathcal{H}}$ forms a regular band and hence S is indeed a regular \mathcal{H}-cryptogroup. Our proof is completed.

Recall that a right quasi-normal band is a band satisfying the identity yxa = yaxa [6]. Also, a left quasi-normal band is a band satisfying the identity $a x y=a x a y$. Thus, we can easily observe that both the right quasi-normal bands and the left quasi-normal bands are special cases of the regular bands. Also, a normal band (that is, a band satisfies the identity $a x y a=a y x a$) is a special right quasi-normal band and a left quasi-normal band. Based on the above observation, we are able to establish the following theorem for right quasi-normal $\widetilde{\mathcal{H}}$-cryptogroups.

Theorem 4.2 An $\widetilde{\mathcal{H}}$-abundant semigroup S is a right quasi-normal $\widetilde{\mathcal{H}}$-cryptogroup if and only if S is an $\widetilde{\mathcal{L}} G$-strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups, that is, $S=\widetilde{\mathcal{L}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$.

Proof. (Necessity) Let S be a right quasi-normal $\widetilde{\mathcal{H}}$-cryptogroup. Then $S / \widetilde{\mathcal{H}}$ is a right quasi-normal band. To show that S is an $\widetilde{\mathcal{L}} G$-strong semilattice, by invoking Lemma 3.3 and its proof, we only need to show that for any $\delta \geqslant \gamma$ on $Y,\left.\widetilde{\mathcal{L}}\right|_{S_{\gamma}} \subseteq \rho_{\delta, \gamma}$. In fact, for $a \in S_{\delta}, x, y \in$ S_{γ} with $(x, y) \in \widetilde{\mathcal{L}}$, we have $($ axa $) \widetilde{\mathcal{H}}=(($ axy $) a) \widetilde{\mathcal{H}}=($ ayxya $) \widetilde{\mathcal{H}}=($ aya $) \widetilde{\mathcal{H}}$ by the right quasi-normality of the band $S / \widetilde{\mathcal{H}}$. Thus, by the definition of $\rho_{\delta, \gamma}$, we have $\left.\widetilde{\mathcal{L}}\right|_{S_{\gamma}} \subseteq \rho_{\delta, \gamma}$ as required. This shows that $S=\widetilde{\mathcal{L}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$. (Sufficiency) Let $a \in S_{\alpha}, x \in S_{\beta}$, and $y \in S_{\gamma}$. Then, since $S=\widetilde{\mathcal{L}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$ is an $\widetilde{\mathcal{H}} G$-strong semilattice of S_{α} and by Theorem 4.1, $\widetilde{\mathcal{H}}$ is a congruence on S. Moreover, we have $x a=\left(x \varphi_{d(\beta, \alpha \beta)}^{a}\right)\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)$ and thereby, axa $=\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)\left(x \varphi_{d(\beta, \alpha \beta)}^{a}\right)\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)$. By the fact $\left((x a)^{0},(a x a)^{0}\right) \in \mathcal{L}$, we can easily see that $\left.(x a, a x a) \in \widetilde{\mathcal{L}}\right|_{S_{\alpha \beta}}$, and so, by our hypothesis, $S=\widetilde{\mathcal{L}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$. This implies that there exist some homomorphisms $\varphi_{d(\alpha \beta, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}} \in \varphi_{\alpha \beta, \alpha \beta \gamma}$ and $\varphi_{d(\gamma, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}} \in \varphi_{\gamma, \alpha \beta \gamma}$ satisfying the conditions $y(x a)=\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\tilde{\mathcal{L}}}\right)\left((x a) \varphi_{d(\alpha \beta, \alpha \beta \gamma)}\right)$ and $y(a x a)=\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\tilde{\mathcal{L}}}\right)\left((a x a) \varphi_{d(\alpha \beta, \alpha \beta \gamma)}^{\widetilde{\mathcal{I}}}\right)$. Hence, it follows that

$$
\begin{aligned}
(y(x a)) \widetilde{\mathcal{H}} & =\left[\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right)\left((x a) \varphi_{d(\alpha \beta, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right)\right] \widetilde{\mathcal{H}} \\
& =\left\{\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\tilde{\mathcal{H}}}\right)\left\{\left[\left(x \varphi_{d(\beta, \alpha \beta)}^{a}\right)\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)\right] \varphi_{d(\alpha \beta, \alpha \beta \gamma)}{ }^{\tilde{\mathcal{L}}}\right\}\right\} \widetilde{\mathcal{H}} \\
& =\left[\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\tilde{\mathcal{L}}}\right)\left(\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right) \varphi_{d(\alpha \beta, \alpha \beta \gamma))}^{\tilde{\mathcal{I}}}\right] \widetilde{\mathcal{H}}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
(y(a x a)) \widetilde{\mathcal{H}} & =\left\{\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right)\left\{\left[\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)\left(x \varphi_{d(\beta, \alpha \beta)}^{a}\right)\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right)\right] \varphi_{d(\alpha \beta, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right\}\right\} \widetilde{\mathcal{H}} \\
& =\left[\left(y \varphi_{d(\gamma, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right)\left(\left(a \varphi_{d(\alpha, \alpha \beta)}^{x}\right) \varphi_{d(\alpha \beta, \alpha \beta \gamma)}^{\widetilde{\mathcal{L}}}\right)\right] \widetilde{\mathcal{H}}
\end{aligned}
$$

This leads to $(y x a) \widetilde{\mathcal{H}}=(y a x a) \widetilde{\mathcal{H}}$ and so $S / \widetilde{\mathcal{H}}$ is a right quasi-normal band. Thus, S is indeed a right quasi-normal $\widetilde{\mathcal{H}}$-cryptogroup.

Since we have already mentioned that a band B is a normal band if for all elements e, f, g in B, the identity efge $=$ egfe holds in B (see [6]). In closing this paper, we characterize the normal $\widetilde{\mathcal{H}}$-cryptogroups. In fact, this result gives a modified version of the theorem of Petrich and Reilly in [11] on normal cryptogroups, in particular, the theorem on normal cryptogroups in [11] and also the theorem of Fountain on superabundant semigroups in [4] is now refined and amplified in the class of quasiabundant semigroups.

Theorem 4.3 An $\widetilde{\mathcal{H}}$-abundant semigroup S is a normal $\widetilde{\mathcal{H}}$-cryptogroup if and only if S is a $\widetilde{\mathcal{D}} G$ strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups, that is, $S=\widetilde{\mathcal{D}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$.

Proof. (Necessity) The proof is similar to the necessity part given in Theorem 4.2, that is, we only need to prove that $\left.\widetilde{\mathcal{D}}\right|_{S_{\beta}} \subseteq \rho_{\alpha, \beta}$ for all $\alpha, \beta \in Y$ with $\alpha \geqslant \beta$. Since every semigroup S_{α} can be regarded as a $\widetilde{\mathcal{D}}$-class of S, we can just let $a \in S_{\alpha}, x, y \in S_{\beta}$. Recall that $S=\left(Y ; S_{\alpha}\right)$ is a normal $\widetilde{\mathcal{H}}$-cryptogroup, $S / \widetilde{\mathcal{H}}$ is a normal band. Now, by the normality of the band $S / \widetilde{\mathcal{H}}$, we have

$$
(a x a) \widetilde{\mathcal{H}}=(a(x y x) a) \widetilde{\mathcal{H}}=(a y x y a) \widetilde{\mathcal{H}}=(a y a) \widetilde{\mathcal{H}}
$$

Thus, by Lemma 3.1, we see that $(x, y) \in \rho_{\alpha, \beta}$ and whence $\left.\widetilde{\mathcal{D}}\right|_{S_{\beta}} \subseteq \rho_{\alpha, \beta}$. This proves that $S=$ $\widetilde{\mathcal{D}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$. (Sufficency) Let $S=\widetilde{\mathcal{D}} G\left[Y ; S_{\alpha}, \varphi_{\alpha, \beta}\right]$, where each S_{α} is a completely $\widetilde{\mathcal{J}}$ simple semigroup, for all $\alpha \in Y$. Then by definition, S is an $\widetilde{\mathcal{L}} G$-strong semilattice of semigroups S_{α} and also S is an $\widetilde{\mathcal{R}} G$-strong semilattice of semigroups S_{α}. By applying Theorem 4.2 and its dual, we immediately deduce that $\widetilde{\mathcal{H}}$ is a congruence on S and for all $a, x, y \in S$, we have

$$
[(a x y) a] \widetilde{\mathcal{H}}=[a y(x y a)] \widetilde{\mathcal{H}}=(a y x y x a) \widetilde{\mathcal{H}}=(a y x a) \widetilde{\mathcal{H}}
$$

This shows that $S / \widetilde{\mathcal{H}}$ is a normal band. Moreover, since each S_{α} is a $\widetilde{\mathcal{D}}$-class of S, for every $\alpha, \beta \in Y$ with $\alpha \geqslant \beta$, the set $D(\alpha, \beta)$ is just a singleton. This means that S is a strong semilattice of completely $\widetilde{\mathcal{J}}$-simple semigroups S_{α}. Our proof is completed.

References

[1] A. H. Clifford, Semigroups admitting relative inverses, Ann of Math. 42, 1037-1049, (1941)
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys 7, Vols 1 and 2, American Mathematical Society, Providence, R.I., (1967)
[3] A. El-Qallali, Structure Theory for Abundant and Related Semigroups, PhD Thesis, York University, England, (1980)
[4] J. B. Fountain, Abundant semigroups, Proc London Math Soc 43 (3) 103-129, (1982)
[5] X. J. Guo and K. P. Shum, On left cyber groups. Int. Math. J, 5 705-717, (2004)
[6] J. M. Howie, Fundamental of Semigroup Theory, Clarendon Press, Oxford, (1995)
[7] X. Z. Kong and K. P. Shum , Completely regular semigroups with generalized strong semilattice decompositions, Algebra Colloqium, 12 (2) 269-280, (2005)
[8] X. Z. Kong and K. P. Shum , On the structure of regular crypto semigroups, Comm. in Algebra, 29 (6), 2461-2479,(2001)
[9] X. Z. Kong and K. P. Shum , Semilattice structure of regular cyber groups, Pragmatic Algebra, 1 1-12, (2006)
[10] X. Z. Kong and Z. L. Yuan , $\mathcal{K} G$-strong semilattice decomposition of regular orthocryptosemigroups, Semigroup Forum, 73, 95-108, (2006)
[11] F. Pastijn , A representation of a semigroup by a semigroup of matrices over a group with zero, Semigroup Forum, 10, 238-249,(1975)
[12] M. Petrich and N. R. Reilly , Completely Regular Semigroups, John Wiley \& Sons, 162-242, (1999)
[13] M. Petrich , The structure of completely regular semigroups, Trans Amer Math Soc, 189, 211-236, (1974)
[14] M. Petrich, Lectures in Semigroups, Wiley \& Sons Inc. London, (1976)
[15] X. M. Ren and K. P. Shum , The structure of superabundant semigroups, Sci in China, Ser. A, 47 (5), 756-771, (2004)
[16] X. M. and K. P. Shum , On superabundant semigroups whose set of idempotnets forms a subsemigroup, Algebra Colloqium, 14 (2), 215-228, (2007)

[^0]: ${ }^{*}$ Corresponding author. Email addresses: xiangzhikong@163.com (X. Kong),
 kpshum@maths.hku.edu.hk (K.P. Shum)
 ${ }^{\dagger}$ The research of K.P. Shum is partially supported by a Wu Jiehyee Charitable foundation grant no. 7103084, 2006-07

